organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o854-o855

1-[(Z)-2-Butyl­tellan­yl-1-chloro­ethen­yl]­cyclo­hex-1-ene

aDepartmento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, bBioMat – Departmento de Física, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, cDepartamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo – Campus Diadema, Rua Professor Artur Ridel, 275, 09972-270 Diadema, SP, Brazil, dDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

(Received 17 February 2012; accepted 19 February 2012; online 24 February 2012)

The TeII atom in the title mol­ecule, C12H19ClTe, is coordinated in a V-shaped geometry by C atoms derived from the disparate organic substituents. A short intramolecular C—H⋯Cl contact occurs owing to the proximity of the ethene bond in the six-membered ring to the Cl atom. In the crystal, mol­ecules assemble into layers parallel to the ac plane, with the closest inter­actions between them being of the Te⋯Te type [3.9993 (16) Å].

Related literature

For background to the synthesis, see: Guadagnin et al. (2008[Guadagnin, R. C., Suganuma, C. A., Singh, F. V., Vieira, A. S., Cella, R. & Stefani, H. A. (2008). Tetrahedron Lett. 49, 4713-4716.]). For related crystal structures, see: Zeni et al. (1999[Zeni, G., Chieffi, A., Cunha, R. L. O. R., Zukerman-Schpector, J., Stefani, H. A. & Comasseto, J. V. (1999). Organometallics, 18, 803-806.]); Barrientos-Astigarraga et al. (2002[Barrientos-Astigarraga, R. E., Castelani, P., Sumida, C. Y., Zukerman-Schpector, J. & Comasseto, J. V. (2002). Tetrahedron, 58, 1051-1059.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The van der Waals radius for Te was taken from Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • C12H19ClTe

  • Mr = 326.32

  • Triclinic, [P \overline 1]

  • a = 7.666 (3) Å

  • b = 7.687 (3) Å

  • c = 12.266 (4) Å

  • α = 95.499 (15)°

  • β = 105.060 (14)°

  • γ = 111.832 (13)°

  • V = 632.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.53 mm−1

  • T = 100 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Rigaku Saturn724 (2 × 2 bin mode) diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.575, Tmax = 1.000

  • 3588 measured reflections

  • 2421 independent reflections

  • 2406 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.069

  • S = 1.17

  • 2421 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Selected geometric parameters (Å, °)

Te—C1 2.077 (3)
Te—C9 2.148 (3)
C1—Te—C9 94.09 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl 0.95 2.56 3.024 (3) 110

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). MarvinSketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was synthesized by reduction with sodium borohydride of the corresponding 2-halovinyl tellurium dichloride (Guadagnin et al., 2008).

The TeII atom in (I), Fig. 1, is coordinated by C atoms derived from the organic substituents which define a V-shape, Table 1. The conformation about the C1C2 bond [1.334 (4) Å] is Z. The ethene bond in the six-membered ring is orientated toward the Cl atom enabling the formation of an intramolecular C—H···Cl interaction, Table 2. The conformation of the six-membered ring is a half-chair with the C5 atom lying 0.641 (5) Å above the plane of the remaining five atoms (r.m.s. deviation = 0.0738 Å), with puckering parameters: q2 = 0.381 (4) Å and q3 = 0.311 (4) Å, and amplitudes: Q = 0.492 (4) Å, θ = 50.8 (5) ° and ϕ2 = 144.3 (6) ° (Cremer & Pople, 1975).

In the crystal packing, molecules assemble into layers parallel to the ac plane, Fig. 2. Within layers, Te···Tei contacts of 3.9993 (16) Å, i.e. less than the sum of the van der Waals radius for Te of 4.4 Å (Bondi, 1964), are noted; i: -x, -y, 2 - z.

Related literature top

For background to the synthesis, see: Guadagnin et al. (2008). For related X-ray structures, see: Zeni et al. (1999); Barrientos-Astigarraga et al. (2002). For ring conformational analysis, see: Cremer & Pople (1975). The van der Waals radius for Te was taken from Bondi (1964).

