organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Bis(3-methyl-3-phenyl­cyclo­but­yl)-2,2′-(aza­nedi­yl)di­ethanol

aKilis 7 Aralık University, Vocational High School of Health Services, Department of Opticianry, 79000 Kilis, Turkey, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, cFırat University, Sciences Faculty, Department of Chemistry, 23119 Elazığ, Turkey, and dKaramanoğlu Mehmetbey University, Faculty of Science, Department of Chemistry, 70200 Karaman, Turkey
*Correspondence e-mail: fatihsen55@gmail.com

(Received 24 February 2012; accepted 7 March 2012; online 14 March 2012)

The title mol­ecule, C26H35NO2, contains two cyclo­butane rings that adopt butterfly conformations and are linked by a –CH(OH)CH2NHCH2CH(OH)– bridge. In the crystal, N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds together with C–H⋯π inter­actions link the molecules.

Related literature

For applications of related compounds, see: Dehmlow & Schmidt (1990[Dehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. 5, 411-414.]); Coghi et al. (1976[Coghi, L., Lanfredi, A. M. M. & Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808-1810.]). For the preparation, see: Zalipsky et al. (1983[Zalipsky, S., Gilon, C. & Zilkha, A. (1983). Eur. Polym. J. 19, 1177-1183.]). For puckering of the cyclo­butane ring, see: Swenson et al. (1997[Swenson, D. C., Yamamoto, M. & Burton, D. J. (1997). Acta Cryst. C53, 1445-1447.]); Allen (1984[Allen, F. H. (1984). Acta Cryst. B40, 64-72.]).

[Scheme 1]

Experimental

Crystal data
  • C26H35NO2

  • Mr = 393.55

  • Monoclinic, P 21 /c

  • a = 6.2156 (4) Å

  • b = 33.2505 (15) Å

  • c = 12.1792 (8) Å

  • β = 110.656 (5)°

  • V = 2355.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.63 × 0.34 × 0.09 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.967, Tmax = 0.994

  • 26921 measured reflections

  • 4737 independent reflections

  • 1740 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.173

  • S = 0.95

  • 4737 reflections

  • 271 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.87 (3) 2.38 (3) 3.157 (4) 149 (3)
O1—H1O⋯N1ii 0.97 (2) 1.81 (3) 2.768 (4) 170 (3)
O2—H2O⋯O1)i 0.94 (3) 1.86 (3) 2.681 (4) 146 (3)
C24—H24⋯Cg1iii 0.93 3.86 (1) 2.76 156
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It is well known that 3-substituted cyclobutane carboxylic acid derivatives exhibit anti-inflammatory and anti-depressant activity (Dehmlow & Schmidt, 1990), and also liquid crystal properties (Coghi, et al., 1976).

The structure of (I) (Fig. 1) contains two cyclobutane rings (C7—C10),(C16—C19) each with methyl and phenyl substituents in the 3-position. The four-membered rings are linked by a C12,C13,N1,C14,C15 bridge. The best fit meanplanes through the (C7—C10) and (C16—C19) atoms of the cyclobutane rings subtend dihedral angles of 36.69 (24)°, 41.91 (21)° with the planes of the (C1—C6) and (C21—C26) phenyl rings respectively.

Values for the puckering of the cyclobutane has been reported as 23.5-24.3° (Swenson et al.. 1997, Allen, 1984). In this molecule the C7—C8—C9 plane forms a dihedral angle of 25.83 (43)° with the C9—C10—C7 plane and the angle between the C16—C17—C18 and C18—C19—C16 planes is 26.74 (36)°.

In the crystal structure N—H···O, O—H···N and C—H···π interactions stabilize the packing, Table 2, and link the molecules into infinite chains, Fig.2, Fig. 3.

Related literature top

For applications of related compounds, see: Dehmlow & Schmidt (1990); Coghi et al. (1976). For the preparation, see: Zalipsky et al. (1983). For puckering of the cyclobutane ring, see: Swenson et al. (1997); Allen (1984).

Experimental top

The compound was synthesised using a literature method (Zalipsky et al., 1983) with some modification. Colourless plate-like crystals suitable for X-ray analysis were obtained by crystallization from ethanol. Overall yield: 71%. M.p.: 445 K (EtOH).

Refinement top

H atoms were positioned geometrically and treated using a riding model, with bond lengths 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH (aromatic), respectively. H atoms bound to the N and O atoms were located in difference maps and refined with DFIX restraints N—H = 0.87 (3) Å and O—H = 0.82 (2) Å. The displacement parameters of the H atoms bound to C were constrained with Uiso(H) = 1.2 (aromatic, methylene or methine C) or 1.5Ueq (methyl C).

Structure description top

It is well known that 3-substituted cyclobutane carboxylic acid derivatives exhibit anti-inflammatory and anti-depressant activity (Dehmlow & Schmidt, 1990), and also liquid crystal properties (Coghi, et al., 1976).

The structure of (I) (Fig. 1) contains two cyclobutane rings (C7—C10),(C16—C19) each with methyl and phenyl substituents in the 3-position. The four-membered rings are linked by a C12,C13,N1,C14,C15 bridge. The best fit meanplanes through the (C7—C10) and (C16—C19) atoms of the cyclobutane rings subtend dihedral angles of 36.69 (24)°, 41.91 (21)° with the planes of the (C1—C6) and (C21—C26) phenyl rings respectively.

Values for the puckering of the cyclobutane has been reported as 23.5-24.3° (Swenson et al.. 1997, Allen, 1984). In this molecule the C7—C8—C9 plane forms a dihedral angle of 25.83 (43)° with the C9—C10—C7 plane and the angle between the C16—C17—C18 and C18—C19—C16 planes is 26.74 (36)°.

In the crystal structure N—H···O, O—H···N and C—H···π interactions stabilize the packing, Table 2, and link the molecules into infinite chains, Fig.2, Fig. 3.

For applications of related compounds, see: Dehmlow & Schmidt (1990); Coghi et al. (1976). For the preparation, see: Zalipsky et al. (1983). For puckering of the cyclobutane ring, see: Swenson et al. (1997); Allen (1984).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the N—H···O and O—H···N interactions. For clarity, only H atoms involved in hydrogen bonding have been included. For symmetry codes, see Table 1.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, showing the C—H···π interactions.For clarity, only H atoms involved in hydrogen bonding have been included.For symmetry codes, see table 1.
1,1'-Bis(3-methyl-3-phenylcyclobutyl)-2,2'-(azanediyl)diethanol top
Crystal data top
C26H35NO2F(000) = 856
Mr = 393.55Dx = 1.110 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18482 reflections
a = 6.2156 (4) Åθ = 1.2–26.7°
b = 33.2505 (15) ŵ = 0.07 mm1
c = 12.1792 (8) ÅT = 296 K
β = 110.656 (5)°Plate, colourless
V = 2355.3 (2) Å30.63 × 0.34 × 0.09 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
4737 independent reflections
Radiation source: fine-focus sealed tube1740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 6.67 pixels mm-1θmax = 26.3°, θmin = 1.2°
rotation method scansh = 77
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 4141
Tmin = 0.967, Tmax = 0.994l = 1515
26921 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0627P)2]
where P = (Fo2 + 2Fc2)/3
4737 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.13 e Å3
Crystal data top
C26H35NO2V = 2355.3 (2) Å3
Mr = 393.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2156 (4) ŵ = 0.07 mm1
b = 33.2505 (15) ÅT = 296 K
c = 12.1792 (8) Å0.63 × 0.34 × 0.09 mm
β = 110.656 (5)°
Data collection top
Stoe IPDS 2
diffractometer
4737 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1740 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.994Rint = 0.105
26921 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0682 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.29 e Å3
4737 reflectionsΔρmin = 0.13 e Å3
271 parameters
Special details top

Experimental. IR (KBr, ν cm-1): 3416 (–OH), 3288 (–NH–), 3089–3024 (aromatics), 2960–2858 (aliphatics), 1497 (C—N), 1113 (C—O), 1H NMR (CDCl3, TMS, δ p.p.m.): 1.46 (s, 6H,–CH3), 2.08 (d,j = 8.8 Hz, 4H, CH2– in cyclobutane ring), 2.21 (d, j = 8.4 Hz, 4H, –CH2– in cyclobutane ring), 2.32–2.42 (m, 4H, CH2-), 2.59 (dd, j=12.0 Hz, 2H, >CH–), 3.15 (brs, 3H, –OH plus –NH–),3.50 (quint, j1=7.4 Hz, j2=2.4 Hz, 2H, >CH–, in cyclobutane), 7.13–7.20 (m, 6H, aromatics), 7.29–7.33 (m, 4H, aromatics). 13C NMR (CDCl3, TMS, δ p.p.m.): 152.47, 128.20, 125.26, 124.66, 74.27, 53.20, 38.77, 36.80, 36.14, 33.15, 30.70.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8359 (8)0.20105 (13)0.1639 (4)0.1058 (13)
H10.75690.20150.11170.127*
C20.7425 (10)0.21975 (15)0.2715 (6)0.140 (2)
H20.60040.23240.29160.168*
C30.8559 (17)0.2198 (2)0.3480 (6)0.165 (3)
H30.79410.23300.41960.198*
C41.0599 (15)0.2005 (2)0.3198 (6)0.154 (2)
H41.13620.19970.37310.184*
C51.1544 (9)0.18199 (13)0.2128 (4)0.1127 (15)
H51.29630.16930.19420.135*
C61.0466 (8)0.18161 (11)0.1327 (4)0.0830 (11)
C71.1539 (6)0.16222 (10)0.0146 (3)0.0773 (10)
C81.2839 (6)0.12244 (11)0.0088 (4)0.0976 (12)
H8A1.24040.10850.08330.117*
H8B1.44960.12510.02610.117*
C91.1733 (6)0.10506 (11)0.0749 (3)0.0848 (11)
H91.27290.11000.15630.102*
C100.9910 (6)0.13874 (10)0.0332 (3)0.0834 (10)
H10A0.84920.13020.02720.100*
H10B0.96040.15230.09660.100*
C111.3001 (7)0.19339 (12)0.0741 (4)0.1111 (14)
H11A1.36920.18090.14950.167*
H11B1.20380.21520.08030.167*
H11C1.41830.20350.04790.167*
C121.0931 (6)0.06167 (11)0.0605 (3)0.0784 (10)
H121.22760.04410.07810.094*
C130.9725 (6)0.05249 (11)0.1454 (3)0.0858 (11)
H13A1.08040.05630.22460.103*
H13B0.84860.07170.13290.103*
C140.7920 (6)0.00309 (10)0.2295 (3)0.0822 (10)
H14A0.68360.02390.23110.099*
H14B0.91940.00390.30380.099*
C150.6758 (6)0.03736 (10)0.2161 (3)0.0742 (10)
H150.79140.05810.22210.089*
C160.5795 (5)0.04484 (10)0.3104 (3)0.0694 (9)
H160.46400.02440.30760.083*
C170.7514 (5)0.04950 (9)0.4367 (3)0.0697 (9)
H17A0.90250.05850.44070.084*
H17B0.76280.02580.48490.084*
C180.6036 (5)0.08305 (9)0.4600 (3)0.0644 (9)
C190.4902 (6)0.08705 (11)0.3251 (3)0.0842 (11)
H19A0.55480.10840.29220.101*
H19B0.32390.08890.29770.101*
C200.4371 (6)0.06601 (13)0.5146 (4)0.1093 (14)
H20A0.36300.04260.47160.164*
H20B0.52000.05880.59470.164*
H20C0.32330.08590.51170.164*
C210.7205 (7)0.11958 (11)0.5263 (3)0.0751 (10)
C220.9511 (7)0.11942 (13)0.5945 (3)0.0999 (13)
H221.03870.09630.60010.120*
C231.0512 (11)0.1540 (2)0.6546 (5)0.157 (3)
H231.20710.15380.69960.189*
C240.9279 (19)0.1881 (2)0.6496 (6)0.183 (4)
H240.99790.21110.68980.220*
C250.6985 (17)0.18775 (16)0.5840 (6)0.176 (3)
H250.61070.21060.58130.211*
C260.5959 (9)0.15427 (13)0.5223 (4)0.1241 (16)
H260.44020.15490.47710.149*
O10.9385 (4)0.05398 (7)0.0596 (2)0.0841 (7)
O20.5073 (4)0.03918 (9)0.1009 (2)0.1019 (9)
N10.8774 (5)0.01166 (9)0.1352 (2)0.0789 (9)
H1N0.761 (6)0.0091 (10)0.070 (3)0.095*
H1O0.986 (6)0.0304 (9)0.092 (3)0.118*
H2O0.371 (5)0.0403 (12)0.117 (3)0.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.107 (3)0.084 (3)0.123 (4)0.010 (3)0.037 (3)0.009 (3)
C20.137 (5)0.099 (4)0.146 (5)0.023 (3)0.001 (4)0.037 (4)
C30.227 (9)0.115 (5)0.110 (5)0.072 (5)0.006 (6)0.025 (4)
C40.230 (8)0.134 (5)0.105 (5)0.055 (5)0.069 (5)0.001 (4)
C50.148 (4)0.100 (3)0.105 (4)0.019 (3)0.064 (4)0.001 (3)
C60.099 (3)0.063 (2)0.092 (3)0.022 (2)0.041 (3)0.010 (2)
C70.079 (2)0.067 (2)0.090 (3)0.019 (2)0.035 (2)0.009 (2)
C80.083 (2)0.082 (3)0.139 (4)0.001 (2)0.053 (3)0.010 (2)
C90.075 (2)0.081 (3)0.090 (3)0.013 (2)0.019 (2)0.007 (2)
C100.084 (2)0.081 (2)0.091 (3)0.000 (2)0.038 (2)0.000 (2)
C110.117 (3)0.099 (3)0.105 (3)0.027 (3)0.026 (3)0.011 (3)
C120.069 (2)0.085 (3)0.071 (2)0.0025 (19)0.012 (2)0.011 (2)
C130.092 (2)0.079 (3)0.078 (2)0.010 (2)0.020 (2)0.011 (2)
C140.093 (3)0.080 (3)0.065 (2)0.006 (2)0.018 (2)0.0078 (19)
C150.073 (2)0.081 (3)0.055 (2)0.0028 (19)0.0054 (19)0.0093 (18)
C160.0628 (19)0.069 (2)0.071 (2)0.0057 (17)0.0173 (18)0.0129 (18)
C170.071 (2)0.072 (2)0.061 (2)0.0004 (17)0.0162 (18)0.0022 (17)
C180.0564 (19)0.070 (2)0.068 (2)0.0012 (17)0.0227 (17)0.0045 (18)
C190.075 (2)0.090 (3)0.073 (2)0.0131 (19)0.0066 (19)0.007 (2)
C200.093 (3)0.119 (3)0.131 (4)0.022 (2)0.060 (3)0.025 (3)
C210.096 (3)0.069 (2)0.063 (2)0.011 (2)0.031 (2)0.0043 (18)
C220.097 (3)0.122 (3)0.084 (3)0.038 (3)0.036 (2)0.034 (3)
C230.173 (5)0.194 (7)0.118 (4)0.101 (6)0.068 (4)0.074 (5)
C240.317 (12)0.146 (6)0.104 (5)0.133 (8)0.096 (6)0.065 (5)
C250.327 (10)0.069 (4)0.123 (5)0.001 (5)0.069 (6)0.023 (3)
C260.172 (4)0.077 (3)0.107 (3)0.017 (3)0.030 (3)0.012 (3)
O10.0786 (15)0.0864 (17)0.0791 (17)0.0006 (13)0.0177 (13)0.0055 (14)
O20.0920 (18)0.128 (2)0.0659 (16)0.0200 (17)0.0035 (15)0.0200 (15)
N10.090 (2)0.084 (2)0.0557 (18)0.0114 (18)0.0164 (15)0.0083 (16)
Geometric parameters (Å, º) top
C1—C21.381 (6)C14—H14A0.9700
C1—C61.388 (5)C14—H14B0.9700
C1—H10.9300C15—O21.426 (3)
C2—C31.352 (9)C15—C161.491 (4)
C2—H20.9300C15—H150.9800
C3—C41.353 (8)C16—C171.540 (4)
C3—H30.9300C16—C191.543 (4)
C4—C51.372 (7)C16—H160.9800
C4—H40.9300C17—C181.534 (4)
C5—C61.365 (5)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C6—C71.500 (5)C18—C211.497 (4)
C7—C81.538 (5)C18—C201.523 (4)
C7—C111.541 (4)C18—C191.548 (4)
C7—C101.546 (4)C19—H19A0.9700
C8—C91.529 (5)C19—H19B0.9700
C8—H8A0.9700C20—H20A0.9600
C8—H8B0.9700C20—H20B0.9600
C9—C121.516 (5)C20—H20C0.9600
C9—C101.546 (4)C21—C221.380 (4)
C9—H90.9800C21—C261.380 (5)
C10—H10A0.9700C22—C231.387 (6)
C10—H10B0.9700C22—H220.9300
C11—H11A0.9600C23—C241.358 (9)
C11—H11B0.9600C23—H230.9300
C11—H11C0.9600C24—C251.367 (9)
C12—O11.462 (4)C24—H240.9300
C12—C131.506 (5)C25—C261.368 (7)
C12—H120.9800C25—H250.9300
C13—N11.469 (4)C26—H260.9300
C13—H13A0.9700O1—H1O0.97 (2)
C13—H13B0.9700O2—H2O0.93 (2)
C14—N11.453 (4)N1—H1N0.87 (3)
C14—C151.508 (4)
C2—C1—C6120.6 (5)N1—C14—H14B109.1
C2—C1—H1119.7C15—C14—H14B109.1
C6—C1—H1119.7H14A—C14—H14B107.8
C3—C2—C1120.6 (7)O2—C15—C16113.3 (3)
C3—C2—H2119.7O2—C15—C14107.6 (3)
C1—C2—H2119.7C16—C15—C14111.9 (3)
C2—C3—C4119.6 (8)O2—C15—H15108.0
C2—C3—H3120.2C16—C15—H15108.0
C4—C3—H3120.2C14—C15—H15108.0
C3—C4—C5120.2 (7)C15—C16—C17117.4 (3)
C3—C4—H4119.9C15—C16—C19120.0 (3)
C5—C4—H4119.9C17—C16—C1986.8 (2)
C6—C5—C4122.0 (5)C15—C16—H16110.2
C6—C5—H5119.0C17—C16—H16110.2
C4—C5—H5119.0C19—C16—H16110.2
C5—C6—C1117.0 (4)C18—C17—C1690.5 (2)
C5—C6—C7121.7 (4)C18—C17—H17A113.6
C1—C6—C7121.3 (4)C16—C17—H17A113.6
C6—C7—C8117.5 (3)C18—C17—H17B113.6
C6—C7—C11109.6 (3)C16—C17—H17B113.6
C8—C7—C11112.1 (3)H17A—C17—H17B110.8
C6—C7—C10116.7 (3)C21—C18—C20110.0 (3)
C8—C7—C1087.2 (3)C21—C18—C17118.8 (3)
C11—C7—C10112.2 (3)C20—C18—C17110.7 (3)
C9—C8—C790.2 (3)C21—C18—C19117.1 (3)
C9—C8—H8A113.6C20—C18—C19111.7 (3)
C7—C8—H8A113.6C17—C18—C1986.8 (2)
C9—C8—H8B113.6C16—C19—C1889.9 (2)
C7—C8—H8B113.6C16—C19—H19A113.7
H8A—C8—H8B110.9C18—C19—H19A113.7
C12—C9—C8119.3 (3)C16—C19—H19B113.7
C12—C9—C10118.6 (3)C18—C19—H19B113.7
C8—C9—C1087.5 (3)H19A—C19—H19B110.9
C12—C9—H9109.9C18—C20—H20A109.5
C8—C9—H9109.9C18—C20—H20B109.5
C10—C9—H9109.9H20A—C20—H20B109.5
C7—C10—C989.3 (3)C18—C20—H20C109.5
C7—C10—H10A113.8H20A—C20—H20C109.5
C9—C10—H10A113.8H20B—C20—H20C109.5
C7—C10—H10B113.8C22—C21—C26118.4 (4)
C9—C10—H10B113.8C22—C21—C18121.7 (3)
H10A—C10—H10B111.0C26—C21—C18120.0 (4)
C7—C11—H11A109.5C21—C22—C23119.5 (5)
C7—C11—H11B109.5C21—C22—H22120.3
H11A—C11—H11B109.5C23—C22—H22120.3
C7—C11—H11C109.5C24—C23—C22121.9 (7)
H11A—C11—H11C109.5C24—C23—H23119.1
H11B—C11—H11C109.5C22—C23—H23119.1
O1—C12—C13109.9 (3)C23—C24—C25118.3 (6)
O1—C12—C9110.8 (3)C23—C24—H24120.8
C13—C12—C9109.7 (3)C25—C24—H24120.8
O1—C12—H12108.8C24—C25—C26121.1 (7)
C13—C12—H12108.8C24—C25—H25119.5
C9—C12—H12108.8C26—C25—H25119.5
N1—C13—C12114.4 (3)C25—C26—C21120.9 (5)
N1—C13—H13A108.7C25—C26—H26119.5
C12—C13—H13A108.7C21—C26—H26119.5
N1—C13—H13B108.7C12—O1—H1O111 (2)
C12—C13—H13B108.7C15—O2—H2O102 (2)
H13A—C13—H13B107.6C14—N1—C13111.3 (3)
N1—C14—C15112.6 (3)C14—N1—H1N106 (2)
N1—C14—H14A109.1C13—N1—H1N110 (2)
C15—C14—H14A109.1
C6—C1—C2—C30.7 (7)N1—C14—C15—C16177.3 (3)
C1—C2—C3—C41.7 (9)O2—C15—C16—C17171.5 (3)
C2—C3—C4—C52.0 (10)C14—C15—C16—C1766.6 (4)
C3—C4—C5—C61.3 (8)O2—C15—C16—C1968.5 (4)
C4—C5—C6—C10.3 (6)C14—C15—C16—C19169.7 (3)
C4—C5—C6—C7178.4 (4)C15—C16—C17—C18140.9 (3)
C2—C1—C6—C50.0 (6)C19—C16—C17—C1818.6 (3)
C2—C1—C6—C7178.1 (4)C16—C17—C18—C21137.9 (3)
C5—C6—C7—C839.3 (5)C16—C17—C18—C2093.5 (3)
C1—C6—C7—C8142.6 (3)C16—C17—C18—C1918.6 (2)
C5—C6—C7—C1190.2 (4)C15—C16—C19—C18138.4 (3)
C1—C6—C7—C1187.9 (4)C17—C16—C19—C1818.5 (2)
C5—C6—C7—C10140.9 (4)C21—C18—C19—C16139.4 (3)
C1—C6—C7—C1041.1 (5)C20—C18—C19—C1692.5 (3)
C6—C7—C8—C9136.8 (3)C17—C18—C19—C1618.5 (2)
C11—C7—C8—C994.8 (3)C20—C18—C21—C22110.3 (4)
C10—C7—C8—C918.1 (3)C17—C18—C21—C2218.7 (5)
C7—C8—C9—C12139.7 (3)C19—C18—C21—C22120.7 (3)
C7—C8—C9—C1018.1 (3)C20—C18—C21—C2668.1 (4)
C6—C7—C10—C9137.4 (3)C17—C18—C21—C26162.9 (4)
C8—C7—C10—C917.9 (3)C19—C18—C21—C2660.8 (4)
C11—C7—C10—C994.9 (3)C26—C21—C22—C231.3 (6)
C12—C9—C10—C7140.3 (4)C18—C21—C22—C23179.7 (4)
C8—C9—C10—C718.0 (3)C21—C22—C23—C240.8 (8)
C8—C9—C12—O153.6 (4)C22—C23—C24—C250.6 (11)
C10—C9—C12—O150.8 (5)C23—C24—C25—C261.7 (11)
C8—C9—C12—C13175.1 (3)C24—C25—C26—C211.2 (9)
C10—C9—C12—C1370.7 (4)C22—C21—C26—C250.3 (7)
O1—C12—C13—N155.1 (4)C18—C21—C26—C25178.8 (4)
C9—C12—C13—N1177.2 (3)C15—C14—N1—C13175.4 (3)
N1—C14—C15—O252.2 (4)C12—C13—N1—C14172.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (3)2.38 (3)3.157 (4)149 (3)
O1—H1O···N1ii0.97 (2)1.81 (3)2.768 (4)170 (3)
O2—H2O···O1)i0.94 (3)1.86 (3)2.681 (4)146 (3)
C24—H24···Cg1iii0.933.86 (1)2.76156
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H35NO2
Mr393.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.2156 (4), 33.2505 (15), 12.1792 (8)
β (°) 110.656 (5)
V3)2355.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.63 × 0.34 × 0.09
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.967, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
26921, 4737, 1740
Rint0.105
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.173, 0.95
No. of reflections4737
No. of parameters271
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.13

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (3)2.38 (3)3.157 (4)149 (3)
O1—H1O···N1ii0.97 (2)1.81 (3)2.768 (4)170 (3)
O2—H2O···O1)i0.94 (3)1.86 (3)2.681 (4)146 (3)
C24—H24···Cg1iii0.933.858 (7)2.76156
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x+2, y1/2, z+1/2.
 

References

First citationAllen, F. H. (1984). Acta Cryst. B40, 64–72.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoghi, L., Lanfredi, A. M. M. & Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808–1810.  CSD CrossRef Google Scholar
First citationDehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. 5, 411–414.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSwenson, D. C., Yamamoto, M. & Burton, D. J. (1997). Acta Cryst. C53, 1445–1447.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZalipsky, S., Gilon, C. & Zilkha, A. (1983). Eur. Polym. J. 19, 1177–1183.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds