organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[8-(4-Chloro­benzo­yl)-2,7-dimeth­­oxy­naphthalen-1-yl](2,4,6-tri­methyl­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 14 February 2012; accepted 23 February 2012; online 29 February 2012)

In the title compound, C29H25ClO4, the dihedral angle between the benzene rings of the 2,4,6-trimethyl­benzoyl group and the 4-chloro­benzoyl group is 65.19 (9)°. The dihedral angles between the naphthalene ring system and the benzene rings of the 2,4,6-trimethyl­benzoyl group and the 4-chloro­benzoyl group are 85.66 (8) and 69.48 (8)°, respectively. In the crystal, two types of inter­molecular C—H⋯O inter­actions and an intra­molecular C—H⋯O inter­action are observed. Moreover, there is a short intra­molecular C=O⋯C=O contact of 2.614 (2) Å between the benzoyl substituents.

Related literature

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]); Muto et al. (2011a[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). Acta Cryst. E67, o2813.],b[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). Acta Cryst. E67, o3062.], 2012[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23.]); Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.]).

[Scheme 1]

Experimental

Crystal data
  • C29H25ClO4

  • Mr = 472.94

  • Monoclinic, P 21 /c

  • a = 11.6017 (2) Å

  • b = 12.3381 (2) Å

  • c = 16.2825 (3) Å

  • β = 90.503 (1)°

  • V = 2330.64 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.73 mm−1

  • T = 193 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.625, Tmax = 0.846

  • 40504 measured reflections

  • 4266 independent reflections

  • 3197 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.131

  • S = 1.15

  • 4266 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O2i 0.95 2.54 3.413 (2) 154
C28—H28A⋯O1ii 0.98 2.56 3.418 (3) 147
C29—H29B⋯O2 0.98 2.42 3.349 (3) 157
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007) and 1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2012). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected to the naphthalene rings in an almost perpendicular fashion. Besides, the crystal structures of 1-monoaroylated naphthalene derivatives and the β-isomers of 3-monoaroylated derivatives have been also clarified such as 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008), (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011a) and (3,6-dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011b).

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, unsymmetrical peri-substituted naphthalene bearing 2,4,6-trimethylbenzoyl group and 4-chlorobenzoyl group, is discussed in this report.

The molecular structure of the title compound is displayed in Fig. 1. The 2,4,6-trimethylphenyl group and 4-chlorophenyl group are out of the plane of the naphthalene ring. Two kinds of phenyl rings make different dihedral angles with the naphthalene ring system, i.e., the dihedral angle between the best planes of the 2,4,6-trimethylphenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 85.66 (8)°, whereas, that between the best planes of the 4-chlorophenyl ring (C19—C24) and the naphthalene ring (C1—C10) is 69.48 (8)°. Each of dihedral angles is similar to that of the corresponding symmetric 1,8-diaroylnaphthalene. The dihedral angles between the best planes of the 2,4,6-trimethylphenyl rings and the naphthalene ring of 1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene are 81.58 (5) and 84.92 (6)° (Muto et al., 2012). In addition, the dihedral angles between the best planes of the 4-chlorophenyl rings and the naphthalene ring of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene are 71.55 (7) and 71.98 (7)° (Nakaema et al., 2007).

Besides, an intramolecular C—H···O interaction between methyl group and carbonyl group is observed (C29—H29b···O2 = 2.42 Å; Fig. 1 and Table 1).

The crystal packing is additionally stabilized by an intermolecular C—H···O interaction between the oxygen atom (O2) of the carbonyl group and one hydrogen atom (H23) on 4-chlorophenyl group of the adjacent molecule along the b axis (C23—H23···O2i; Fig. 2 and Table 1). Furthermore, an intermolecular C—H···O hydrogen bonding between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H28a) of the 4-methyl group on 2,4,6-trimethylphenyl ring of the adjacent molecule along the b axis is observed (C28—H28a···O1 ii; Fig. 3 and Table 1).

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Mitsui et al. (2008); Muto et al. (2011a,b, 2012); Nakaema et al. (2007).

Experimental top

To a 10 ml flask, 4-chlorobenzoyl chloride (0.40 mmol, 0.070 g), titanium chloride (1.20 mmol, 0.228 g) and methylene chloride (0.50 ml) were placed and stirred at rt. To the reaction mixture thus obtained, 1-(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene (0.20 mmol, 0.067 g) was added. After the reaction mixture was stirred at rt for 9 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (quant.). The crude product was purified by recrystallization from hexane and CHCl3 (yield 2%).

1H NMR δ (300 MHz, CDCl3); 2.16 (6H, s), 2.25 (3H, s), 3.47 (3H, s), 3.68 (3H, s), 6.77 (2H, s), 7.10 (1H, d, J = 9.0 Hz), 7.23 (1H, d, J = 9.3 Hz), 7.34 (2H, d, J = 8.7 Hz), 7.74 (2H, d, J = 8.7 Hz), 7.92 (1H, d, J = 8.7 Hz), 7.94 (1H, d, J = 9.0 Hz) p.p.m..

13C NMR δ (125 MHz, CDCl3); 21.11, 21.35, 56.27, 56.83, 111.13, 112.39, 121.13, 124.87, 125.72, 128.13, 129.26, 129.57, 130.13, 132.43, 133.27, 137.88, 138.37, 138.57, 139.21, 157.20, 157.94, 195.83, 199.69 p.p.m..

IR (KBr); 1656 (C=O), 1607, 1514, 1457(Ar, naphthalene), 1271 (=C—O—C) cm-1.

HRMS (m/z); [M + Na]+ Calcd for C29H25ClO4Na, 495.1370; found, 495.1339.

m.p. = 503.0–505.0 K.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids at 50% probability and a weak intramolecular C—H···O interactions.
[Figure 2] Fig. 2. Intermolecular C23—H23···O2i interactions, viewed along the c axis [symmetry code: (i) –x + 1, y + 1/2, -z + 1/2].
[Figure 3] Fig. 3. A packing diagram of the title compound, showing intermolecular C28—H28a···O1 ii interactions [symmetry code: (ii) –x, y - 1/2, -z + 1/2].
[8-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalen-1-yl](2,4,6- trimethylphenyl)methanone top
Crystal data top
C29H25ClO4F(000) = 992
Mr = 472.94Dx = 1.348 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 30848 reflections
a = 11.6017 (2) Åθ = 3.6–68.2°
b = 12.3381 (2) ŵ = 1.73 mm1
c = 16.2825 (3) ÅT = 193 K
β = 90.503 (1)°Block, colorless
V = 2330.64 (7) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4266 independent reflections
Radiation source: rotating anode3197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.8°
ω scansh = 1313
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1414
Tmin = 0.625, Tmax = 0.846l = 1919
40504 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.4811P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
4266 reflectionsΔρmax = 0.21 e Å3
313 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (2)
Crystal data top
C29H25ClO4V = 2330.64 (7) Å3
Mr = 472.94Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.6017 (2) ŵ = 1.73 mm1
b = 12.3381 (2) ÅT = 193 K
c = 16.2825 (3) Å0.30 × 0.20 × 0.10 mm
β = 90.503 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4266 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3197 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.846Rint = 0.054
40504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.15Δρmax = 0.21 e Å3
4266 reflectionsΔρmin = 0.24 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69235 (5)0.10716 (5)0.47771 (3)0.0588 (2)
O10.20277 (12)0.08172 (12)0.27478 (9)0.0481 (4)
O20.33992 (13)0.06714 (11)0.17961 (9)0.0507 (4)
O30.02500 (13)0.23149 (13)0.17441 (10)0.0584 (4)
O40.55327 (12)0.05151 (12)0.09221 (9)0.0492 (4)
C10.15846 (17)0.16470 (15)0.14692 (12)0.0393 (5)
C20.06994 (18)0.23511 (17)0.12574 (13)0.0454 (5)
C30.07890 (19)0.30891 (17)0.06063 (13)0.0489 (5)
H30.01640.35550.04700.059*
C40.17854 (19)0.31268 (17)0.01738 (13)0.0480 (5)
H40.18460.36180.02730.058*
C50.27304 (18)0.24567 (15)0.03717 (12)0.0411 (5)
C60.37374 (19)0.25238 (17)0.01035 (12)0.0453 (5)
H60.37610.30200.05490.054*
C70.46715 (18)0.19001 (17)0.00576 (12)0.0459 (5)
H70.53380.19480.02750.055*
C80.46389 (17)0.11829 (16)0.07222 (12)0.0416 (5)
C90.36732 (17)0.10735 (15)0.12160 (12)0.0379 (4)
C100.26600 (17)0.17072 (15)0.10417 (12)0.0382 (4)
C110.13588 (17)0.08802 (15)0.21667 (13)0.0402 (5)
C120.02723 (16)0.02178 (15)0.21450 (12)0.0389 (4)
C130.05043 (17)0.03204 (16)0.28009 (12)0.0424 (5)
C140.15272 (17)0.02578 (16)0.27704 (12)0.0436 (5)
H140.20590.01790.32070.052*
C150.18025 (17)0.09461 (16)0.21268 (13)0.0414 (5)
C160.10099 (17)0.10558 (16)0.14962 (13)0.0421 (5)
H160.11790.15360.10550.050*
C170.00221 (17)0.04836 (16)0.14928 (12)0.0404 (5)
C180.38091 (16)0.02322 (15)0.18818 (12)0.0394 (5)
C190.45487 (16)0.04930 (15)0.26164 (12)0.0388 (4)
C200.46449 (18)0.02682 (16)0.32407 (12)0.0449 (5)
H200.42070.09180.32110.054*
C210.53713 (18)0.00905 (17)0.39053 (13)0.0476 (5)
H210.54390.06170.43290.057*
C220.59999 (17)0.08638 (17)0.39460 (13)0.0446 (5)
C230.59021 (17)0.16476 (17)0.33401 (12)0.0442 (5)
H230.63310.23020.33760.053*
C240.51680 (17)0.14576 (16)0.26821 (12)0.0416 (5)
H240.50840.19940.22670.050*
C250.1238 (2)0.2937 (2)0.15477 (17)0.0650 (7)
H25A0.10480.37100.15840.078*
H25B0.18540.27680.19350.078*
H25C0.14960.27650.09880.078*
C260.66420 (18)0.0740 (2)0.05727 (15)0.0569 (6)
H26A0.68430.15010.06710.068*
H26B0.66140.06020.00200.068*
H26C0.72240.02720.08290.068*
C270.0277 (2)0.1066 (2)0.35151 (15)0.0607 (6)
H27A0.00050.17670.33120.073*
H27B0.03120.07460.38760.073*
H27C0.09900.11700.38230.073*
C280.29352 (17)0.15531 (17)0.21101 (14)0.0465 (5)
H28A0.28070.22950.19160.056*
H28B0.34770.11850.17390.056*
H28C0.32560.15730.26650.056*
C290.08631 (19)0.06858 (19)0.07974 (14)0.0513 (5)
H29A0.05720.12740.04480.062*
H29B0.16160.08890.10270.062*
H29C0.09420.00250.04690.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0508 (3)0.0793 (4)0.0463 (3)0.0077 (3)0.0052 (3)0.0046 (3)
O10.0416 (8)0.0590 (9)0.0436 (9)0.0052 (7)0.0041 (7)0.0070 (7)
O20.0572 (9)0.0425 (8)0.0525 (9)0.0051 (7)0.0018 (7)0.0016 (6)
O30.0450 (8)0.0610 (10)0.0693 (11)0.0130 (7)0.0078 (8)0.0100 (8)
O40.0459 (8)0.0531 (8)0.0487 (9)0.0059 (7)0.0125 (7)0.0070 (7)
C10.0413 (11)0.0385 (10)0.0381 (11)0.0018 (8)0.0014 (9)0.0014 (8)
C20.0439 (11)0.0458 (11)0.0464 (12)0.0012 (9)0.0032 (10)0.0028 (9)
C30.0529 (13)0.0435 (11)0.0502 (13)0.0031 (10)0.0098 (10)0.0025 (9)
C40.0599 (14)0.0418 (11)0.0421 (12)0.0030 (10)0.0105 (10)0.0039 (9)
C50.0487 (11)0.0386 (10)0.0360 (11)0.0062 (9)0.0068 (9)0.0005 (8)
C60.0552 (13)0.0460 (11)0.0346 (11)0.0099 (10)0.0017 (9)0.0028 (9)
C70.0501 (12)0.0498 (12)0.0380 (11)0.0078 (10)0.0043 (9)0.0002 (9)
C80.0456 (11)0.0418 (11)0.0375 (11)0.0019 (9)0.0019 (9)0.0014 (8)
C90.0410 (10)0.0393 (10)0.0336 (10)0.0020 (8)0.0020 (8)0.0001 (8)
C100.0439 (11)0.0362 (10)0.0345 (10)0.0054 (8)0.0036 (8)0.0023 (8)
C110.0393 (11)0.0408 (10)0.0405 (12)0.0016 (8)0.0024 (9)0.0011 (8)
C120.0370 (10)0.0415 (10)0.0381 (11)0.0017 (8)0.0005 (8)0.0014 (8)
C130.0436 (11)0.0451 (11)0.0384 (11)0.0003 (9)0.0027 (9)0.0040 (9)
C140.0419 (11)0.0477 (11)0.0414 (11)0.0003 (9)0.0054 (9)0.0010 (9)
C150.0380 (11)0.0413 (11)0.0449 (12)0.0024 (8)0.0031 (9)0.0036 (9)
C160.0429 (11)0.0429 (11)0.0404 (11)0.0016 (9)0.0041 (9)0.0031 (9)
C170.0414 (11)0.0433 (10)0.0366 (11)0.0032 (8)0.0010 (9)0.0012 (8)
C180.0375 (10)0.0388 (10)0.0419 (11)0.0021 (8)0.0061 (9)0.0003 (8)
C190.0372 (10)0.0410 (10)0.0382 (11)0.0038 (8)0.0063 (8)0.0013 (8)
C200.0496 (12)0.0416 (11)0.0437 (12)0.0002 (9)0.0054 (10)0.0058 (9)
C210.0534 (12)0.0499 (12)0.0394 (12)0.0087 (10)0.0028 (10)0.0069 (9)
C220.0404 (11)0.0547 (12)0.0387 (12)0.0088 (9)0.0043 (9)0.0031 (9)
C230.0420 (11)0.0475 (11)0.0431 (12)0.0004 (9)0.0061 (9)0.0040 (9)
C240.0433 (11)0.0425 (11)0.0391 (11)0.0034 (9)0.0052 (9)0.0038 (9)
C250.0433 (13)0.0658 (15)0.0857 (19)0.0084 (11)0.0070 (12)0.0008 (13)
C260.0432 (12)0.0672 (15)0.0605 (15)0.0001 (10)0.0090 (11)0.0034 (11)
C270.0555 (14)0.0743 (16)0.0526 (14)0.0118 (12)0.0093 (11)0.0193 (12)
C280.0417 (11)0.0487 (12)0.0491 (13)0.0067 (9)0.0024 (9)0.0026 (9)
C290.0477 (12)0.0623 (14)0.0439 (13)0.0021 (10)0.0040 (10)0.0099 (10)
Geometric parameters (Å, º) top
Cl1—C221.738 (2)C15—C161.391 (3)
O1—C111.221 (2)C15—C281.513 (3)
O2—C181.220 (2)C16—C171.390 (3)
O3—C21.363 (2)C16—H160.9500
O3—C251.414 (3)C17—C291.522 (3)
O4—C81.362 (2)C18—C191.501 (3)
O4—C261.439 (2)C19—C201.388 (3)
C1—C21.386 (3)C19—C241.394 (3)
C1—C101.436 (3)C20—C211.383 (3)
C1—C111.503 (3)C20—H200.9500
C2—C31.402 (3)C21—C221.386 (3)
C3—C41.360 (3)C21—H210.9500
C3—H30.9500C22—C231.385 (3)
C4—C51.408 (3)C23—C241.383 (3)
C4—H40.9500C23—H230.9500
C5—C61.409 (3)C24—H240.9500
C5—C101.433 (3)C25—H25A0.9800
C6—C71.353 (3)C25—H25B0.9800
C6—H60.9500C25—H25C0.9800
C7—C81.399 (3)C26—H26A0.9800
C7—H70.9500C26—H26B0.9800
C8—C91.391 (3)C26—H26C0.9800
C9—C101.438 (3)C27—H27A0.9800
C9—C181.508 (3)C27—H27B0.9800
C11—C121.502 (3)C27—H27C0.9800
C12—C171.398 (3)C28—H28A0.9800
C12—C131.409 (3)C28—H28B0.9800
C13—C141.385 (3)C28—H28C0.9800
C13—C271.504 (3)C29—H29A0.9800
C14—C151.384 (3)C29—H29B0.9800
C14—H140.9500C29—H29C0.9800
C2—O3—C25120.54 (18)C12—C17—C29122.43 (18)
C8—O4—C26118.07 (16)O2—C18—C19120.45 (18)
C2—C1—C10119.46 (18)O2—C18—C9120.58 (18)
C2—C1—C11116.67 (17)C19—C18—C9118.73 (16)
C10—C1—C11123.84 (17)C20—C19—C24118.92 (19)
O3—C2—C1115.81 (18)C20—C19—C18118.71 (18)
O3—C2—C3121.77 (19)C24—C19—C18122.35 (18)
C1—C2—C3122.37 (19)C21—C20—C19120.7 (2)
C4—C3—C2118.9 (2)C21—C20—H20119.7
C4—C3—H3120.6C19—C20—H20119.7
C2—C3—H3120.6C20—C21—C22119.26 (19)
C3—C4—C5121.7 (2)C20—C21—H21120.4
C3—C4—H4119.2C22—C21—H21120.4
C5—C4—H4119.2C23—C22—C21121.3 (2)
C4—C5—C6119.17 (19)C23—C22—Cl1119.84 (17)
C4—C5—C10120.24 (18)C21—C22—Cl1118.89 (17)
C6—C5—C10120.59 (19)C24—C23—C22118.64 (19)
C7—C6—C5121.77 (19)C24—C23—H23120.7
C7—C6—H6119.1C22—C23—H23120.7
C5—C6—H6119.1C23—C24—C19121.19 (19)
C6—C7—C8118.87 (19)C23—C24—H24119.4
C6—C7—H7120.6C19—C24—H24119.4
C8—C7—H7120.6O3—C25—H25A109.5
O4—C8—C9114.75 (17)O3—C25—H25B109.5
O4—C8—C7122.82 (17)H25A—C25—H25B109.5
C9—C8—C7122.40 (19)O3—C25—H25C109.5
C8—C9—C10119.62 (18)H25A—C25—H25C109.5
C8—C9—C18113.73 (17)H25B—C25—H25C109.5
C10—C9—C18126.60 (16)O4—C26—H26A109.5
C5—C10—C1117.25 (18)O4—C26—H26B109.5
C5—C10—C9116.69 (17)H26A—C26—H26B109.5
C1—C10—C9126.05 (17)O4—C26—H26C109.5
O1—C11—C12120.73 (17)H26A—C26—H26C109.5
O1—C11—C1120.79 (18)H26B—C26—H26C109.5
C12—C11—C1118.45 (18)C13—C27—H27A109.5
C17—C12—C13120.09 (18)C13—C27—H27B109.5
C17—C12—C11121.53 (17)H27A—C27—H27B109.5
C13—C12—C11118.38 (17)C13—C27—H27C109.5
C14—C13—C12118.68 (18)H27A—C27—H27C109.5
C14—C13—C27119.13 (18)H27B—C27—H27C109.5
C12—C13—C27122.15 (18)C15—C28—H28A109.5
C15—C14—C13122.35 (19)C15—C28—H28B109.5
C15—C14—H14118.8H28A—C28—H28B109.5
C13—C14—H14118.8C15—C28—H28C109.5
C14—C15—C16117.96 (18)H28A—C28—H28C109.5
C14—C15—C28120.80 (18)H28B—C28—H28C109.5
C16—C15—C28121.23 (19)C17—C29—H29A109.5
C17—C16—C15121.92 (19)C17—C29—H29B109.5
C17—C16—H16119.0H29A—C29—H29B109.5
C15—C16—H16119.0C17—C29—H29C109.5
C16—C17—C12118.97 (18)H29A—C29—H29C109.5
C16—C17—C29118.54 (18)H29B—C29—H29C109.5
C25—O3—C2—C1175.14 (19)O1—C11—C12—C17123.9 (2)
C25—O3—C2—C37.5 (3)C1—C11—C12—C1758.0 (3)
C10—C1—C2—O3173.78 (17)O1—C11—C12—C1356.4 (3)
C11—C1—C2—O34.2 (3)C1—C11—C12—C13121.7 (2)
C10—C1—C2—C33.6 (3)C17—C12—C13—C142.0 (3)
C11—C1—C2—C3178.48 (19)C11—C12—C13—C14177.67 (18)
O3—C2—C3—C4176.24 (19)C17—C12—C13—C27179.8 (2)
C1—C2—C3—C40.9 (3)C11—C12—C13—C270.1 (3)
C2—C3—C4—C51.0 (3)C12—C13—C14—C151.2 (3)
C3—C4—C5—C6179.39 (19)C27—C13—C14—C15179.0 (2)
C3—C4—C5—C100.2 (3)C13—C14—C15—C160.4 (3)
C4—C5—C6—C7179.97 (19)C13—C14—C15—C28179.21 (19)
C10—C5—C6—C70.8 (3)C14—C15—C16—C171.2 (3)
C5—C6—C7—C81.0 (3)C28—C15—C16—C17178.41 (19)
C26—O4—C8—C9166.11 (18)C15—C16—C17—C120.4 (3)
C26—O4—C8—C715.8 (3)C15—C16—C17—C29177.52 (19)
C6—C7—C8—O4179.09 (18)C13—C12—C17—C161.3 (3)
C6—C7—C8—C91.1 (3)C11—C12—C17—C16178.42 (18)
O4—C8—C9—C10177.55 (17)C13—C12—C17—C29175.75 (19)
C7—C8—C9—C100.6 (3)C11—C12—C17—C294.5 (3)
O4—C8—C9—C180.2 (3)C8—C9—C18—O299.7 (2)
C7—C8—C9—C18178.27 (18)C10—C9—C18—O277.8 (3)
C4—C5—C10—C12.4 (3)C8—C9—C18—C1974.7 (2)
C6—C5—C10—C1176.82 (18)C10—C9—C18—C19107.8 (2)
C4—C5—C10—C9178.44 (18)O2—C18—C19—C207.5 (3)
C6—C5—C10—C92.4 (3)C9—C18—C19—C20178.04 (17)
C2—C1—C10—C54.1 (3)O2—C18—C19—C24170.53 (18)
C11—C1—C10—C5178.04 (17)C9—C18—C19—C243.9 (3)
C2—C1—C10—C9176.74 (18)C24—C19—C20—C212.1 (3)
C11—C1—C10—C91.1 (3)C18—C19—C20—C21176.06 (17)
C8—C9—C10—C52.2 (3)C19—C20—C21—C220.5 (3)
C18—C9—C10—C5179.63 (18)C20—C21—C22—C230.9 (3)
C8—C9—C10—C1176.87 (18)C20—C21—C22—Cl1179.21 (15)
C18—C9—C10—C10.5 (3)C21—C22—C23—C240.6 (3)
C2—C1—C11—O1127.5 (2)Cl1—C22—C23—C24179.47 (14)
C10—C1—C11—O150.4 (3)C22—C23—C24—C191.0 (3)
C2—C1—C11—C1250.6 (2)C20—C19—C24—C232.3 (3)
C10—C1—C11—C12131.50 (19)C18—C19—C24—C23175.70 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O2i0.952.543.413 (2)154
C28—H28A···O1ii0.982.563.418 (3)147
C29—H29B···O20.982.423.349 (3)157
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H25ClO4
Mr472.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)11.6017 (2), 12.3381 (2), 16.2825 (3)
β (°) 90.503 (1)
V3)2330.64 (7)
Z4
Radiation typeCu Kα
µ (mm1)1.73
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.625, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
40504, 4266, 3197
Rint0.054
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.131, 1.15
No. of reflections4266
No. of parameters313
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O2i0.952.543.413 (2)154
C28—H28A···O1ii0.982.563.418 (3)147
C29—H29B···O20.982.423.349 (3)157
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). Acta Cryst. E67, o2813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). Acta Cryst. E67, o3062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds