metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m435-m436

Chlorido{4-cyclo­hexyl-1-[1-(pyridin-2-yl-κN)ethyl­­idene]thio­semicarbazidato-κ2N1,S}di­phenyl­tin(IV)

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samaharan, Sawarak, Malaysia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 8 March 2012; accepted 13 March 2012; online 17 March 2012)

The distorted octa­hedral geometry about the SnIV atom in the title compound, [Sn(C6H5)2(C14H19N4S)Cl], is defined by the N,N,S-tridentate Schiff base ligand, two mutually trans ipso-C atoms of the Sn-bound phenyl groups, and the Cl atom which is trans to the azo N atom. The two five-membered chelate rings and pyridyl ring are almost coplanar with the dihedral angle between the outer five-membered chelate and pyridine rings being 5.39 (8)°. Centrosymmetric dimers feature in the crystal packing mediated by N—H⋯S hydrogen bonds, leading to eight-membered {⋯HNCS}2 synthons. The dimeric aggregates are connected into a three-dimensional architecture by C—H⋯Cl and C—H⋯π inter­actions, as well as ππ inter­actions occurring between centrosymmetrically related pyridine rings [centroid–centroid distance = 3.6322 (13) Å].

Related literature

For the crystal structure of the dichloridophenyl analogue, see: Salam et al. (2010[Salam, M. A., Affan, M. A., Ahmad, F. B., Tahir, M. I. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1503-m1504.]). For a related structure, see: de Sousa et al. (2007[Sousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct. 826, 185-191.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C14H19N4S)Cl]

  • Mr = 583.73

  • Triclinic, [P \overline 1]

  • a = 9.7368 (4) Å

  • b = 9.9771 (4) Å

  • c = 13.4045 (5) Å

  • α = 90.103 (3)°

  • β = 97.013 (3)°

  • γ = 100.931 (4)°

  • V = 1268.57 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.642, Tmax = 0.793

  • 8973 measured reflections

  • 5781 independent reflections

  • 5122 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.061

  • S = 1.00

  • 5781 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Sn—C1 2.152 (2)
Sn—C7 2.159 (2)
Sn—N2 2.3100 (19)
Sn—N1 2.3869 (19)
Sn—S1 2.5209 (6)
Sn—Cl1 2.5449 (6)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯S1i 0.88 2.62 3.489 (2) 171
C13—H13⋯Cl1ii 0.95 2.73 3.415 (3) 129
C19—H19C⋯Cl1iii 0.98 2.85 3.809 (2) 166
C15—H15⋯Cg1iv 0.95 2.47 3.384 (3) 162
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+2; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis and crystal structure of the title compound was determined in connection with recent structural studies of organotin chlorido derivatives of thiosemicarbazones (Salam et al., 2010).

The Sn atom in the title compound, Fig. 1, exists within a six atom C2ClN2S donor set defined by the tridentate monodeprotonated Schiff base ligand, two mutually trans ipso-C atoms of the Sn-bound phenyl groups, and the Cl atom which is trans to the azo-N atom, Table 1. There are distortions from the ideal octahedral geometry which are ascribed to the restricted bite angles formed by the Schiff base ligand which result in an angle of 145.90 (5)° for the nominally trans S1—–Sn—–N1 angle. The disposition of donor atoms resembles that found in the structure of the N-4-morpholinyl derivative (de Sousa et al., 2007). Both five-membered rings are essentially planar with the r.m.s. deviations being 0.111 and 0.020 Å for the SnSN2C and SnN2C2 rings, respectively; the former ring has a small twist about the Sn—S1 bond with Sn and S1 atoms lying 0.068 (1) and -0.081 (1) Å out of the least-squares plane, respectively. The dihedral angle between the chelate rings is 3.42 (7)° and those between each of these and the pyridyl ring are 5.39 (8) and 2.29 (9)°, respectively, indicating an essentially planar arrangement of fused rings. Finally, the Sn-bound benzene rings are almost parallel with the dihedral angle being 8.72 (12)°.

The most significant feature in the crystal packing of the title compound is the formation of centrosymmetric dimers via N—H···S hydrogen bonds that lead to flat, eight-membered {···HNCS}2 synthons, Table 1. The dimeric aggregates are connected into a three dimensional architecture by C—H···Cl and C—H···π interactions, Table 1, as well as ππ interactions occurring between centrosymmetrically related pyridyl rings [centroid···centroid distance = 3.6322 (13) Å for symmetry operation: 1 - x, 1 - y, 2 - z], Fig. 2.

Related literature top

For the crystal structure of the dichloridophenyl analogue, see: Salam et al. (2010). For a related structure, see: de Sousa et al. (2007).

Experimental top

2-Acetylpyridine-N-cyclohexylthiosemicarbazone (0.28 g, 1 mmol) was dissolved in methanol (10 ml) in a Schlenk flask under a nitrogen atmosphere. Diphenyltin(IV) dichloride (0.34 g, 1 mmol) dissolved in methanol (10 ml) was added. The yellow solution was refluxed for 4 h. Slow evaporation of the solvent gave a yellow compound (0.423 g). Recrystallization from a chloroform/methanol (1/1) mixture gave small dark-yellow prisms embedded in large light-yellow blocks. A small light-yellow specimen was cut from a light-yellow block for the diffraction measurements. The dark-yellow specimen proved to be (C6H5)Sn(C14H19N4S)Cl2 from unit cell determination (Salam et al., 2010).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was similarly treated [N—H = 0.88 Å with Uiso(H) = 1.2Ueq(N)]. Owing to poor agreement, several reflections, i.e. (2 6 8), (2 5 8), (2 6 7) and (2 4 8), were omitted from the final refinement.

Structure description top

The synthesis and crystal structure of the title compound was determined in connection with recent structural studies of organotin chlorido derivatives of thiosemicarbazones (Salam et al., 2010).

The Sn atom in the title compound, Fig. 1, exists within a six atom C2ClN2S donor set defined by the tridentate monodeprotonated Schiff base ligand, two mutually trans ipso-C atoms of the Sn-bound phenyl groups, and the Cl atom which is trans to the azo-N atom, Table 1. There are distortions from the ideal octahedral geometry which are ascribed to the restricted bite angles formed by the Schiff base ligand which result in an angle of 145.90 (5)° for the nominally trans S1—–Sn—–N1 angle. The disposition of donor atoms resembles that found in the structure of the N-4-morpholinyl derivative (de Sousa et al., 2007). Both five-membered rings are essentially planar with the r.m.s. deviations being 0.111 and 0.020 Å for the SnSN2C and SnN2C2 rings, respectively; the former ring has a small twist about the Sn—S1 bond with Sn and S1 atoms lying 0.068 (1) and -0.081 (1) Å out of the least-squares plane, respectively. The dihedral angle between the chelate rings is 3.42 (7)° and those between each of these and the pyridyl ring are 5.39 (8) and 2.29 (9)°, respectively, indicating an essentially planar arrangement of fused rings. Finally, the Sn-bound benzene rings are almost parallel with the dihedral angle being 8.72 (12)°.

The most significant feature in the crystal packing of the title compound is the formation of centrosymmetric dimers via N—H···S hydrogen bonds that lead to flat, eight-membered {···HNCS}2 synthons, Table 1. The dimeric aggregates are connected into a three dimensional architecture by C—H···Cl and C—H···π interactions, Table 1, as well as ππ interactions occurring between centrosymmetrically related pyridyl rings [centroid···centroid distance = 3.6322 (13) Å for symmetry operation: 1 - x, 1 - y, 2 - z], Fig. 2.

For the crystal structure of the dichloridophenyl analogue, see: Salam et al. (2010). For a related structure, see: de Sousa et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of the title compound. The N—H···S, C—H···Cl, C—H···π and ππ interactions are shown as orange, blue, brown and purple dashed lines, respectively.
Chlorido{4-cyclohexyl-1-[1-(pyridin-2-yl- κN)ethylidene]thiosemicarbazidato- κ2N1,S}diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2(C14H19N4S)Cl]Z = 2
Mr = 583.73F(000) = 592
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7368 (4) ÅCell parameters from 5479 reflections
b = 9.9771 (4) Åθ = 2.5–27.5°
c = 13.4045 (5) ŵ = 1.22 mm1
α = 90.103 (3)°T = 100 K
β = 97.013 (3)°Irregular, light-yellow
γ = 100.931 (4)°0.40 × 0.30 × 0.20 mm
V = 1268.57 (9) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5781 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5122 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1012
Tmin = 0.642, Tmax = 0.793l = 1717
8973 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0216P)2]
where P = (Fo2 + 2Fc2)/3
5781 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Sn(C6H5)2(C14H19N4S)Cl]γ = 100.931 (4)°
Mr = 583.73V = 1268.57 (9) Å3
Triclinic, P1Z = 2
a = 9.7368 (4) ÅMo Kα radiation
b = 9.9771 (4) ŵ = 1.22 mm1
c = 13.4045 (5) ÅT = 100 K
α = 90.103 (3)°0.40 × 0.30 × 0.20 mm
β = 97.013 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5781 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5122 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.793Rint = 0.029
8973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
5781 reflectionsΔρmin = 0.58 e Å3
299 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.336547 (16)0.124100 (16)0.775567 (11)0.01076 (5)
Cl10.34918 (7)0.11363 (6)0.83991 (5)0.02221 (14)
S10.13930 (6)0.06101 (6)0.63351 (4)0.01420 (13)
N10.49818 (19)0.3058 (2)0.86673 (14)0.0128 (4)
N20.31702 (19)0.33125 (19)0.70413 (14)0.0111 (4)
N30.23447 (19)0.3390 (2)0.61378 (14)0.0130 (4)
N40.08466 (19)0.2234 (2)0.48652 (14)0.0144 (4)
H10.03360.14580.46120.017*
C10.5121 (2)0.1152 (2)0.69424 (17)0.0139 (5)
C20.6324 (3)0.0724 (3)0.74073 (19)0.0227 (6)
H20.63660.04520.80870.027*
C30.7461 (3)0.0697 (3)0.6874 (2)0.0272 (6)
H30.82800.04140.71950.033*
C40.7409 (3)0.1074 (3)0.58891 (19)0.0226 (6)
H40.81890.10520.55310.027*
C50.6220 (3)0.1485 (3)0.54170 (19)0.0222 (6)
H50.61780.17330.47320.027*
C60.5085 (3)0.1535 (3)0.59448 (18)0.0190 (5)
H60.42780.18350.56200.023*
C70.2074 (2)0.1485 (2)0.89180 (17)0.0118 (5)
C80.2437 (3)0.1153 (2)0.99069 (17)0.0173 (5)
H80.32820.08171.00860.021*
C90.1577 (3)0.1305 (2)1.06400 (18)0.0187 (5)
H90.18430.10851.13160.022*
C100.0328 (3)0.1780 (2)1.03850 (19)0.0189 (5)
H100.02680.18681.08820.023*
C110.0035 (2)0.2120 (2)0.94064 (18)0.0184 (5)
H110.08850.24470.92300.022*
C120.0832 (2)0.1989 (2)0.86723 (18)0.0152 (5)
H120.05790.22430.80020.018*
C130.5906 (2)0.2890 (3)0.94570 (17)0.0162 (5)
H130.59210.19920.96870.019*
C140.6845 (2)0.3973 (3)0.99555 (18)0.0171 (5)
H140.74960.38211.05120.021*
C150.6809 (2)0.5272 (3)0.96253 (18)0.0176 (5)
H150.74350.60350.99550.021*
C160.5851 (2)0.5460 (2)0.88041 (17)0.0150 (5)
H160.58080.63520.85720.018*
C170.4954 (2)0.4324 (2)0.83251 (17)0.0128 (5)
C180.3979 (2)0.4439 (2)0.74072 (17)0.0128 (5)
C190.4031 (2)0.5785 (2)0.69161 (18)0.0173 (5)
H19A0.33280.56870.63190.026*
H19B0.49730.61030.67180.026*
H19C0.38280.64500.73890.026*
C200.1583 (2)0.2215 (2)0.57772 (17)0.0125 (5)
C210.0833 (2)0.3452 (2)0.42632 (17)0.0139 (5)
H210.06630.42010.47020.017*
C220.0388 (2)0.3141 (3)0.34146 (18)0.0179 (5)
H22A0.02690.23590.30000.022*
H22B0.12850.28790.37050.022*
C230.0460 (3)0.4371 (3)0.27500 (19)0.0235 (6)
H23A0.12080.41110.21760.028*
H23B0.07130.51100.31420.028*
C240.0936 (3)0.4897 (3)0.23527 (18)0.0224 (6)
H24A0.08750.57360.19710.027*
H24B0.11330.42030.18900.027*
C250.2134 (3)0.5208 (3)0.32162 (19)0.0222 (6)
H25A0.30370.55210.29430.027*
H25B0.19720.59500.36520.027*
C260.2223 (2)0.3940 (3)0.38360 (18)0.0175 (5)
H26A0.30030.41560.43930.021*
H26B0.24190.32070.34070.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01145 (9)0.01048 (9)0.01016 (9)0.00200 (6)0.00073 (6)0.00036 (6)
Cl10.0329 (4)0.0148 (3)0.0222 (3)0.0097 (3)0.0083 (3)0.0050 (2)
S10.0159 (3)0.0116 (3)0.0131 (3)0.0000 (2)0.0020 (2)0.0002 (2)
N10.0120 (10)0.0146 (10)0.0119 (10)0.0019 (8)0.0025 (8)0.0009 (8)
N20.0097 (9)0.0130 (10)0.0109 (9)0.0024 (8)0.0019 (8)0.0010 (8)
N30.0124 (10)0.0128 (10)0.0126 (10)0.0018 (8)0.0021 (8)0.0013 (8)
N40.0152 (10)0.0128 (10)0.0127 (10)0.0013 (8)0.0017 (8)0.0013 (8)
C10.0124 (12)0.0134 (12)0.0148 (12)0.0001 (10)0.0016 (9)0.0014 (10)
C20.0195 (13)0.0308 (16)0.0201 (14)0.0093 (12)0.0041 (11)0.0063 (12)
C30.0187 (14)0.0354 (17)0.0311 (16)0.0123 (13)0.0054 (12)0.0020 (13)
C40.0183 (13)0.0228 (14)0.0276 (15)0.0014 (11)0.0108 (11)0.0054 (11)
C50.0243 (14)0.0253 (15)0.0168 (13)0.0014 (12)0.0074 (11)0.0002 (11)
C60.0166 (13)0.0228 (14)0.0188 (13)0.0072 (11)0.0017 (10)0.0000 (11)
C70.0122 (11)0.0097 (11)0.0124 (11)0.0019 (9)0.0030 (9)0.0020 (9)
C80.0194 (13)0.0150 (13)0.0175 (13)0.0035 (10)0.0022 (10)0.0001 (10)
C90.0258 (14)0.0164 (13)0.0119 (12)0.0011 (11)0.0030 (10)0.0015 (10)
C100.0197 (13)0.0147 (13)0.0229 (13)0.0004 (11)0.0111 (11)0.0037 (10)
C110.0139 (12)0.0172 (13)0.0247 (14)0.0034 (10)0.0037 (10)0.0019 (11)
C120.0158 (12)0.0129 (12)0.0161 (12)0.0014 (10)0.0004 (10)0.0010 (10)
C130.0173 (12)0.0201 (13)0.0117 (12)0.0050 (11)0.0014 (10)0.0015 (10)
C140.0133 (12)0.0250 (14)0.0119 (12)0.0019 (11)0.0007 (9)0.0028 (10)
C150.0141 (12)0.0201 (13)0.0163 (12)0.0030 (10)0.0030 (10)0.0042 (10)
C160.0144 (12)0.0138 (12)0.0164 (12)0.0001 (10)0.0042 (10)0.0007 (10)
C170.0119 (11)0.0145 (12)0.0128 (11)0.0018 (10)0.0060 (9)0.0004 (9)
C180.0088 (11)0.0153 (12)0.0149 (12)0.0025 (10)0.0034 (9)0.0014 (10)
C190.0155 (12)0.0123 (12)0.0236 (13)0.0009 (10)0.0033 (10)0.0004 (10)
C200.0095 (11)0.0153 (12)0.0140 (12)0.0040 (10)0.0034 (9)0.0001 (9)
C210.0139 (12)0.0124 (12)0.0151 (12)0.0013 (10)0.0026 (9)0.0043 (9)
C220.0151 (12)0.0233 (14)0.0147 (12)0.0039 (11)0.0015 (10)0.0046 (10)
C230.0264 (14)0.0284 (15)0.0183 (13)0.0127 (12)0.0018 (11)0.0063 (11)
C240.0300 (15)0.0214 (14)0.0190 (13)0.0096 (12)0.0083 (11)0.0070 (11)
C250.0263 (14)0.0204 (14)0.0212 (14)0.0027 (12)0.0101 (11)0.0016 (11)
C260.0142 (12)0.0208 (13)0.0172 (12)0.0019 (10)0.0035 (10)0.0011 (10)
Geometric parameters (Å, º) top
Sn—C12.152 (2)C11—C121.394 (3)
Sn—C72.159 (2)C11—H110.9500
Sn—N22.3100 (19)C12—H120.9500
Sn—N12.3869 (19)C13—C141.387 (3)
Sn—S12.5209 (6)C13—H130.9500
Sn—Cl12.5449 (6)C14—C151.376 (3)
S1—C201.756 (2)C14—H140.9500
N1—C131.335 (3)C15—C161.391 (3)
N1—C171.349 (3)C15—H150.9500
N2—C181.300 (3)C16—C171.394 (3)
N2—N31.380 (3)C16—H160.9500
N3—C201.319 (3)C17—C181.478 (3)
N4—C201.342 (3)C18—C191.492 (3)
N4—C211.461 (3)C19—H19A0.9800
N4—H10.8800C19—H19B0.9800
C1—C61.390 (3)C19—H19C0.9800
C1—C21.398 (3)C21—C221.527 (3)
C2—C31.394 (3)C21—C261.529 (3)
C2—H20.9500C21—H211.0000
C3—C41.370 (4)C22—C231.525 (3)
C3—H30.9500C22—H22A0.9900
C4—C51.382 (3)C22—H22B0.9900
C4—H40.9500C23—C241.521 (3)
C5—C61.391 (3)C23—H23A0.9900
C5—H50.9500C23—H23B0.9900
C6—H60.9500C24—C251.526 (4)
C7—C81.387 (3)C24—H24A0.9900
C7—C121.399 (3)C24—H24B0.9900
C8—C91.393 (3)C25—C261.525 (3)
C8—H80.9500C25—H25A0.9900
C9—C101.391 (3)C25—H25B0.9900
C9—H90.9500C26—H26A0.9900
C10—C111.377 (3)C26—H26B0.9900
C10—H100.9500
C1—Sn—C7163.82 (9)N1—C13—H13118.7
C1—Sn—N289.52 (8)C14—C13—H13118.7
C7—Sn—N294.19 (7)C15—C14—C13118.4 (2)
C1—Sn—N183.36 (7)C15—C14—H14120.8
C7—Sn—N183.23 (7)C13—C14—H14120.8
N2—Sn—N169.43 (6)C14—C15—C16119.4 (2)
C1—Sn—S198.90 (6)C14—C15—H15120.3
C7—Sn—S197.28 (6)C16—C15—H15120.3
N2—Sn—S176.55 (5)C15—C16—C17119.3 (2)
N1—Sn—S1145.90 (5)C15—C16—H16120.4
C1—Sn—Cl189.13 (6)C17—C16—H16120.4
C7—Sn—Cl188.37 (6)N1—C17—C16120.7 (2)
N2—Sn—Cl1175.15 (5)N1—C17—C18117.1 (2)
N1—Sn—Cl1115.02 (5)C16—C17—C18122.1 (2)
S1—Sn—Cl199.07 (2)N2—C18—C17116.6 (2)
C20—S1—Sn96.99 (8)N2—C18—C19123.7 (2)
C13—N1—C17119.5 (2)C17—C18—C19119.6 (2)
C13—N1—Sn124.50 (16)C18—C19—H19A109.5
C17—N1—Sn115.98 (15)C18—C19—H19B109.5
C18—N2—N3116.92 (19)H19A—C19—H19B109.5
C18—N2—Sn120.81 (15)C18—C19—H19C109.5
N3—N2—Sn121.65 (14)H19A—C19—H19C109.5
C20—N3—N2114.79 (19)H19B—C19—H19C109.5
C20—N4—C21124.7 (2)N3—C20—N4116.4 (2)
C20—N4—H1117.7N3—C20—S1128.57 (18)
C21—N4—H1117.7N4—C20—S1114.99 (17)
C6—C1—C2118.7 (2)N4—C21—C22108.65 (19)
C6—C1—Sn120.44 (17)N4—C21—C26112.62 (19)
C2—C1—Sn120.87 (17)C22—C21—C26110.39 (19)
C3—C2—C1120.1 (2)N4—C21—H21108.4
C3—C2—H2120.0C22—C21—H21108.4
C1—C2—H2120.0C26—C21—H21108.4
C4—C3—C2120.6 (2)C23—C22—C21111.4 (2)
C4—C3—H3119.7C23—C22—H22A109.3
C2—C3—H3119.7C21—C22—H22A109.3
C3—C4—C5120.0 (2)C23—C22—H22B109.3
C3—C4—H4120.0C21—C22—H22B109.3
C5—C4—H4120.0H22A—C22—H22B108.0
C4—C5—C6120.0 (2)C24—C23—C22111.7 (2)
C4—C5—H5120.0C24—C23—H23A109.3
C6—C5—H5120.0C22—C23—H23A109.3
C5—C6—C1120.7 (2)C24—C23—H23B109.3
C5—C6—H6119.7C22—C23—H23B109.3
C1—C6—H6119.7H23A—C23—H23B107.9
C8—C7—C12118.7 (2)C23—C24—C25110.7 (2)
C8—C7—Sn121.86 (17)C23—C24—H24A109.5
C12—C7—Sn119.42 (17)C25—C24—H24A109.5
C7—C8—C9120.7 (2)C23—C24—H24B109.5
C7—C8—H8119.6C25—C24—H24B109.5
C9—C8—H8119.6H24A—C24—H24B108.1
C10—C9—C8120.2 (2)C26—C25—C24110.5 (2)
C10—C9—H9119.9C26—C25—H25A109.5
C8—C9—H9119.9C24—C25—H25A109.5
C11—C10—C9119.4 (2)C26—C25—H25B109.5
C11—C10—H10120.3C24—C25—H25B109.5
C9—C10—H10120.3H25A—C25—H25B108.1
C10—C11—C12120.6 (2)C25—C26—C21109.84 (19)
C10—C11—H11119.7C25—C26—H26A109.7
C12—C11—H11119.7C21—C26—H26A109.7
C11—C12—C7120.3 (2)C25—C26—H26B109.7
C11—C12—H12119.9C21—C26—H26B109.7
C7—C12—H12119.9H26A—C26—H26B108.2
N1—C13—C14122.7 (2)
C1—Sn—S1—C2078.66 (10)C1—Sn—C7—C12146.1 (3)
C7—Sn—S1—C20101.29 (9)N2—Sn—C7—C1243.22 (19)
N2—Sn—S1—C208.70 (8)N1—Sn—C7—C12111.91 (18)
N1—Sn—S1—C2012.62 (11)S1—Sn—C7—C1233.73 (18)
Cl1—Sn—S1—C20169.21 (7)Cl1—Sn—C7—C12132.66 (18)
C1—Sn—N1—C1385.65 (17)C12—C7—C8—C90.6 (4)
C7—Sn—N1—C1385.28 (17)Sn—C7—C8—C9179.28 (17)
N2—Sn—N1—C13177.64 (18)C7—C8—C9—C100.8 (4)
S1—Sn—N1—C13178.28 (13)C8—C9—C10—C111.2 (4)
Cl1—Sn—N1—C130.27 (18)C9—C10—C11—C120.2 (4)
C1—Sn—N1—C1792.66 (16)C10—C11—C12—C71.2 (4)
C7—Sn—N1—C1796.41 (16)C8—C7—C12—C111.5 (3)
N2—Sn—N1—C170.67 (14)Sn—C7—C12—C11178.33 (17)
S1—Sn—N1—C173.4 (2)C17—N1—C13—C140.6 (3)
Cl1—Sn—N1—C17178.58 (13)Sn—N1—C13—C14178.85 (16)
C1—Sn—N2—C1881.56 (17)N1—C13—C14—C150.6 (3)
C7—Sn—N2—C1882.68 (17)C13—C14—C15—C160.5 (3)
N1—Sn—N2—C181.53 (15)C14—C15—C16—C170.7 (3)
S1—Sn—N2—C18179.18 (17)C13—N1—C17—C161.8 (3)
C1—Sn—N2—N389.24 (15)Sn—N1—C17—C16179.77 (15)
C7—Sn—N2—N3106.53 (15)C13—N1—C17—C18175.89 (18)
N1—Sn—N2—N3172.32 (16)Sn—N1—C17—C182.5 (2)
S1—Sn—N2—N310.03 (13)C15—C16—C17—N11.9 (3)
C18—N2—N3—C20177.56 (19)C15—C16—C17—C18175.72 (19)
Sn—N2—N3—C206.4 (2)N3—N2—C18—C17174.55 (17)
C7—Sn—C1—C6145.4 (3)Sn—N2—C18—C173.3 (3)
N2—Sn—C1—C641.8 (2)N3—N2—C18—C191.3 (3)
N1—Sn—C1—C6111.2 (2)Sn—N2—C18—C19172.46 (16)
S1—Sn—C1—C634.5 (2)N1—C17—C18—N23.9 (3)
Cl1—Sn—C1—C6133.5 (2)C16—C17—C18—N2178.5 (2)
C7—Sn—C1—C233.9 (4)N1—C17—C18—C19172.12 (19)
N2—Sn—C1—C2137.4 (2)C16—C17—C18—C195.6 (3)
N1—Sn—C1—C268.1 (2)N2—N3—C20—N4175.27 (17)
S1—Sn—C1—C2146.28 (19)N2—N3—C20—S14.9 (3)
Cl1—Sn—C1—C247.2 (2)C21—N4—C20—N30.3 (3)
C6—C1—C2—C30.4 (4)C21—N4—C20—S1179.50 (16)
Sn—C1—C2—C3178.8 (2)Sn—S1—C20—N311.4 (2)
C1—C2—C3—C40.6 (4)Sn—S1—C20—N4168.86 (15)
C2—C3—C4—C50.0 (4)C20—N4—C21—C22165.9 (2)
C3—C4—C5—C60.9 (4)C20—N4—C21—C2671.5 (3)
C4—C5—C6—C11.2 (4)N4—C21—C22—C23179.67 (18)
C2—C1—C6—C50.5 (4)C26—C21—C22—C2355.7 (3)
Sn—C1—C6—C5179.74 (18)C21—C22—C23—C2454.1 (3)
C1—Sn—C7—C834.0 (4)C22—C23—C24—C2554.7 (3)
N2—Sn—C7—C8136.91 (19)C23—C24—C25—C2657.5 (3)
N1—Sn—C7—C868.22 (19)C24—C25—C26—C2159.4 (3)
S1—Sn—C7—C8146.14 (19)N4—C21—C26—C25179.88 (19)
Cl1—Sn—C7—C847.21 (19)C22—C21—C26—C2558.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N4—H1···S1i0.882.623.489 (2)171
C13—H13···Cl1ii0.952.733.415 (3)129
C19—H19C···Cl1iii0.982.853.809 (2)166
C15—H15···Cg1iv0.952.473.384 (3)162
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+2; (iii) x, y+1, z; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C14H19N4S)Cl]
Mr583.73
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.7368 (4), 9.9771 (4), 13.4045 (5)
α, β, γ (°)90.103 (3), 97.013 (3), 100.931 (4)
V3)1268.57 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.642, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
8973, 5781, 5122
Rint0.029
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.061, 1.00
No. of reflections5781
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.58

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn—C12.152 (2)Sn—N12.3869 (19)
Sn—C72.159 (2)Sn—S12.5209 (6)
Sn—N22.3100 (19)Sn—Cl12.5449 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N4—H1···S1i0.882.623.489 (2)171
C13—H13···Cl1ii0.952.733.415 (3)129
C19—H19C···Cl1iii0.982.853.809 (2)166
C15—H15···Cg1iv0.952.473.384 (3)162
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+2; (iii) x, y+1, z; (iv) x+1, y+1, z+2.
 

Acknowledgements

We thank MOSTI (grant No. 06–01-09-SF0046) and the Universiti Malaysia Sarawak for supporting this study. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSalam, M. A., Affan, M. A., Ahmad, F. B., Tahir, M. I. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1503–m1504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct. 826, 185–191.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m435-m436
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds