metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m170-m171

catena-Poly[[[tetra­aqua­neodymium(III)]-di-μ-isonicotinato] chloride]

aChemical Engineering College, Inner Mongolia University of Technology, People's Republic of China, and bThe State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, People's Republic of China
*Correspondence e-mail: cp_li@yahoo.cn

(Received 24 October 2011; accepted 25 December 2011; online 18 January 2012)

In the title complex, {[Nd(C6H4NO2)2(H2O)4]Cl}n, the NdIII cation is located on a twofold rotation axis and coordinated by four isonicotiniate anions and four water mol­ecules in a distorted square-anti­prismatic geometry. The carboxyl­ate groups of the isonicotinate anions bridge the NdIII cations, forming polymeric chains running along the c axis. The Cl anion is located on a twofold rotation axis and is linked to the polymeric chains via O—H⋯Cl hydrogen bonding. Inter­molecular O—H⋯O and O—H⋯N hydrogen bonds are also present in the crystal structure.

Related literature

For some crystal structures of related lanthanide-isonicotinic acid complexes, see: Chen & Fukuzumi (2009[Chen, W.-T. & Fukuzumi, S. (2009). Inorg. Chem. 48, 3800-3807.]); Ma et al. (1999[Ma, L., Evans, O. R., Foxman, B. M. & Lin, W.-B. (1999). Inorg. Chem. 38, 5837-5840.]); Han et al. (2010[Han, L.-J., Sun, X.-C., Zhu, Y.-L., Zhou, W.-L., Chen, Q. & Xu, Y. (2010). J. Chem. Crystallogr. 40, 579-582.]); Kay et al. (1972[Kay, J., Moore, J. W. & Glick, M. D. (1972). Inorg. Chem. 11, 2818-2826.]); Duan et al. (2010[Duan, L.-M., Lin, C.-K., Wang, H., Liu, X.-M. & Lin, J. (2010). Inorg. Chim. Acta, 363, 1507-1512.]); Jia et al. (2008[Jia, G.-H., Law, G. L., Wong, K. L., Tanner, P. A. & Wong, W. T. (2008). Inorg. Chem. 47, 9431-9438.]); Cheng et al. (2007[Cheng, J.-W., Zheng, S.-T. & Yang, G.-Y. (2007). Dalton Trans. pp. 4059-4066.]); Liu et al. (2006[Liu, J.-H., Wu, X.-Y., Zheng, Q.-Z., He, X., Yang, W.-B. & Lu, C.-Z. (2006). Inorg. Chem. Commun. 9, 1187-1190.]); Chai et al. (2010[Chai, W.-X., Song, L., Shu, K.-Y., Shi, H.-S. & Qin, L.-S. (2010). J. Chem. Crystallogr. 40, 448-452.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(C6H4NO2)2(H2O)4]Cl

  • Mr = 495.96

  • Orthorhombic, P b c n

  • a = 8.9223 (18) Å

  • b = 19.684 (4) Å

  • c = 10.151 (2) Å

  • V = 1782.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.10 mm−1

  • T = 173 K

  • 0.18 × 0.17 × 0.15 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.49, Tmax = 0.63

  • 9085 measured reflections

  • 2056 independent reflections

  • 1764 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.190

  • S = 1.33

  • 2056 reflections

  • 122 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O1i 2.425 (6)
Nd1—O2 2.385 (5)
Nd1—O3 2.544 (6)
Nd1—O4 2.480 (6)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H6⋯Cl2ii 0.95 (6) 2.29 (6) 3.211 (7) 163 (6)
O3—H7⋯N1iii 0.97 (4) 1.72 (4) 2.685 (10) 174 (9)
O4—H8⋯Cl2i 0.96 (4) 2.15 (5) 3.041 (6) 155 (6)
O4—H9⋯O3iv 0.95 (2) 1.93 (3) 2.841 (8) 160 (8)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the synthesis of prepare a lanthanide-isonicotinamide complex, the isonicotinamide changed to isonicotinic acid, resulting in the title complex.

Among aromatic carboxylic acids, isonicotinic acid has a conjugated structural motif and can be used to construct extended structures because it is unsymmetrical divergent ligand. Isonicotinic acid with metal ions may have various coordination modes (Chen et al., 2009). The molecular structure of the title compound is shown in Fig. 1. Nd(III) is 8-coordinated to four oxygen atoms from four isonicotinic acid molecules and four water molecules. Each ligand is coordinated to two metal ions as bidentate ligands via two oxygen atoms of carboxyl group. One metal ion is connected to four ligands, thus an extensive network form. Nd(III) is located at the center of a slightly distorted square antiprism. Nd-O distances are from 2.385 to 2.544 Å. The mean Nd-O bond lengths, 2.4585 Å is larger than the mean Sm-O bond lengths (2.426 Å), which is consistent with the lanthanide contraction. The O—H···Cl, O—H···O and O—H···N hydrogen bonds form a three-dimensional network.

For lanthanide-isonicotinate complexes, several structures have been observed. For example, Ln(III) ions can coordinate to six carboxylate oxygen atoms of bridging isonicotinate groups and to two water molecules (Ma et al., 1999); or may coordinate to four carboxylate oxygen atoms of bridging isonicotinate groups, two carboxylate oxygen atoms of the chelating isonicotinate group, and two water molecules (Ma et al., 1999; Han et al., 2010; Kay et al., 1972); or have structure similar to the NdCl-isonicotinic acid complex reported here (Chen et al., 2009). Because Cl- or NO3- does not coordinate to lanthanide ions, so Nd(III) chloride or nitrate ion-isonicotinic acid complexes have the similar coordination sphere (Duan et al., 2010; Jia et al., 2008). When oxalate ligands, chromate ions or other ligands are involved, the coordination situations are a little different (Cheng et al., 2007; Liu et al., 2006; Chai et al., 2010) because oxalate ligand, chromate ions or other ligands also coordinate to metal ions.

Related literature top

For some crystal structures of related lanthanide-isonicotinic acid complexes, see: Chen et al. (2009); Ma et al. (1999); Han et al. (2010); Kay et al. (1972); Duan et al. (2010); Jia et al. (2008); Cheng et al. (2007); Liu et al. (2006); Chai et al. (2010).

Experimental top

NdCl3 (1 mmol) and isonicotinamide (3 mmol) were dissolved in 3ml water and 6 ml ethanol. The solution was put on a water bath, temperature was raised to 80°C. Small aliquots of EtOH were periodically added to the solution during the heating process to prolong the reaction time. The resulting mixtures were filtered and left for crystallization in room temperature, the suitable crystals for X-ray diffraction measuraments were obtained in two weeks.

Refinement top

The C-bound H-atoms were placed in calculated positions (C—H 0.930 Å) and were included in the refinement in the riding model approximation, Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in a difference Fourier map and were refined with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, displacement ellipsoids drawn at 30% probability level. The Hydrogen atoms have been omitted for clarity.
catena-Poly[[[tetraaquaneodymium(III)]-di-µ-isonicotinato] chloride] top
Crystal data top
[Nd(C6H4NO2)2(H2O)4]ClF(000) = 972
Mr = 495.96Dx = 1.848 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4581 reflections
a = 8.9223 (18) Åθ = 2.0–27.5°
b = 19.684 (4) ŵ = 3.10 mm1
c = 10.151 (2) ÅT = 173 K
V = 1782.9 (6) Å3Block, blue
Z = 40.18 × 0.17 × 0.15 mm
Data collection top
Rigaku Saturn724+ CCD
diffractometer
2056 independent reflections
Radiation source: fine-focus sealed tube1764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scans at fixed χ = 45°h = 116
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 2523
Tmin = 0.49, Tmax = 0.63l = 1213
9085 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.33 w = 1/[σ2(Fo2) + (0.0763P)2 + 8.5206P]
where P = (Fo2 + 2Fc2)/3
2056 reflections(Δ/σ)max = 0.004
122 parametersΔρmax = 1.12 e Å3
6 restraintsΔρmin = 1.06 e Å3
Crystal data top
[Nd(C6H4NO2)2(H2O)4]ClV = 1782.9 (6) Å3
Mr = 495.96Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 8.9223 (18) ŵ = 3.10 mm1
b = 19.684 (4) ÅT = 173 K
c = 10.151 (2) Å0.18 × 0.17 × 0.15 mm
Data collection top
Rigaku Saturn724+ CCD
diffractometer
2056 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
1764 reflections with I > 2σ(I)
Tmin = 0.49, Tmax = 0.63Rint = 0.071
9085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0636 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.33Δρmax = 1.12 e Å3
2056 reflectionsΔρmin = 1.06 e Å3
122 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.50000.51140 (3)0.25000.0166 (3)
Cl20.00000.55946 (19)0.75000.0334 (8)
O40.6995 (7)0.4591 (3)0.1133 (5)0.0263 (13)
H80.802 (4)0.448 (5)0.131 (7)0.032*
H90.694 (9)0.459 (5)0.020 (2)0.032*
O10.5450 (7)0.3957 (3)0.5981 (6)0.0250 (13)
O20.6051 (7)0.4301 (3)0.3977 (5)0.0225 (12)
O30.2471 (7)0.5501 (3)0.1620 (6)0.0242 (13)
H60.163 (6)0.526 (3)0.195 (10)0.029*
H70.211 (8)0.5964 (15)0.157 (9)0.029*
C60.5817 (8)0.3855 (4)0.4827 (8)0.0164 (15)
C30.6021 (10)0.3129 (4)0.4415 (8)0.0217 (17)
C20.6744 (10)0.2956 (4)0.3247 (8)0.0261 (19)
H20.71000.32950.26910.031*
C40.5480 (12)0.2591 (4)0.5189 (10)0.030 (2)
H40.49710.26780.59700.035*
N10.6459 (9)0.1776 (4)0.3683 (7)0.0286 (17)
C50.5713 (12)0.1933 (4)0.4775 (9)0.030 (2)
H50.53290.15810.52850.036*
C10.6936 (11)0.2279 (4)0.2911 (10)0.030 (2)
H10.74120.21730.21230.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0210 (4)0.0139 (4)0.0148 (4)0.0000.0010 (2)0.000
Cl20.0240 (15)0.0327 (18)0.043 (2)0.0000.0092 (13)0.000
O40.025 (3)0.040 (4)0.014 (3)0.008 (3)0.001 (2)0.002 (3)
O10.034 (3)0.019 (3)0.022 (3)0.002 (3)0.007 (3)0.005 (2)
O20.025 (3)0.016 (3)0.026 (3)0.001 (2)0.006 (3)0.007 (2)
O30.022 (3)0.015 (3)0.035 (3)0.005 (2)0.005 (3)0.005 (2)
C60.006 (4)0.018 (4)0.025 (4)0.000 (3)0.008 (3)0.000 (3)
C30.023 (4)0.022 (4)0.021 (4)0.000 (3)0.002 (3)0.001 (3)
C20.026 (5)0.026 (4)0.027 (4)0.003 (4)0.006 (4)0.002 (4)
C40.037 (5)0.020 (4)0.032 (5)0.005 (4)0.003 (4)0.002 (4)
N10.040 (4)0.021 (4)0.025 (4)0.002 (3)0.009 (3)0.009 (3)
C50.040 (6)0.015 (4)0.035 (5)0.000 (4)0.006 (4)0.004 (3)
C10.035 (5)0.023 (5)0.031 (5)0.005 (4)0.003 (4)0.008 (4)
Geometric parameters (Å, º) top
Nd1—O1i2.425 (6)O3—H60.95 (2)
Nd1—O1ii2.425 (6)O3—H70.97 (2)
Nd1—O2iii2.385 (5)C6—C31.501 (10)
Nd1—O22.385 (5)C3—C21.392 (11)
Nd1—O3iii2.544 (6)C3—C41.404 (12)
Nd1—O32.544 (6)C2—C11.385 (12)
Nd1—O4iii2.480 (6)C2—H20.9300
Nd1—O42.480 (6)C4—C51.377 (12)
O4—H80.96 (2)C4—H40.9300
O4—H90.95 (2)N1—C51.330 (12)
O1—C61.234 (9)N1—C11.332 (12)
O1—Nd1i2.425 (6)C5—H50.9300
O2—C61.248 (9)C1—H10.9300
O2iii—Nd1—O295.7 (3)Nd1—O4—H8132 (5)
O2iii—Nd1—O1i147.2 (2)Nd1—O4—H9121 (5)
O2—Nd1—O1i99.8 (2)H8—O4—H9104 (3)
O2iii—Nd1—O1ii99.8 (2)C6—O1—Nd1i140.4 (5)
O2—Nd1—O1ii147.2 (2)C6—O2—Nd1147.2 (5)
O1i—Nd1—O1ii82.1 (3)Nd1—O3—H6115 (5)
O2iii—Nd1—O4iii78.0 (2)Nd1—O3—H7127 (5)
O2—Nd1—O4iii69.63 (19)H6—O3—H7103 (3)
O1i—Nd1—O4iii80.7 (2)O1—C6—O2125.9 (7)
O1ii—Nd1—O4iii141.9 (2)O1—C6—C3116.9 (7)
O2iii—Nd1—O469.63 (19)O2—C6—C3117.2 (7)
O2—Nd1—O478.0 (2)C2—C3—C4116.8 (8)
O1i—Nd1—O4141.9 (2)C2—C3—C6121.8 (7)
O1ii—Nd1—O480.7 (2)C4—C3—C6121.4 (7)
O4iii—Nd1—O4131.0 (3)C1—C2—C3120.2 (8)
O2iii—Nd1—O3iii140.41 (19)C1—C2—H2119.9
O2—Nd1—O3iii68.36 (19)C3—C2—H2119.9
O1i—Nd1—O3iii72.4 (2)C5—C4—C3119.1 (9)
O1ii—Nd1—O3iii81.4 (2)C5—C4—H4120.4
O4iii—Nd1—O3iii124.35 (18)C3—C4—H4120.4
O4—Nd1—O3iii71.60 (19)C5—N1—C1118.5 (7)
O2iii—Nd1—O368.36 (19)N1—C5—C4123.2 (8)
O2—Nd1—O3140.41 (19)N1—C5—H5118.4
O1i—Nd1—O381.4 (2)C4—C5—H5118.4
O1ii—Nd1—O372.4 (2)N1—C1—C2122.0 (9)
O4iii—Nd1—O371.60 (19)N1—C1—H1119.0
O4—Nd1—O3124.35 (18)C2—C1—H1119.0
O3iii—Nd1—O3145.1 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z1/2; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···Cl2iv0.95 (6)2.29 (6)3.211 (7)163 (6)
O3—H7···N1v0.97 (4)1.72 (4)2.685 (10)174 (9)
O4—H8···Cl2i0.96 (4)2.15 (5)3.041 (6)155 (6)
O4—H9···O3vi0.95 (2)1.93 (3)2.841 (8)160 (8)
Symmetry codes: (i) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x1/2, y+1/2, z+1/2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Nd(C6H4NO2)2(H2O)4]Cl
Mr495.96
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)8.9223 (18), 19.684 (4), 10.151 (2)
V3)1782.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.10
Crystal size (mm)0.18 × 0.17 × 0.15
Data collection
DiffractometerRigaku Saturn724+ CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.49, 0.63
No. of measured, independent and
observed [I > 2σ(I)] reflections
9085, 2056, 1764
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.190, 1.33
No. of reflections2056
No. of parameters122
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 1.06

Computer programs: CrystalClear (Rigaku, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Nd1—O1i2.425 (6)Nd1—O32.544 (6)
Nd1—O22.385 (5)Nd1—O42.480 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···Cl2ii0.95 (6)2.29 (6)3.211 (7)163 (6)
O3—H7···N1iii0.97 (4)1.72 (4)2.685 (10)174 (9)
O4—H8···Cl2i0.96 (4)2.15 (5)3.041 (6)155 (6)
O4—H9···O3iv0.95 (2)1.93 (3)2.841 (8)160 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y+1, z.
 

Acknowledgements

The work was supported financially by the National Natural Science Foundation of China (grant Nos. 50973003 and 21001009), the National High-Tech R&D Program of China (863 Program) and of MOST (No. 2010 A A03A406). Special thanks are due to Dr X. Hao, L. Wang and T.-L. Liang for their assistance in the data collection.

References

First citationChai, W.-X., Song, L., Shu, K.-Y., Shi, H.-S. & Qin, L.-S. (2010). J. Chem. Crystallogr. 40, 448–452.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, W.-T. & Fukuzumi, S. (2009). Inorg. Chem. 48, 3800–3807.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCheng, J.-W., Zheng, S.-T. & Yang, G.-Y. (2007). Dalton Trans. pp. 4059–4066.  Web of Science CSD CrossRef Google Scholar
First citationDuan, L.-M., Lin, C.-K., Wang, H., Liu, X.-M. & Lin, J. (2010). Inorg. Chim. Acta, 363, 1507–1512.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, L.-J., Sun, X.-C., Zhu, Y.-L., Zhou, W.-L., Chen, Q. & Xu, Y. (2010). J. Chem. Crystallogr. 40, 579–582.  Web of Science CSD CrossRef CAS Google Scholar
First citationJia, G.-H., Law, G. L., Wong, K. L., Tanner, P. A. & Wong, W. T. (2008). Inorg. Chem. 47, 9431–9438.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKay, J., Moore, J. W. & Glick, M. D. (1972). Inorg. Chem. 11, 2818–2826.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, J.-H., Wu, X.-Y., Zheng, Q.-Z., He, X., Yang, W.-B. & Lu, C.-Z. (2006). Inorg. Chem. Commun. 9, 1187–1190.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, L., Evans, O. R., Foxman, B. M. & Lin, W.-B. (1999). Inorg. Chem. 38, 5837–5840.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m170-m171
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds