organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o707-o708

2-Amino-3-(hy­dr­oxy­meth­yl)pyridinium 2-benzoyl­benzoate monohydrate

aDepartment of Textile Engineering, Faculty of Engineering, Pamukkale University, TR-20070 Kınıklı Denizli, Turkey, bDepartment of Physics, Faculty of Arts and Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and cChemistry Programme, Denizli Higher Vocational School, Pamukkale University, TR-20159 Denizli, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 11 January 2012; accepted 8 February 2012; online 17 February 2012)

In the title hydrated salt, C6H9N2O+·C14H9O3·H2O, the dihedral angle between the benzene rings of the 2-benzoyl­benzoate anion is 82.04 (14)°, while the angles between the aromatic ring of the pyridinium cation and each of the benzene rings of the anion are 4.42 (14) and 82.04 (14)°. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating a three-dimensional network with R22(8), R66(16) and R44(6) motifs. The crystal packing is further stabilized by two ππ inter­actions, one between pyridinium rings, and another between the benzene benzoate and pyridinium rings of neighbouring mol­ecules, with centroid-to-centroid distances of 3.559 (2) and 3.606 (2) Å, respectively.

Related literature

For general background, see: Lehn (1990[Lehn, J. M. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304-1319.]); Mrozek & Glowiak (2004[Mrozek, R. & Glowiak, T. (2004). J. Chem. Crystallogr. 34, 153-157.]); Yang et al. (1995[Yang, R. N., Wang, D. M., Hou, Y. M., Xue, B. Y., Jin, D. M., Chen, L. R. & Luo, B. S. (1995). Acta Chem. Scand. 49, 771-773.]); Goswami & Ghosh (1997[Goswami, S. P. & Ghosh, K. (1997). Tetrahedron Lett. 38, 4503-4506.]); Goswami et al. (1998[Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 1301-1302.]); Lah et al. (2001[Lah, N., Giester, G., Lah, J., Segedin, P. & Leban, I. (2001). New J. Chem. 25, 753-759.]); Hong & Sun (2008[Hong, K. H. & Sun, G. (2008). Carbohydr. Polym. 71, 598-605.]). For related structures, see: Büyükgüngör & Odabaşoğlu (2002[Büyükgüngör, O. & Odabas˛ogˇlu, M. (2002). Acta Cryst. C58, o691-o692.]); Büyükgüngör et al. (2004[Büyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta Cryst. C60, o470-o472.]); Odabaşoğlu & Büyükgüngör (2007[Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3197.], 2008[Odabaşoğlu, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o752-o753.]); Odabaşoğlu et al. (2003b[Odabasoǧlu, M., Büyükgüngör, O. & Lönnecke, P. (2003b). Acta Cryst. C59, o51-o52.],c[Odabaşoğlu, M., Büyükgüngör, O., Turgut, G., Karadag, A., Bulak, E. & Lönnecke, P. (2003c). J. Mol. Struct. 648, 133-138.]). For the synthesis of the title compound, see: Odabaşoğlu et al. (2003a[Odabas˛oǧlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003a). Acta Cryst. C59, o616-o619.]). For ring-motif details, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2O+·C14H9O3·H2O

  • Mr = 368.38

  • Monoclinic, C 2/c

  • a = 15.9259 (11) Å

  • b = 8.4898 (4) Å

  • c = 27.6362 (19) Å

  • β = 93.468 (5)°

  • V = 3729.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.26 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.967, Tmax = 0.976

  • 9399 measured reflections

  • 3523 independent reflections

  • 1792 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.156

  • S = 0.95

  • 3503 reflections

  • 254 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.93 2.775 (3) 167
N1—H1⋯O2i 0.86 2.62 3.303 (3) 137
N2—H2A⋯O2i 0.86 2.04 2.845 (3) 156
N2—H2B⋯O5ii 0.86 2.11 2.942 (4) 162
O4—H4A⋯O2iii 0.86 (2) 1.92 (2) 2.765 (3) 168 (4)
O5—H5A⋯O4 0.86 (2) 1.96 (2) 2.807 (3) 167 (4)
O5—H5B⋯O1 0.86 (2) 2.28 (4) 2.964 (4) 136 (4)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The cotton fabrics which have been treated with benzophenone derivatives have powerful antibacterial properties against S. aureus and E. coli, and benzoylbenzoic acid derivatives treated cotton fabric demonstrated pesticide degradation ability, under UV irradiation (Hong & Sun, 2008). Furthermore, the copper(II) complexes of 2-aminopyridinium carboxylates have important properties in the applications of pharmaceuticals, fungicides, oxygen transfer, oxidative addition, homogenous hydrogenation, gas occlusion compounds, and solvent extractions processes (Yang et al., 1995; Lah et al., 2001). Hydrogen bonding plays a key role in molecular recognition (Goswami & Ghosh, 1997) and crystal engineering research (Goswami et al., 1998). The design of highly specific solid-state structures is of considerable significance in organic chemistry due to their important applications in the development of new optical, magnetic and electronic systems (Lehn, 1990). With this in mind, we had aimed the synthesis of (E)-2-(3-(hydroxymethyl)pyridin-2-ylimino)(phenyl) methyl)benzoic acid by reaction of 2-Amino-3-hydroxymethylpyridine and 2-benzoylbenzoic acid. But this compound can not be produced in the reaction conditions (Odabaşoǧlu et al., 2003a), instead the title compound was obtained (Scheme 1, Fig. 1).

The crystal structure of the title compound exhibit four N—H···O, three O—H···O hydrogen bonds and two ππ interactions. The C—H···O hydrogen bonds generate R66(16) hydrogen bonded motifs (Fig. 2) (Bernstein et al., 1995; Etter, 1990). Pyridinium ions, H2O molecules and carboxylate ions give edge fused R44(16) R22(8) hydrogen bonded rings by O—H···O and N—H···O hydrogen bonds (Fig. 3).

The dihedral angle between the benzene rings B:(C1–C6) and C:(C9–C14) of the 2-benzoylbenzoate fragment is 82.04 (14)°, while the angles between the aromatic ring A:(C15,C16,N1,C17,C18,C19) of the 2-amino-3-hydroxymethylpiridinium fragment with each of them are 4.42 (14)° and 82.04 (14)° respectively. There are also stacking interactions between the A–A and A–B rings of symmetry-related molecules, with centroid–centroid distance of 3.559 (2) Å and 3.606 (2) Å, respectively (Fig. 4). The bond distance and angles in (I) are expected value and consistent with the literature (Mrozek & Glowiak, 2004; Büyükgüngör & Odabaşoǧlu, 2002; Odabaşoğlu et al., 2003b,c; Büyükgüngör et al., 2004; Odabaşoğlu & Büyükgüngör, 2007, 2008).

Related literature top

For general background, see: Lehn (1990); Mrozek & Glowiak (2004); Yang et al. (1995); Goswami & Ghosh (1997); Goswami et al. (1998); Lah et al. (2001); Hong & Sun (2008). For related structures, see: Büyükgüngör & Odabaşoǧlu (2002); Büyükgüngör et al. (2004); Odabaşoğlu & Büyükgüngör (2007, 2008); Odabaşoğlu et al. (2003b,c). For the synthesis of the title compound, see: Odabaşoǧlu et al. (2003a). For ring-motif details, see: Bernstein et al. (1995); Etter (1990).

Experimental top

The title compound is obtained by reaction of 2-Amino-3-hydroxymethylpyridine and 2-benzoylbenzoic acid under the experimental condition previously described (Odabaşoǧlu et al. 2003a). Suitable crystal of the title compound were obtained by slow evaporation from a solution of the reaction mixture in ethanol.

Refinement top

H atoms bonded to O were located in a difference map and refined isotropically. Constrained C—H and N—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H; 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C—H; 0.86 Å and Uiso(H) = 1.2Ueq(N) for N—H.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A partial view of the packing of (I), showing the formation of O—H···O bonded R66(16) motif [Symmetry code:(i) 1 - x, 1 - y, 1 - z]
[Figure 3] Fig. 3. A partial view of the packing of (I) with hydrogen bonded R22(8) and R44(16) motifs [Symmetry codes:(i) 3/2 - x, 3/2 - y, 1 - z; (ii) x + 1/2, y - 1/2, z].
[Figure 4] Fig. 4. A partial view of the packing of (I), showing the formation of ππ interactions. [Symmetry codes:(i) 1 - x, 3/2 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z].
2-Amino-3-(hydroxymethyl)pyridinium 2-benzoylbenzoate monohydrate top
Crystal data top
C6H9N2O+·C14H9O3·H2OF(000) = 1552
Mr = 368.38Dx = 1.312 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8608 reflections
a = 15.9259 (11) Åθ = 1.5–26.1°
b = 8.4898 (4) ŵ = 0.10 mm1
c = 27.6362 (19) ÅT = 296 K
β = 93.468 (5)°Block, colourless
V = 3729.8 (4) Å30.35 × 0.30 × 0.26 mm
Z = 8
Data collection top
Stoe IPDS 2
diffractometer
3523 independent reflections
Radiation source: fine-focus sealed tube1792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
Detector resolution: 6.67 pixels mm-1θmax = 25.7°, θmin = 1.5°
ω–scan rotation methodh = 1915
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 910
Tmin = 0.967, Tmax = 0.976l = 3333
9399 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0625P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
3503 reflectionsΔρmax = 0.18 e Å3
254 parametersΔρmin = 0.21 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (5)
Crystal data top
C6H9N2O+·C14H9O3·H2OV = 3729.8 (4) Å3
Mr = 368.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.9259 (11) ŵ = 0.10 mm1
b = 8.4898 (4) ÅT = 296 K
c = 27.6362 (19) Å0.35 × 0.30 × 0.26 mm
β = 93.468 (5)°
Data collection top
Stoe IPDS 2
diffractometer
3523 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
1792 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.976Rint = 0.117
9399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0624 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.18 e Å3
3503 reflectionsΔρmin = 0.21 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40651 (19)0.3876 (3)0.66050 (9)0.0562 (7)
C20.4022 (2)0.2387 (4)0.68081 (10)0.0692 (9)
H20.35100.20010.69020.083*
C30.4738 (3)0.1478 (4)0.68716 (11)0.0788 (10)
H30.47050.04770.70060.095*
C40.5489 (2)0.2034 (4)0.67396 (11)0.0755 (10)
H40.59700.14200.67880.091*
C50.5540 (2)0.3510 (4)0.65331 (10)0.0653 (8)
H50.60580.38810.64430.078*
C60.48330 (18)0.4444 (3)0.64586 (8)0.0542 (7)
C70.4857 (2)0.5976 (4)0.61819 (9)0.0591 (8)
C80.32807 (19)0.4875 (4)0.65745 (9)0.0595 (8)
C90.32802 (18)0.6335 (4)0.68740 (9)0.0553 (7)
C100.27551 (19)0.7577 (4)0.67355 (11)0.0652 (8)
H100.24410.75320.64410.078*
C110.2694 (2)0.8874 (4)0.70280 (13)0.0767 (10)
H110.23420.97050.69310.092*
C120.3152 (2)0.8940 (5)0.74628 (13)0.0819 (10)
H120.31060.98120.76630.098*
C130.3682 (2)0.7722 (5)0.76063 (11)0.0818 (10)
H130.39900.77710.79030.098*
C140.3757 (2)0.6423 (4)0.73080 (10)0.0689 (9)
H140.41260.56130.74000.083*
O10.55266 (16)0.6753 (3)0.61989 (8)0.0810 (7)
O20.41975 (14)0.6353 (2)0.59401 (7)0.0673 (6)
O30.26539 (15)0.4449 (3)0.63399 (8)0.0821 (7)
C150.5523 (2)0.8106 (3)0.45397 (9)0.0591 (8)
C160.5503 (2)0.9647 (4)0.43366 (9)0.0580 (7)
C170.4025 (2)0.9701 (5)0.43705 (11)0.0734 (9)
H170.35231.02450.43070.088*
C180.4010 (2)0.8251 (5)0.45727 (12)0.0778 (10)
H180.35080.77900.46530.093*
C190.4776 (2)0.7474 (4)0.46559 (10)0.0730 (9)
H190.47760.64800.47970.088*
C200.6347 (2)0.7288 (4)0.46227 (11)0.0695 (9)
H20A0.66270.72660.43210.083*
H20B0.66980.78900.48550.083*
N10.47595 (17)1.0371 (3)0.42587 (8)0.0639 (7)
H10.47481.12970.41330.077*
N20.61927 (17)1.0410 (3)0.42175 (8)0.0683 (7)
H2A0.61521.13400.40940.082*
H2B0.66780.99730.42640.082*
O40.62787 (17)0.5725 (3)0.47963 (7)0.0814 (7)
H4A0.619 (3)0.514 (4)0.4545 (11)0.122*
O50.70194 (16)0.5481 (4)0.57409 (9)0.0921 (8)
H5A0.673 (3)0.560 (5)0.5473 (9)0.138*
H5B0.682 (3)0.614 (5)0.5941 (12)0.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0573 (19)0.0569 (18)0.0540 (14)0.0035 (15)0.0003 (12)0.0019 (13)
C20.071 (2)0.064 (2)0.0729 (18)0.0044 (19)0.0066 (16)0.0111 (15)
C30.099 (3)0.065 (2)0.0708 (19)0.008 (2)0.0016 (18)0.0184 (16)
C40.077 (3)0.077 (2)0.0709 (18)0.019 (2)0.0068 (17)0.0096 (17)
C50.060 (2)0.073 (2)0.0624 (16)0.0054 (18)0.0011 (14)0.0028 (15)
C60.0581 (19)0.0530 (17)0.0508 (13)0.0011 (16)0.0013 (12)0.0000 (12)
C70.060 (2)0.065 (2)0.0524 (14)0.0022 (18)0.0044 (14)0.0041 (13)
C80.0519 (19)0.069 (2)0.0577 (15)0.0028 (16)0.0015 (14)0.0013 (14)
C90.0474 (17)0.0605 (18)0.0587 (15)0.0024 (15)0.0077 (12)0.0002 (13)
C100.0555 (19)0.070 (2)0.0700 (17)0.0042 (18)0.0025 (14)0.0030 (16)
C110.064 (2)0.065 (2)0.102 (3)0.0034 (18)0.0106 (18)0.0143 (18)
C120.077 (3)0.080 (2)0.090 (2)0.004 (2)0.0145 (19)0.0252 (19)
C130.086 (3)0.098 (3)0.0616 (17)0.011 (2)0.0015 (17)0.0127 (19)
C140.072 (2)0.072 (2)0.0623 (17)0.0015 (18)0.0006 (15)0.0027 (16)
O10.0715 (16)0.0775 (16)0.0936 (15)0.0159 (14)0.0010 (12)0.0102 (12)
O20.0696 (15)0.0594 (13)0.0715 (11)0.0024 (11)0.0063 (11)0.0074 (10)
O30.0630 (15)0.0853 (16)0.0960 (15)0.0009 (14)0.0107 (12)0.0177 (13)
C150.074 (2)0.0551 (17)0.0477 (13)0.0081 (17)0.0011 (13)0.0004 (13)
C160.065 (2)0.0583 (19)0.0498 (14)0.0058 (18)0.0005 (13)0.0007 (13)
C170.064 (2)0.087 (3)0.0703 (18)0.003 (2)0.0061 (15)0.0099 (18)
C180.073 (3)0.082 (3)0.0789 (19)0.019 (2)0.0095 (17)0.0024 (19)
C190.088 (3)0.069 (2)0.0620 (17)0.013 (2)0.0050 (16)0.0052 (15)
C200.088 (2)0.0548 (19)0.0637 (16)0.0058 (18)0.0081 (16)0.0051 (14)
N10.0685 (18)0.0597 (16)0.0633 (13)0.0001 (15)0.0019 (12)0.0000 (12)
N20.0722 (18)0.0584 (16)0.0741 (15)0.0010 (15)0.0036 (13)0.0116 (13)
O40.118 (2)0.0554 (13)0.0679 (12)0.0034 (14)0.0144 (13)0.0085 (10)
O50.0718 (17)0.113 (2)0.0909 (16)0.0031 (16)0.0009 (13)0.0184 (15)
Geometric parameters (Å, º) top
C1—C61.397 (4)C13—C141.386 (5)
C1—C21.386 (4)C13—H130.9300
C1—C81.508 (4)C14—H140.9300
C2—C31.379 (5)C15—C191.361 (4)
C2—H20.9300C15—C161.423 (4)
C3—C41.356 (5)C15—C201.491 (5)
C3—H30.9300C16—N21.333 (4)
C4—C51.382 (5)C16—N11.340 (4)
C4—H40.9300C17—N11.353 (4)
C5—C61.383 (4)C17—C181.353 (5)
C5—H50.9300C17—H170.9300
C6—C71.511 (4)C18—C191.393 (5)
C7—O11.252 (4)C18—H180.9300
C7—O21.252 (3)C19—H190.9300
C8—O31.212 (3)C20—O41.417 (4)
C8—C91.490 (4)C20—H20A0.9700
C9—C141.382 (4)C20—H20B0.9700
C9—C101.385 (4)N1—H10.8600
C10—C111.373 (4)N2—H2A0.8600
C10—H100.9300N2—H2B0.8600
C11—C121.369 (5)O4—H4A0.859 (19)
C11—H110.9300O5—H5A0.858 (18)
C12—C131.378 (5)O5—H5B0.858 (19)
C12—H120.9300
C6—C1—C2119.8 (3)C12—C13—C14119.9 (3)
C6—C1—C8121.8 (3)C12—C13—H13120.0
C2—C1—C8118.3 (3)C14—C13—H13120.0
C3—C2—C1120.1 (3)C9—C14—C13119.8 (3)
C3—C2—H2120.0C9—C14—H14120.1
C1—C2—H2120.0C13—C14—H14120.1
C4—C3—C2120.4 (3)C19—C15—C16117.2 (3)
C4—C3—H3119.8C19—C15—C20123.7 (3)
C2—C3—H3119.8C16—C15—C20119.1 (3)
C3—C4—C5120.1 (3)N2—C16—N1118.1 (3)
C3—C4—H4119.9N2—C16—C15123.1 (3)
C5—C4—H4119.9N1—C16—C15118.8 (3)
C4—C5—C6120.9 (3)N1—C17—C18120.9 (3)
C4—C5—H5119.6N1—C17—H17119.5
C6—C5—H5119.6C18—C17—H17119.5
C1—C6—C5118.6 (3)C17—C18—C19117.5 (4)
C1—C6—C7119.6 (3)C17—C18—H18121.2
C5—C6—C7121.6 (3)C19—C18—H18121.2
O1—C7—O2124.8 (3)C15—C19—C18122.9 (3)
O1—C7—C6118.8 (3)C15—C19—H19118.5
O2—C7—C6116.3 (3)C18—C19—H19118.5
O3—C8—C9121.2 (3)O4—C20—C15113.8 (3)
O3—C8—C1121.0 (3)O4—C20—H20A108.8
C9—C8—C1117.7 (2)C15—C20—H20A108.8
C14—C9—C10119.3 (3)O4—C20—H20B108.8
C14—C9—C8120.5 (3)C15—C20—H20B108.8
C10—C9—C8120.0 (3)H20A—C20—H20B107.7
C11—C10—C9120.7 (3)C16—N1—C17122.6 (3)
C11—C10—H10119.6C16—N1—H1118.7
C9—C10—H10119.6C17—N1—H1118.7
C12—C11—C10119.7 (3)C16—N2—H2A120.0
C12—C11—H11120.1C16—N2—H2B120.0
C10—C11—H11120.1H2A—N2—H2B120.0
C11—C12—C13120.5 (3)C20—O4—H4A106 (3)
C11—C12—H12119.8H5A—O5—H5B106 (3)
C13—C12—H12119.8
C6—C1—C2—C30.9 (4)C1—C8—C9—C10155.1 (3)
C8—C1—C2—C3175.8 (3)C14—C9—C10—C111.1 (5)
C1—C2—C3—C40.5 (5)C8—C9—C10—C11174.4 (3)
C2—C3—C4—C51.0 (5)C9—C10—C11—C120.4 (5)
C3—C4—C5—C60.1 (5)C10—C11—C12—C130.8 (5)
C2—C1—C6—C51.7 (4)C11—C12—C13—C140.3 (5)
C8—C1—C6—C5174.8 (2)C10—C9—C14—C132.2 (5)
C2—C1—C6—C7172.4 (3)C8—C9—C14—C13173.3 (3)
C8—C1—C6—C711.0 (4)C12—C13—C14—C91.9 (5)
C4—C5—C6—C11.2 (4)C19—C15—C16—N2178.5 (3)
C4—C5—C6—C7172.8 (3)C20—C15—C16—N20.4 (4)
C1—C6—C7—O1155.1 (3)C19—C15—C16—N11.8 (4)
C5—C6—C7—O130.9 (4)C20—C15—C16—N1179.4 (2)
C1—C6—C7—O226.5 (4)N1—C17—C18—C190.7 (5)
C5—C6—C7—O2147.4 (3)C16—C15—C19—C181.7 (4)
C6—C1—C8—O3121.8 (3)C20—C15—C19—C18179.6 (3)
C2—C1—C8—O361.6 (4)C17—C18—C19—C150.5 (5)
C6—C1—C8—C963.1 (3)C19—C15—C20—O45.2 (4)
C2—C1—C8—C9113.5 (3)C16—C15—C20—O4176.1 (2)
O3—C8—C9—C14145.7 (3)N2—C16—N1—C17179.5 (2)
C1—C8—C9—C1429.5 (4)C15—C16—N1—C170.8 (4)
O3—C8—C9—C1029.8 (4)C18—C17—N1—C160.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.932.775 (3)167
N1—H1···O2i0.862.623.303 (3)137
N2—H2A···O2i0.862.042.845 (3)156
N2—H2B···O5ii0.862.112.942 (4)162
O4—H4A···O2iii0.86 (2)1.92 (2)2.765 (3)168 (4)
O5—H5A···O40.86 (2)1.96 (2)2.807 (3)167 (4)
O5—H5B···O10.86 (2)2.28 (4)2.964 (4)136 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+3/2, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2O+·C14H9O3·H2O
Mr368.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)15.9259 (11), 8.4898 (4), 27.6362 (19)
β (°) 93.468 (5)
V3)3729.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.30 × 0.26
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.967, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
9399, 3523, 1792
Rint0.117
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.156, 0.95
No. of reflections3503
No. of parameters254
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.932.775 (3)167.3
N1—H1···O2i0.862.623.303 (3)136.8
N2—H2A···O2i0.862.042.845 (3)156.1
N2—H2B···O5ii0.862.112.942 (4)162.3
O4—H4A···O2iii0.859 (19)1.92 (2)2.765 (3)168 (4)
O5—H5A···O40.858 (18)1.963 (19)2.807 (3)167 (4)
O5—H5B···O10.858 (19)2.28 (4)2.964 (4)136 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+3/2, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBüyükgüngör, O. & Odabas˛ogˇlu, M. (2002). Acta Cryst. C58, o691–o692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBüyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta Cryst. C60, o470–o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S. P. & Ghosh, K. (1997). Tetrahedron Lett. 38, 4503–4506.  CrossRef CAS Web of Science Google Scholar
First citationGoswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 1301–1302.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHong, K. H. & Sun, G. (2008). Carbohydr. Polym. 71, 598–605.  CrossRef CAS Google Scholar
First citationLah, N., Giester, G., Lah, J., Segedin, P. & Leban, I. (2001). New J. Chem. 25, 753–759.  Web of Science CSD CrossRef CAS Google Scholar
First citationLehn, J. M. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304–1319.  CrossRef Web of Science Google Scholar
First citationMrozek, R. & Glowiak, T. (2004). J. Chem. Crystallogr. 34, 153–157.  Web of Science CSD CrossRef CAS Google Scholar
First citationOdabas˛oǧlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003a). Acta Cryst. C59, o616–o619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3197.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o752–o753.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOdabasoǧlu, M., Büyükgüngör, O. & Lönnecke, P. (2003b). Acta Cryst. C59, o51–o52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Turgut, G., Karadag, A., Bulak, E. & Lönnecke, P. (2003c). J. Mol. Struct. 648, 133–138.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationYang, R. N., Wang, D. M., Hou, Y. M., Xue, B. Y., Jin, D. M., Chen, L. R. & Luo, B. S. (1995). Acta Chem. Scand. 49, 771–773.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o707-o708
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds