organic compounds
[8-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalen-1-yl](2,4,6-trimethylphenyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title compound, C29H25ClO4, the dihedral angle between the benzene rings of the 2,4,6-trimethylbenzoyl group and the 4-chlorobenzoyl group is 65.19 (9)°. The dihedral angles between the naphthalene ring system and the benzene rings of the 2,4,6-trimethylbenzoyl group and the 4-chlorobenzoyl group are 85.66 (8) and 69.48 (8)°, respectively. In the crystal, two types of intermolecular C—H⋯O interactions and an intramolecular C—H⋯O interaction are observed. Moreover, there is a short intramolecular C=O⋯C=O contact of 2.614 (2) Å between the benzoyl substituents.
Related literature
For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Mitsui et al. (2008); Muto et al. (2011a,b, 2012); Nakaema et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812008112/gk2460sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812008112/gk2460Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812008112/gk2460Isup3.cml
To a 10 ml flask, 4-chlorobenzoyl chloride (0.40 mmol, 0.070 g), titanium chloride (1.20 mmol, 0.228 g) and methylene chloride (0.50 ml) were placed and stirred at rt. To the reaction mixture thus obtained, 1-(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene (0.20 mmol, 0.067 g) was added. After the reaction mixture was stirred at rt for 9 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (quant.). The crude product was purified by recrystallization from hexane and CHCl3 (yield 2%).
1H NMR δ (300 MHz, CDCl3); 2.16 (6H, s), 2.25 (3H, s), 3.47 (3H, s), 3.68 (3H, s), 6.77 (2H, s), 7.10 (1H, d, J = 9.0 Hz), 7.23 (1H, d, J = 9.3 Hz), 7.34 (2H, d, J = 8.7 Hz), 7.74 (2H, d, J = 8.7 Hz), 7.92 (1H, d, J = 8.7 Hz), 7.94 (1H, d, J = 9.0 Hz) p.p.m..
13C NMR δ (125 MHz, CDCl3); 21.11, 21.35, 56.27, 56.83, 111.13, 112.39, 121.13, 124.87, 125.72, 128.13, 129.26, 129.57, 130.13, 132.43, 133.27, 137.88, 138.37, 138.57, 139.21, 157.20, 157.94, 195.83, 199.69 p.p.m..
IR (KBr); 1656 (C=O), 1607, 1514, 1457(Ar, naphthalene), 1271 (=C—O—C) cm-1.
HRMS (m/z); [M + Na]+ Calcd for C29H25ClO4Na, 495.1370; found, 495.1339.
m.p. = 503.0–505.0 K.
All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H) = 1.2 Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C29H25ClO4 | F(000) = 992 |
Mr = 472.94 | Dx = 1.348 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: -P 2ybc | Cell parameters from 30848 reflections |
a = 11.6017 (2) Å | θ = 3.6–68.2° |
b = 12.3381 (2) Å | µ = 1.73 mm−1 |
c = 16.2825 (3) Å | T = 193 K |
β = 90.503 (1)° | Block, colorless |
V = 2330.64 (7) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 4266 independent reflections |
Radiation source: rotating anode | 3197 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.2°, θmin = 3.8° |
ω scans | h = −13→13 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −14→14 |
Tmin = 0.625, Tmax = 0.846 | l = −19→19 |
40504 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0647P)2 + 0.4811P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
4266 reflections | Δρmax = 0.21 e Å−3 |
313 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0019 (2) |
C29H25ClO4 | V = 2330.64 (7) Å3 |
Mr = 472.94 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 11.6017 (2) Å | µ = 1.73 mm−1 |
b = 12.3381 (2) Å | T = 193 K |
c = 16.2825 (3) Å | 0.30 × 0.20 × 0.10 mm |
β = 90.503 (1)° |
Rigaku R-AXIS RAPID diffractometer | 4266 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 3197 reflections with I > 2σ(I) |
Tmin = 0.625, Tmax = 0.846 | Rint = 0.054 |
40504 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.15 | Δρmax = 0.21 e Å−3 |
4266 reflections | Δρmin = −0.24 e Å−3 |
313 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.69235 (5) | 0.10716 (5) | 0.47771 (3) | 0.0588 (2) | |
O1 | 0.20277 (12) | 0.08172 (12) | 0.27478 (9) | 0.0481 (4) | |
O2 | 0.33992 (13) | −0.06714 (11) | 0.17961 (9) | 0.0507 (4) | |
O3 | −0.02500 (13) | 0.23149 (13) | 0.17441 (10) | 0.0584 (4) | |
O4 | 0.55327 (12) | 0.05151 (12) | 0.09221 (9) | 0.0492 (4) | |
C1 | 0.15846 (17) | 0.16470 (15) | 0.14692 (12) | 0.0393 (5) | |
C2 | 0.06994 (18) | 0.23511 (17) | 0.12574 (13) | 0.0454 (5) | |
C3 | 0.07890 (19) | 0.30891 (17) | 0.06063 (13) | 0.0489 (5) | |
H3 | 0.0164 | 0.3555 | 0.0470 | 0.059* | |
C4 | 0.17854 (19) | 0.31268 (17) | 0.01738 (13) | 0.0480 (5) | |
H4 | 0.1846 | 0.3618 | −0.0273 | 0.058* | |
C5 | 0.27304 (18) | 0.24567 (15) | 0.03717 (12) | 0.0411 (5) | |
C6 | 0.37374 (19) | 0.25238 (17) | −0.01035 (12) | 0.0453 (5) | |
H6 | 0.3761 | 0.3020 | −0.0549 | 0.054* | |
C7 | 0.46715 (18) | 0.19001 (17) | 0.00576 (12) | 0.0459 (5) | |
H7 | 0.5338 | 0.1948 | −0.0275 | 0.055* | |
C8 | 0.46389 (17) | 0.11829 (16) | 0.07222 (12) | 0.0416 (5) | |
C9 | 0.36732 (17) | 0.10735 (15) | 0.12160 (12) | 0.0379 (4) | |
C10 | 0.26600 (17) | 0.17072 (15) | 0.10417 (12) | 0.0382 (4) | |
C11 | 0.13588 (17) | 0.08802 (15) | 0.21667 (13) | 0.0402 (5) | |
C12 | 0.02723 (16) | 0.02178 (15) | 0.21450 (12) | 0.0389 (4) | |
C13 | −0.05043 (17) | 0.03204 (16) | 0.28009 (12) | 0.0424 (5) | |
C14 | −0.15272 (17) | −0.02578 (16) | 0.27704 (12) | 0.0436 (5) | |
H14 | −0.2059 | −0.0179 | 0.3207 | 0.052* | |
C15 | −0.18025 (17) | −0.09461 (16) | 0.21268 (13) | 0.0414 (5) | |
C16 | −0.10099 (17) | −0.10558 (16) | 0.14962 (13) | 0.0421 (5) | |
H16 | −0.1179 | −0.1536 | 0.1055 | 0.050* | |
C17 | 0.00221 (17) | −0.04836 (16) | 0.14928 (12) | 0.0404 (5) | |
C18 | 0.38091 (16) | 0.02322 (15) | 0.18818 (12) | 0.0394 (5) | |
C19 | 0.45487 (16) | 0.04930 (15) | 0.26164 (12) | 0.0388 (4) | |
C20 | 0.46449 (18) | −0.02682 (16) | 0.32407 (12) | 0.0449 (5) | |
H20 | 0.4207 | −0.0918 | 0.3211 | 0.054* | |
C21 | 0.53713 (18) | −0.00905 (17) | 0.39053 (13) | 0.0476 (5) | |
H21 | 0.5439 | −0.0617 | 0.4329 | 0.057* | |
C22 | 0.59999 (17) | 0.08638 (17) | 0.39460 (13) | 0.0446 (5) | |
C23 | 0.59021 (17) | 0.16476 (17) | 0.33401 (12) | 0.0442 (5) | |
H23 | 0.6331 | 0.2302 | 0.3376 | 0.053* | |
C24 | 0.51680 (17) | 0.14576 (16) | 0.26821 (12) | 0.0416 (5) | |
H24 | 0.5084 | 0.1994 | 0.2267 | 0.050* | |
C25 | −0.1238 (2) | 0.2937 (2) | 0.15477 (17) | 0.0650 (7) | |
H25A | −0.1048 | 0.3710 | 0.1584 | 0.078* | |
H25B | −0.1854 | 0.2768 | 0.1935 | 0.078* | |
H25C | −0.1496 | 0.2765 | 0.0988 | 0.078* | |
C26 | 0.66420 (18) | 0.0740 (2) | 0.05727 (15) | 0.0569 (6) | |
H26A | 0.6843 | 0.1501 | 0.0671 | 0.068* | |
H26B | 0.6614 | 0.0602 | −0.0020 | 0.068* | |
H26C | 0.7224 | 0.0272 | 0.0829 | 0.068* | |
C27 | −0.0277 (2) | 0.1066 (2) | 0.35151 (15) | 0.0607 (6) | |
H27A | −0.0005 | 0.1767 | 0.3312 | 0.073* | |
H27B | 0.0312 | 0.0746 | 0.3876 | 0.073* | |
H27C | −0.0990 | 0.1170 | 0.3823 | 0.073* | |
C28 | −0.29352 (17) | −0.15531 (17) | 0.21101 (14) | 0.0465 (5) | |
H28A | −0.2807 | −0.2295 | 0.1916 | 0.056* | |
H28B | −0.3477 | −0.1185 | 0.1739 | 0.056* | |
H28C | −0.3256 | −0.1573 | 0.2665 | 0.056* | |
C29 | 0.08631 (19) | −0.06858 (19) | 0.07974 (14) | 0.0513 (5) | |
H29A | 0.0572 | −0.1274 | 0.0448 | 0.062* | |
H29B | 0.1616 | −0.0889 | 0.1027 | 0.062* | |
H29C | 0.0942 | −0.0025 | 0.0469 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0508 (3) | 0.0793 (4) | 0.0463 (3) | 0.0077 (3) | −0.0052 (3) | −0.0046 (3) |
O1 | 0.0416 (8) | 0.0590 (9) | 0.0436 (9) | −0.0052 (7) | −0.0041 (7) | 0.0070 (7) |
O2 | 0.0572 (9) | 0.0425 (8) | 0.0525 (9) | −0.0051 (7) | −0.0018 (7) | 0.0016 (6) |
O3 | 0.0450 (8) | 0.0610 (10) | 0.0693 (11) | 0.0130 (7) | 0.0078 (8) | 0.0100 (8) |
O4 | 0.0459 (8) | 0.0531 (8) | 0.0487 (9) | 0.0059 (7) | 0.0125 (7) | 0.0070 (7) |
C1 | 0.0413 (11) | 0.0385 (10) | 0.0381 (11) | −0.0018 (8) | −0.0014 (9) | −0.0014 (8) |
C2 | 0.0439 (11) | 0.0458 (11) | 0.0464 (12) | 0.0012 (9) | −0.0032 (10) | −0.0028 (9) |
C3 | 0.0529 (13) | 0.0435 (11) | 0.0502 (13) | 0.0031 (10) | −0.0098 (10) | 0.0025 (9) |
C4 | 0.0599 (14) | 0.0418 (11) | 0.0421 (12) | −0.0030 (10) | −0.0105 (10) | 0.0039 (9) |
C5 | 0.0487 (11) | 0.0386 (10) | 0.0360 (11) | −0.0062 (9) | −0.0068 (9) | −0.0005 (8) |
C6 | 0.0552 (13) | 0.0460 (11) | 0.0346 (11) | −0.0099 (10) | −0.0017 (9) | 0.0028 (9) |
C7 | 0.0501 (12) | 0.0498 (12) | 0.0380 (11) | −0.0078 (10) | 0.0043 (9) | −0.0002 (9) |
C8 | 0.0456 (11) | 0.0418 (11) | 0.0375 (11) | −0.0019 (9) | 0.0019 (9) | −0.0014 (8) |
C9 | 0.0410 (10) | 0.0393 (10) | 0.0336 (10) | −0.0020 (8) | 0.0020 (8) | −0.0001 (8) |
C10 | 0.0439 (11) | 0.0362 (10) | 0.0345 (10) | −0.0054 (8) | −0.0036 (8) | −0.0023 (8) |
C11 | 0.0393 (11) | 0.0408 (10) | 0.0405 (12) | 0.0016 (8) | 0.0024 (9) | −0.0011 (8) |
C12 | 0.0370 (10) | 0.0415 (10) | 0.0381 (11) | 0.0017 (8) | −0.0005 (8) | 0.0014 (8) |
C13 | 0.0436 (11) | 0.0451 (11) | 0.0384 (11) | −0.0003 (9) | 0.0027 (9) | −0.0040 (9) |
C14 | 0.0419 (11) | 0.0477 (11) | 0.0414 (11) | −0.0003 (9) | 0.0054 (9) | 0.0010 (9) |
C15 | 0.0380 (11) | 0.0413 (11) | 0.0449 (12) | 0.0024 (8) | −0.0031 (9) | 0.0036 (9) |
C16 | 0.0429 (11) | 0.0429 (11) | 0.0404 (11) | 0.0016 (9) | −0.0041 (9) | −0.0031 (9) |
C17 | 0.0414 (11) | 0.0433 (10) | 0.0366 (11) | 0.0032 (8) | 0.0010 (9) | 0.0012 (8) |
C18 | 0.0375 (10) | 0.0388 (10) | 0.0419 (11) | 0.0021 (8) | 0.0061 (9) | 0.0003 (8) |
C19 | 0.0372 (10) | 0.0410 (10) | 0.0382 (11) | 0.0038 (8) | 0.0063 (8) | 0.0013 (8) |
C20 | 0.0496 (12) | 0.0416 (11) | 0.0437 (12) | 0.0002 (9) | 0.0054 (10) | 0.0058 (9) |
C21 | 0.0534 (12) | 0.0499 (12) | 0.0394 (12) | 0.0087 (10) | 0.0028 (10) | 0.0069 (9) |
C22 | 0.0404 (11) | 0.0547 (12) | 0.0387 (12) | 0.0088 (9) | 0.0043 (9) | −0.0031 (9) |
C23 | 0.0420 (11) | 0.0475 (11) | 0.0431 (12) | −0.0004 (9) | 0.0061 (9) | −0.0040 (9) |
C24 | 0.0433 (11) | 0.0425 (11) | 0.0391 (11) | 0.0034 (9) | 0.0052 (9) | 0.0038 (9) |
C25 | 0.0433 (13) | 0.0658 (15) | 0.0857 (19) | 0.0084 (11) | −0.0070 (12) | −0.0008 (13) |
C26 | 0.0432 (12) | 0.0672 (15) | 0.0605 (15) | −0.0001 (10) | 0.0090 (11) | 0.0034 (11) |
C27 | 0.0555 (14) | 0.0743 (16) | 0.0526 (14) | −0.0118 (12) | 0.0093 (11) | −0.0193 (12) |
C28 | 0.0417 (11) | 0.0487 (12) | 0.0491 (13) | −0.0067 (9) | −0.0024 (9) | 0.0026 (9) |
C29 | 0.0477 (12) | 0.0623 (14) | 0.0439 (13) | −0.0021 (10) | 0.0040 (10) | −0.0099 (10) |
Cl1—C22 | 1.738 (2) | C15—C16 | 1.391 (3) |
O1—C11 | 1.221 (2) | C15—C28 | 1.513 (3) |
O2—C18 | 1.220 (2) | C16—C17 | 1.390 (3) |
O3—C2 | 1.363 (2) | C16—H16 | 0.9500 |
O3—C25 | 1.414 (3) | C17—C29 | 1.522 (3) |
O4—C8 | 1.362 (2) | C18—C19 | 1.501 (3) |
O4—C26 | 1.439 (2) | C19—C20 | 1.388 (3) |
C1—C2 | 1.386 (3) | C19—C24 | 1.394 (3) |
C1—C10 | 1.436 (3) | C20—C21 | 1.383 (3) |
C1—C11 | 1.503 (3) | C20—H20 | 0.9500 |
C2—C3 | 1.402 (3) | C21—C22 | 1.386 (3) |
C3—C4 | 1.360 (3) | C21—H21 | 0.9500 |
C3—H3 | 0.9500 | C22—C23 | 1.385 (3) |
C4—C5 | 1.408 (3) | C23—C24 | 1.383 (3) |
C4—H4 | 0.9500 | C23—H23 | 0.9500 |
C5—C6 | 1.409 (3) | C24—H24 | 0.9500 |
C5—C10 | 1.433 (3) | C25—H25A | 0.9800 |
C6—C7 | 1.353 (3) | C25—H25B | 0.9800 |
C6—H6 | 0.9500 | C25—H25C | 0.9800 |
C7—C8 | 1.399 (3) | C26—H26A | 0.9800 |
C7—H7 | 0.9500 | C26—H26B | 0.9800 |
C8—C9 | 1.391 (3) | C26—H26C | 0.9800 |
C9—C10 | 1.438 (3) | C27—H27A | 0.9800 |
C9—C18 | 1.508 (3) | C27—H27B | 0.9800 |
C11—C12 | 1.502 (3) | C27—H27C | 0.9800 |
C12—C17 | 1.398 (3) | C28—H28A | 0.9800 |
C12—C13 | 1.409 (3) | C28—H28B | 0.9800 |
C13—C14 | 1.385 (3) | C28—H28C | 0.9800 |
C13—C27 | 1.504 (3) | C29—H29A | 0.9800 |
C14—C15 | 1.384 (3) | C29—H29B | 0.9800 |
C14—H14 | 0.9500 | C29—H29C | 0.9800 |
C2—O3—C25 | 120.54 (18) | C12—C17—C29 | 122.43 (18) |
C8—O4—C26 | 118.07 (16) | O2—C18—C19 | 120.45 (18) |
C2—C1—C10 | 119.46 (18) | O2—C18—C9 | 120.58 (18) |
C2—C1—C11 | 116.67 (17) | C19—C18—C9 | 118.73 (16) |
C10—C1—C11 | 123.84 (17) | C20—C19—C24 | 118.92 (19) |
O3—C2—C1 | 115.81 (18) | C20—C19—C18 | 118.71 (18) |
O3—C2—C3 | 121.77 (19) | C24—C19—C18 | 122.35 (18) |
C1—C2—C3 | 122.37 (19) | C21—C20—C19 | 120.7 (2) |
C4—C3—C2 | 118.9 (2) | C21—C20—H20 | 119.7 |
C4—C3—H3 | 120.6 | C19—C20—H20 | 119.7 |
C2—C3—H3 | 120.6 | C20—C21—C22 | 119.26 (19) |
C3—C4—C5 | 121.7 (2) | C20—C21—H21 | 120.4 |
C3—C4—H4 | 119.2 | C22—C21—H21 | 120.4 |
C5—C4—H4 | 119.2 | C23—C22—C21 | 121.3 (2) |
C4—C5—C6 | 119.17 (19) | C23—C22—Cl1 | 119.84 (17) |
C4—C5—C10 | 120.24 (18) | C21—C22—Cl1 | 118.89 (17) |
C6—C5—C10 | 120.59 (19) | C24—C23—C22 | 118.64 (19) |
C7—C6—C5 | 121.77 (19) | C24—C23—H23 | 120.7 |
C7—C6—H6 | 119.1 | C22—C23—H23 | 120.7 |
C5—C6—H6 | 119.1 | C23—C24—C19 | 121.19 (19) |
C6—C7—C8 | 118.87 (19) | C23—C24—H24 | 119.4 |
C6—C7—H7 | 120.6 | C19—C24—H24 | 119.4 |
C8—C7—H7 | 120.6 | O3—C25—H25A | 109.5 |
O4—C8—C9 | 114.75 (17) | O3—C25—H25B | 109.5 |
O4—C8—C7 | 122.82 (17) | H25A—C25—H25B | 109.5 |
C9—C8—C7 | 122.40 (19) | O3—C25—H25C | 109.5 |
C8—C9—C10 | 119.62 (18) | H25A—C25—H25C | 109.5 |
C8—C9—C18 | 113.73 (17) | H25B—C25—H25C | 109.5 |
C10—C9—C18 | 126.60 (16) | O4—C26—H26A | 109.5 |
C5—C10—C1 | 117.25 (18) | O4—C26—H26B | 109.5 |
C5—C10—C9 | 116.69 (17) | H26A—C26—H26B | 109.5 |
C1—C10—C9 | 126.05 (17) | O4—C26—H26C | 109.5 |
O1—C11—C12 | 120.73 (17) | H26A—C26—H26C | 109.5 |
O1—C11—C1 | 120.79 (18) | H26B—C26—H26C | 109.5 |
C12—C11—C1 | 118.45 (18) | C13—C27—H27A | 109.5 |
C17—C12—C13 | 120.09 (18) | C13—C27—H27B | 109.5 |
C17—C12—C11 | 121.53 (17) | H27A—C27—H27B | 109.5 |
C13—C12—C11 | 118.38 (17) | C13—C27—H27C | 109.5 |
C14—C13—C12 | 118.68 (18) | H27A—C27—H27C | 109.5 |
C14—C13—C27 | 119.13 (18) | H27B—C27—H27C | 109.5 |
C12—C13—C27 | 122.15 (18) | C15—C28—H28A | 109.5 |
C15—C14—C13 | 122.35 (19) | C15—C28—H28B | 109.5 |
C15—C14—H14 | 118.8 | H28A—C28—H28B | 109.5 |
C13—C14—H14 | 118.8 | C15—C28—H28C | 109.5 |
C14—C15—C16 | 117.96 (18) | H28A—C28—H28C | 109.5 |
C14—C15—C28 | 120.80 (18) | H28B—C28—H28C | 109.5 |
C16—C15—C28 | 121.23 (19) | C17—C29—H29A | 109.5 |
C17—C16—C15 | 121.92 (19) | C17—C29—H29B | 109.5 |
C17—C16—H16 | 119.0 | H29A—C29—H29B | 109.5 |
C15—C16—H16 | 119.0 | C17—C29—H29C | 109.5 |
C16—C17—C12 | 118.97 (18) | H29A—C29—H29C | 109.5 |
C16—C17—C29 | 118.54 (18) | H29B—C29—H29C | 109.5 |
C25—O3—C2—C1 | −175.14 (19) | O1—C11—C12—C17 | −123.9 (2) |
C25—O3—C2—C3 | 7.5 (3) | C1—C11—C12—C17 | 58.0 (3) |
C10—C1—C2—O3 | −173.78 (17) | O1—C11—C12—C13 | 56.4 (3) |
C11—C1—C2—O3 | 4.2 (3) | C1—C11—C12—C13 | −121.7 (2) |
C10—C1—C2—C3 | 3.6 (3) | C17—C12—C13—C14 | −2.0 (3) |
C11—C1—C2—C3 | −178.48 (19) | C11—C12—C13—C14 | 177.67 (18) |
O3—C2—C3—C4 | 176.24 (19) | C17—C12—C13—C27 | −179.8 (2) |
C1—C2—C3—C4 | −0.9 (3) | C11—C12—C13—C27 | −0.1 (3) |
C2—C3—C4—C5 | −1.0 (3) | C12—C13—C14—C15 | 1.2 (3) |
C3—C4—C5—C6 | 179.39 (19) | C27—C13—C14—C15 | 179.0 (2) |
C3—C4—C5—C10 | 0.2 (3) | C13—C14—C15—C16 | 0.4 (3) |
C4—C5—C6—C7 | −179.97 (19) | C13—C14—C15—C28 | −179.21 (19) |
C10—C5—C6—C7 | −0.8 (3) | C14—C15—C16—C17 | −1.2 (3) |
C5—C6—C7—C8 | −1.0 (3) | C28—C15—C16—C17 | 178.41 (19) |
C26—O4—C8—C9 | −166.11 (18) | C15—C16—C17—C12 | 0.4 (3) |
C26—O4—C8—C7 | 15.8 (3) | C15—C16—C17—C29 | 177.52 (19) |
C6—C7—C8—O4 | 179.09 (18) | C13—C12—C17—C16 | 1.3 (3) |
C6—C7—C8—C9 | 1.1 (3) | C11—C12—C17—C16 | −178.42 (18) |
O4—C8—C9—C10 | −177.55 (17) | C13—C12—C17—C29 | −175.75 (19) |
C7—C8—C9—C10 | 0.6 (3) | C11—C12—C17—C29 | 4.5 (3) |
O4—C8—C9—C18 | 0.2 (3) | C8—C9—C18—O2 | −99.7 (2) |
C7—C8—C9—C18 | 178.27 (18) | C10—C9—C18—O2 | 77.8 (3) |
C4—C5—C10—C1 | 2.4 (3) | C8—C9—C18—C19 | 74.7 (2) |
C6—C5—C10—C1 | −176.82 (18) | C10—C9—C18—C19 | −107.8 (2) |
C4—C5—C10—C9 | −178.44 (18) | O2—C18—C19—C20 | −7.5 (3) |
C6—C5—C10—C9 | 2.4 (3) | C9—C18—C19—C20 | 178.04 (17) |
C2—C1—C10—C5 | −4.1 (3) | O2—C18—C19—C24 | 170.53 (18) |
C11—C1—C10—C5 | 178.04 (17) | C9—C18—C19—C24 | −3.9 (3) |
C2—C1—C10—C9 | 176.74 (18) | C24—C19—C20—C21 | −2.1 (3) |
C11—C1—C10—C9 | −1.1 (3) | C18—C19—C20—C21 | 176.06 (17) |
C8—C9—C10—C5 | −2.2 (3) | C19—C20—C21—C22 | 0.5 (3) |
C18—C9—C10—C5 | −179.63 (18) | C20—C21—C22—C23 | 0.9 (3) |
C8—C9—C10—C1 | 176.87 (18) | C20—C21—C22—Cl1 | −179.21 (15) |
C18—C9—C10—C1 | −0.5 (3) | C21—C22—C23—C24 | −0.6 (3) |
C2—C1—C11—O1 | −127.5 (2) | Cl1—C22—C23—C24 | 179.47 (14) |
C10—C1—C11—O1 | 50.4 (3) | C22—C23—C24—C19 | −1.0 (3) |
C2—C1—C11—C12 | 50.6 (2) | C20—C19—C24—C23 | 2.3 (3) |
C10—C1—C11—C12 | −131.50 (19) | C18—C19—C24—C23 | −175.70 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C23—H23···O2i | 0.95 | 2.54 | 3.413 (2) | 154 |
C28—H28A···O1ii | 0.98 | 2.56 | 3.418 (3) | 147 |
C29—H29B···O2 | 0.98 | 2.42 | 3.349 (3) | 157 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C29H25ClO4 |
Mr | 472.94 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 11.6017 (2), 12.3381 (2), 16.2825 (3) |
β (°) | 90.503 (1) |
V (Å3) | 2330.64 (7) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.73 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.625, 0.846 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 40504, 4266, 3197 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.131, 1.15 |
No. of reflections | 4266 |
No. of parameters | 313 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.24 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C23—H23···O2i | 0.95 | 2.54 | 3.413 (2) | 154 |
C28—H28A···O1ii | 0.98 | 2.56 | 3.418 (3) | 147 |
C29—H29B···O2 | 0.98 | 2.42 | 3.349 (3) | 157 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2. |
Acknowledgements
The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). Acta Cryst. E67, o2813. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). Acta Cryst. E67, o3062. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007) and 1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2012). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected to the naphthalene rings in an almost perpendicular fashion. Besides, the crystal structures of 1-monoaroylated naphthalene derivatives and the β-isomers of 3-monoaroylated derivatives have been also clarified such as 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008), (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011a) and (3,6-dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011b).
As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, unsymmetrical peri-substituted naphthalene bearing 2,4,6-trimethylbenzoyl group and 4-chlorobenzoyl group, is discussed in this report.
The molecular structure of the title compound is displayed in Fig. 1. The 2,4,6-trimethylphenyl group and 4-chlorophenyl group are out of the plane of the naphthalene ring. Two kinds of phenyl rings make different dihedral angles with the naphthalene ring system, i.e., the dihedral angle between the best planes of the 2,4,6-trimethylphenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 85.66 (8)°, whereas, that between the best planes of the 4-chlorophenyl ring (C19—C24) and the naphthalene ring (C1—C10) is 69.48 (8)°. Each of dihedral angles is similar to that of the corresponding symmetric 1,8-diaroylnaphthalene. The dihedral angles between the best planes of the 2,4,6-trimethylphenyl rings and the naphthalene ring of 1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene are 81.58 (5) and 84.92 (6)° (Muto et al., 2012). In addition, the dihedral angles between the best planes of the 4-chlorophenyl rings and the naphthalene ring of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene are 71.55 (7) and 71.98 (7)° (Nakaema et al., 2007).
Besides, an intramolecular C—H···O interaction between methyl group and carbonyl group is observed (C29—H29b···O2 = 2.42 Å; Fig. 1 and Table 1).
The crystal packing is additionally stabilized by an intermolecular C—H···O interaction between the oxygen atom (O2) of the carbonyl group and one hydrogen atom (H23) on 4-chlorophenyl group of the adjacent molecule along the b axis (C23—H23···O2i; Fig. 2 and Table 1). Furthermore, an intermolecular C—H···O hydrogen bonding between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H28a) of the 4-methyl group on 2,4,6-trimethylphenyl ring of the adjacent molecule along the b axis is observed (C28—H28a···O1 ii; Fig. 3 and Table 1).