Experimental top

The title compound was prepared as described in a previous study (Guadagnin et al., 2008). Crystals of (I) were obtained by slow evaporation from its CHCl3 solution held at room temperature.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C). Owing to poor agreement, three reflections, i.e. (2 8 3), (1 4 4) and (1 5 6), were omitted from the final refinement.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents for (I).
1-[(Z)-2-Butyltellanyl-1-chloroethenyl]cyclohex-1-ene top
Crystal data top
C12H19ClTeZ = 2
Mr = 326.32F(000) = 320
Triclinic, P1Dx = 1.713 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.666 (3) ÅCell parameters from 8499 reflections
b = 7.687 (3) Åθ = 1.7–29.8°
c = 12.266 (4) ŵ = 2.53 mm1
α = 95.499 (15)°T = 100 K
β = 105.060 (14)°Irregular, yellow
γ = 111.832 (13)°0.3 × 0.3 × 0.2 mm
V = 632.8 (4) Å3
Data collection top
Rigaku Saturn724 (2x2 bin mode)
diffractometer
2421 independent reflections
Radiation source: fine-focus sealed tube2406 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 89
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 97
Tmin = 0.575, Tmax = 1.000l = 1514
3588 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0343P)2 + 1.4833P]
where P = (Fo2 + 2Fc2)/3
2421 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
C12H19ClTeγ = 111.832 (13)°
Mr = 326.32V = 632.8 (4) Å3
Triclinic, P1Z = 2
a = 7.666 (3) ÅMo Kα radiation
b = 7.687 (3) ŵ = 2.53 mm1
c = 12.266 (4) ÅT = 100 K
α = 95.499 (15)°0.3 × 0.3 × 0.2 mm
β = 105.060 (14)°
Data collection top
Rigaku Saturn724 (2x2 bin mode)
diffractometer
2421 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2406 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 1.000Rint = 0.024
3588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.17Δρmax = 0.86 e Å3
2421 reflectionsΔρmin = 0.95 e Å3
128 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te0.10592 (3)0.26493 (3)0.970657 (16)0.01857 (9)
Cl0.04726 (12)0.30822 (11)0.69597 (6)0.02053 (17)
C100.1785 (5)0.2722 (4)1.2266 (3)0.0163 (6)
H10A0.21880.16621.21210.020*
H10B0.03230.21621.20660.020*
C20.2010 (4)0.5213 (4)0.7990 (3)0.0143 (6)
C40.3968 (5)0.8795 (4)0.8452 (3)0.0171 (6)
H4A0.52920.88620.88660.020*
H4B0.32620.88010.90220.020*
C30.2828 (4)0.6957 (4)0.7553 (3)0.0140 (6)
C60.4941 (5)1.0420 (5)0.6892 (3)0.0213 (7)
H6A0.51521.15990.65820.026*
H6B0.62231.03060.71370.026*
C110.2714 (5)0.3691 (5)1.3547 (3)0.0190 (6)
H11A0.41770.42691.37470.023*
H11B0.22920.47361.36980.023*
C90.2398 (5)0.4113 (5)1.1492 (3)0.0184 (6)
H9A0.38600.46811.16880.022*
H9B0.19800.51671.16230.022*
C50.4221 (5)1.0565 (5)0.7922 (3)0.0218 (7)
H5A0.29361.06740.76750.026*
H5B0.51881.17330.85110.026*
C120.2110 (5)0.2269 (5)1.4310 (3)0.0216 (7)
H12A0.06670.17351.41360.032*
H12B0.27550.29301.51250.032*
H12C0.25210.12301.41590.032*
C80.2582 (4)0.6929 (4)0.6429 (3)0.0155 (6)
H80.18270.57300.58960.019*
C10.2312 (5)0.5094 (4)0.9097 (3)0.0174 (6)
H10.31830.62370.96590.021*
C70.3432 (5)0.8689 (5)0.5959 (3)0.0183 (6)
H7A0.23370.90020.55360.022*
H7B0.40680.84000.54020.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te0.02669 (14)0.01289 (13)0.01485 (13)0.00616 (9)0.00697 (9)0.00480 (8)
Cl0.0278 (4)0.0125 (3)0.0153 (3)0.0037 (3)0.0050 (3)0.0000 (3)
C100.0192 (14)0.0146 (14)0.0144 (14)0.0061 (12)0.0055 (12)0.0032 (11)
C20.0138 (13)0.0120 (13)0.0167 (14)0.0048 (11)0.0054 (11)0.0016 (11)
C40.0169 (14)0.0158 (15)0.0147 (14)0.0026 (12)0.0055 (11)0.0026 (11)
C30.0147 (13)0.0152 (14)0.0144 (14)0.0076 (11)0.0061 (11)0.0039 (11)
C60.0216 (15)0.0183 (16)0.0213 (16)0.0039 (13)0.0074 (13)0.0084 (13)
C110.0221 (15)0.0183 (15)0.0153 (15)0.0078 (13)0.0049 (12)0.0037 (12)
C90.0218 (15)0.0181 (15)0.0138 (14)0.0061 (12)0.0054 (12)0.0055 (12)
C50.0265 (16)0.0158 (15)0.0193 (16)0.0057 (13)0.0064 (13)0.0018 (12)
C120.0237 (16)0.0266 (17)0.0172 (15)0.0112 (14)0.0085 (13)0.0073 (13)
C80.0165 (14)0.0138 (14)0.0151 (14)0.0058 (11)0.0043 (11)0.0022 (11)
C10.0220 (15)0.0123 (14)0.0152 (14)0.0047 (12)0.0052 (12)0.0036 (11)
C70.0214 (15)0.0171 (15)0.0148 (14)0.0051 (12)0.0069 (12)0.0056 (12)
Geometric parameters (Å, º) top
Te—C12.077 (3)C6—H6B0.9900
Te—C92.148 (3)C11—C121.526 (4)
Cl—C21.750 (3)C11—H11A0.9900
C10—C91.523 (4)C11—H11B0.9900
C10—C111.526 (4)C9—H9A0.9900
C10—H10A0.9900C9—H9B0.9900
C10—H10B0.9900C5—H5A0.9900
C2—C11.334 (4)C5—H5B0.9900
C2—C31.471 (4)C12—H12A0.9800
C4—C31.503 (4)C12—H12B0.9800
C4—C51.532 (5)C12—H12C0.9800
C4—H4A0.9900C8—C71.509 (4)
C4—H4B0.9900C8—H80.9500
C3—C81.338 (4)C1—H10.9500
C6—C71.514 (4)C7—H7A0.9900
C6—C51.515 (5)C7—H7B0.9900
C6—H6A0.9900
C1—Te—C994.09 (12)C10—C9—Te110.3 (2)
C9—C10—C11112.3 (3)C10—C9—H9A109.6
C9—C10—H10A109.1Te—C9—H9A109.6
C11—C10—H10A109.1C10—C9—H9B109.6
C9—C10—H10B109.1Te—C9—H9B109.6
C11—C10—H10B109.1H9A—C9—H9B108.1
H10A—C10—H10B107.9C6—C5—C4110.7 (3)
C1—C2—C3126.5 (3)C6—C5—H5A109.5
C1—C2—Cl116.5 (2)C4—C5—H5A109.5
C3—C2—Cl117.0 (2)C6—C5—H5B109.5
C3—C4—C5112.1 (3)C4—C5—H5B109.5
C3—C4—H4A109.2H5A—C5—H5B108.1
C5—C4—H4A109.2C11—C12—H12A109.5
C3—C4—H4B109.2C11—C12—H12B109.5
C5—C4—H4B109.2H12A—C12—H12B109.5
H4A—C4—H4B107.9C11—C12—H12C109.5
C8—C3—C2122.8 (3)H12A—C12—H12C109.5
C8—C3—C4121.6 (3)H12B—C12—H12C109.5
C2—C3—C4115.7 (3)C3—C8—C7123.9 (3)
C7—C6—C5110.2 (3)C3—C8—H8118.1
C7—C6—H6A109.6C7—C8—H8118.1
C5—C6—H6A109.6C2—C1—Te126.3 (2)
C7—C6—H6B109.6C2—C1—H1116.9
C5—C6—H6B109.6Te—C1—H1116.9
H6A—C6—H6B108.1C8—C7—C6113.1 (3)
C12—C11—C10111.6 (3)C8—C7—H7A109.0
C12—C11—H11A109.3C6—C7—H7A109.0
C10—C11—H11A109.3C8—C7—H7B109.0
C12—C11—H11B109.3C6—C7—H7B109.0
C10—C11—H11B109.3H7A—C7—H7B107.8
H11A—C11—H11B108.0
C1—C2—C3—C8174.6 (3)C7—C6—C5—C461.8 (4)
Cl—C2—C3—C85.9 (4)C3—C4—C5—C648.2 (4)
C1—C2—C3—C45.6 (4)C2—C3—C8—C7179.0 (3)
Cl—C2—C3—C4173.9 (2)C4—C3—C8—C71.2 (5)
C5—C4—C3—C817.1 (4)C3—C2—C1—Te177.3 (2)
C5—C4—C3—C2162.7 (3)Cl—C2—C1—Te2.2 (4)
C9—C10—C11—C12179.1 (3)C9—Te—C1—C2177.3 (3)
C11—C10—C9—Te179.5 (2)C3—C8—C7—C612.0 (4)
C1—Te—C9—C10179.5 (2)C5—C6—C7—C842.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl0.952.563.024 (3)110

Experimental details

Crystal data
Chemical formulaC12H19ClTe
Mr326.32
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.666 (3), 7.687 (3), 12.266 (4)
α, β, γ (°)95.499 (15), 105.060 (14), 111.832 (13)
V3)632.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.53
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerRigaku Saturn724 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.575, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3588, 2421, 2406
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.069, 1.17
No. of reflections2421
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.95

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Te—C12.077 (3)Te—C92.148 (3)
C1—Te—C994.09 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl0.952.563.024 (3)110
 

Acknowledgements

We thank the Brazilian agencies FAPESP (grant No. 07/59404–2 to HAS), CNPq (grant Nos. 306532/2009-3 to JZS and 308116/2010-0 to IC) and CAPES (grant No. 808/2009 to JZS and IC) for financial support. ERTT thanks the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/ MOHE/SC/12).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarrientos-Astigarraga, R. E., Castelani, P., Sumida, C. Y., Zukerman-Schpector, J. & Comasseto, J. V. (2002). Tetrahedron, 58, 1051–1059.  CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–452.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChemAxon (2010). MarvinSketch. http://www.chemaxon.com.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGuadagnin, R. C., Suganuma, C. A., Singh, F. V., Vieira, A. S., Cella, R. & Stefani, H. A. (2008). Tetrahedron Lett. 49, 4713–4716.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeni, G., Chieffi, A., Cunha, R. L. O. R., Zukerman-Schpector, J., Stefani, H. A. & Comasseto, J. V. (1999). Organometallics, 18, 803–806.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o854-o855
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds