metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(1-carbamoylguanidinium) [tri-μ-chlorido-di­chloridobismuthate(III)]]

aLaboratoire de Cristallochimie et des Materiaux, Faculté des Sciences de Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn

(Received 13 March 2012; accepted 10 April 2012; online 18 April 2012)

The structure of the title organic–inorganic hybrid compound, {(C2H7N4O)2[BiCl5]}n, consists of corrugated chains parallel to [100] of corner-joined [BiCl6] octa­hedra, separated by layers of organic 1-carbamoylguanidinum cations. The crystal cohesion is achieved by N—H⋯O and N—H⋯Cl hydrogen bonds, which link the organic and inorganic parts of the structure.

Related literature

For bis­muth(III) halide organic–inorganic hybrid compounds, see: Masmoudi et al. (2011[Masmoudi, W., Kamoun, S. & Ayedi, H. F. (2011). J. Chem. Crystallogr. 41, 693-696.]); Fisher & Norman (1994[Fisher, G. A. & Norman, N. C. (1994). Adv. Inorg. Chem. 41, 233-271.]); Samet et al. (2010[Samet, A., Boughzala, H., Khemakhem, H. & Abid, Y. (2010). J. Mol. Struct. 984, 23-29.]); Papavassiliou et al. (1995[Papavassiliou, G. C., Koutselas, I. B., Terzis, A. & Rapatopoulou, C. P. (1995). Z. Naturforsch. Teil B, 50, 1566-1969.]); Mousdis et al. (1998[Mousdis, G. A., Papavassiliou, G. C., Terzis, A. & Rapatopoulou, C. P. (1998). Z. Naturforsch. Teil B, 53, 927-931.]); Rhandour et al. (2011[Rhandour, R., Quasri, A., Roussel, P. & Mazzah, A. (2011). J. Mol. Struct. 990, 95-101.]). For structures with similar guanidunium cations, see: Bremner & Harrison (2002[Bremner, C. A. & Harrison, W. T. A. (2002). Acta Cryst. E58, m254-m256.], 2003[Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m596-m598.]); Ritchie & Harrison (2003[Ritchie, L. K. & Harrison, W. T. A. (2003). Acta Cryst. E59, o1296-o1298.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H7N4O)2[BiCl5]

  • Mr = 592.46

  • Orthorhombic, P n m a

  • a = 7.3795 (8) Å

  • b = 20.706 (4) Å

  • c = 11.028 (2) Å

  • V = 1685.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.27 mm−1

  • T = 298 K

  • 0.53 × 0.25 × 0.17 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.048, Tmax = 0.094

  • 2612 measured reflections

  • 1880 independent reflections

  • 1596 reflections with I > 2σ(I)

  • Rint = 0.018

  • 2 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.10

  • 1880 reflections

  • 98 parameters

  • H-atom parameters not refined

  • Δρmax = 3.03 e Å−3

  • Δρmin = −1.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.61 3.271 (8) 135
N1—H1B⋯Cl2ii 0.86 2.50 3.329 (7) 162
N2—H2⋯Cl4ii 0.86 2.70 3.524 (7) 160
N3—H3A⋯Oiii 0.86 2.21 3.053 (8) 167
N3—H3B⋯O 0.86 2.08 2.734 (8) 132
N4—H4A⋯Cl1iv 0.86 2.53 3.347 (7) 160
N4—H4B⋯Cl4ii 0.86 2.59 3.421 (7) 162
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently there has been considerable interest in bismuth (III) halide organic-inorganic hybrid compounds due to their diverse electrical and optical proprieties, as well as their excellent film process ability (Masmoudi et al., 2011; Fisher & Norman, 1994; Samet et al., 2010; Papavassiliou et al., 1995; Mousdis et al., 1998; Rhandour et al., 2011). In particular, the family of bismuth chlorine-based crystals are self-organized low-dimensional nanostructures to form one-,two- or three dimensional networks where BiCl6 octahedra can be joined by corners, edges or faces.

We report in this work the synthesis and the structural investigations of the organic-inorganic one-dimensional hybrid compound; Bis(1-carbamoylguanidinum)pentachlorobismuthate(III): [C2H7N4O]2[BiCl5]. We note that this material was prepared by slow evaporation at room temperature of an aqueous solution containing Bismuth(III) chloride, cyanoguanidine and chlorhydric acid. The abscence of cyanoguanidine in the synthesis result is probably due to their protonation by the chlorhydric acid, giving the 1-carbamoylguanidine cation (protonated guanidineurea or guanylurea).

As shown in Figure 1, the inorganic backbone is stacked as zigzag chains of BiCl6 octahedra joined by corner sharing and running along the a axis. Organic cations ([C2H7N4O]2)2+ are located around the inorganic ribbons. Within the BiCl6 octahedra the bond lengths around Bi range from 2.546 (3) to 2.880 (3) Å which indicate the dominant ionic character of the Bi—Cl bonds in the inorganic framework. In spite of the notable deviation of the bond angles Cl—Bi—Cl from ideal values of 90° and 180°, the octahedral coordination of bismuth reveals the unstereochemical activity of Bi(III) 6s2 lone pair electrons.

The 1-carbamoylguanidinium cations ([C2H7N4O]2)2+ are approximately parallel to each other (distanced by 3.574 (3) Å), located around the inorganic chains and form stacks oriented along the a axis. These planar cations (r.m.s. deviation = 0.0178) have a typical geometrical parameters [dav(N—C)= 1.322 Å] as shown in Fig 2, this situation was previously observed in homologous materials involving guanidunium [C2H7N4O] cations (Bremner & Harrison, 2002; Bremner & Harrison, 2003; Ritchie & Harrison, 2003). Strong N—H···Cl hydrogen bonds link the organic part to the inorganic moiety assuming the crystal cohesion.

Related literature top

For bismuth (III) halide organic–inorganic hybrid compounds, see: Masmoudi et al. (2011); Fisher & Norman (1994); Samet et al. (2010); Papavassiliou et al. (1995); Mousdis et al. (1998); Rhandour et al. (2011). For structures with similar guanidunium cations, see: Bremner & Harrison (2002, 2003); Ritchie & Harrison (2003).

Experimental top

Bismuth chloride BiCl3 and Cyanoguanidine (C2H4N4) (molar ratio 1:2) was dissolved in 20 ml of absolute ethanol with excess of HCl (to improve solubility). The mixture was stirred then kept at room temperature. Three months later, colorless single crystals were obtained and isolated from the reaction. A suitable single-crystal was selected for the structural determination. Supplementary data for this paper are available from the IUCR electronic archives (CCDC number: 866174).

Refinement top

The H atoms on carbon and on nitrogen were placed geometrically and treated as riding on their parent atoms with C—H = 0.96 Å, N—H = 0.86 Å (NH2 and NH) with Uiso(H) = 1.2Ueq (N).

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The layred structure of (C2H7N4O)2BiCl5 build up from organic layers, separated by the inorganic 1-D corner-sharing (BiCl5)2- octahedra and showing the N—H···Cl hydrogen bonding (dashed lines).
[Figure 2] Fig. 2. View of the [C2H7N4O]2[BiCl5] with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. N-H..O bonds have been omitted for clarity. Symmetry codes: (i): x, 0.5-y, z; (ii): -0.5+x, 0.5-y, 1.5-z ; (iii): 0.5+x, 0.5-y, 1.5-z ;(iv): 0.5+x, y, 1.5-z ; (v): 0.5+x, 0.5-y, 0.5-z ; (vi):0.5+x, y, 0.5-z ;(vii): x, y, -1+z.
Poly[bis(1-carbamoylguanidinium) [tri-µ-chlorido-dichloridobismuthate(III)]] top
Crystal data top
(C2H7N4O)2[BiCl5]F(000) = 1112
Mr = 592.46Dx = 2.335 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 25 reflections
a = 7.3795 (8) Åθ = 11–15°
b = 20.706 (4) ŵ = 11.27 mm1
c = 11.028 (2) ÅT = 298 K
V = 1685.1 (5) Å3Prism, colourless
Z = 40.53 × 0.25 × 0.17 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1596 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 27.0°, θmin = 2.1°
Non–profiled ω/2θ scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 226
Tmin = 0.048, Tmax = 0.094l = 114
2612 measured reflections2 standard reflections every 120 min
1880 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters not refined
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0464P)2 + 4.6267P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1880 reflectionsΔρmax = 3.03 e Å3
98 parametersΔρmin = 1.73 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (2)
Crystal data top
(C2H7N4O)2[BiCl5]V = 1685.1 (5) Å3
Mr = 592.46Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.3795 (8) ŵ = 11.27 mm1
b = 20.706 (4) ÅT = 298 K
c = 11.028 (2) Å0.53 × 0.25 × 0.17 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1596 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.048, Tmax = 0.0942 standard reflections every 120 min
2612 measured reflections intensity decay: 5%
1880 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.080H-atom parameters not refined
S = 1.10Δρmax = 3.03 e Å3
1880 reflectionsΔρmin = 1.73 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi0.62878 (4)0.25000.56736 (2)0.02190 (13)
Cl10.6373 (2)0.38017 (8)0.56635 (13)0.0404 (4)
Cl20.9594 (3)0.25000.7064 (2)0.0449 (5)
Cl30.3456 (3)0.25000.4355 (2)0.0405 (5)
Cl40.8594 (3)0.25000.3856 (2)0.0388 (5)
C10.1598 (8)0.4240 (3)0.5363 (6)0.0334 (13)
C20.1179 (8)0.4174 (3)0.3141 (6)0.0338 (13)
O0.2300 (8)0.4830 (3)0.5350 (5)0.0581 (14)
N10.1374 (9)0.3932 (3)0.6381 (6)0.0543 (17)
H1A0.16810.41110.70540.065*
H1B0.09180.35500.63810.065*
N20.1010 (8)0.3947 (3)0.4317 (4)0.0376 (13)
H20.04730.35810.44020.045*
N30.1813 (7)0.4699 (2)0.2905 (5)0.0326 (11)
H3A0.18820.48250.21630.039*
H3B0.21940.49460.34790.039*
N40.0551 (9)0.3755 (3)0.2320 (5)0.0490 (15)
H4A0.05800.38510.15620.059*
H4B0.01180.33890.25500.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi0.02407 (18)0.02518 (17)0.01645 (17)0.0000.00075 (11)0.000
Cl10.0613 (11)0.0279 (7)0.0319 (8)0.0047 (7)0.0009 (7)0.0008 (5)
Cl20.0457 (13)0.0501 (12)0.0388 (12)0.0000.0197 (11)0.000
Cl30.0327 (11)0.0473 (13)0.0416 (13)0.0000.0128 (9)0.000
Cl40.0432 (12)0.0433 (11)0.0300 (11)0.0000.0137 (9)0.000
C10.034 (3)0.036 (3)0.030 (3)0.000 (2)0.004 (3)0.002 (3)
C20.035 (3)0.035 (3)0.031 (3)0.002 (2)0.007 (2)0.003 (2)
O0.065 (4)0.049 (3)0.060 (3)0.005 (3)0.003 (3)0.002 (3)
N10.071 (4)0.058 (4)0.033 (3)0.015 (3)0.005 (3)0.010 (3)
N20.052 (3)0.028 (3)0.033 (3)0.008 (2)0.003 (2)0.0019 (19)
N30.049 (3)0.027 (2)0.022 (2)0.010 (2)0.003 (2)0.007 (2)
N40.071 (4)0.047 (3)0.029 (3)0.017 (3)0.008 (3)0.007 (2)
Geometric parameters (Å, º) top
Bi—Cl32.546 (3)C2—N31.213 (8)
Bi—Cl42.630 (2)C2—N41.337 (8)
Bi—Cl1i2.6961 (17)C2—N21.384 (8)
Bi—Cl12.6962 (17)N1—H1A0.8600
Bi—Cl2ii2.791 (2)N1—H1B0.8600
Bi—Cl22.881 (3)N2—H20.8600
Cl2—Biiii2.791 (2)N3—H3A0.8600
C1—N11.302 (9)N3—H3B0.8600
C1—O1.327 (8)N4—H4A0.8600
C1—N21.373 (8)N4—H4B0.8600
Cl3—Bi—Cl495.50 (10)N1—C1—N2117.9 (6)
Cl3—Bi—Cl1i90.96 (4)O—C1—N2121.4 (6)
Cl4—Bi—Cl1i88.95 (3)N3—C2—N4124.7 (6)
Cl3—Bi—Cl190.96 (4)N3—C2—N2122.7 (6)
Cl4—Bi—Cl188.95 (4)N4—C2—N2112.6 (5)
Cl1i—Bi—Cl1177.28 (8)C1—N1—H1A120.0
Cl3—Bi—Cl2ii98.22 (9)C1—N1—H1B120.0
Cl4—Bi—Cl2ii166.28 (8)H1A—N1—H1B120.0
Cl1i—Bi—Cl2ii90.81 (3)C1—N2—C2127.5 (6)
Cl1—Bi—Cl2ii90.81 (3)C1—N2—H2116.3
Cl3—Bi—Cl2177.32 (7)C2—N2—H2116.3
Cl4—Bi—Cl281.82 (10)C2—N3—H3A120.0
Cl1i—Bi—Cl288.99 (4)C2—N3—H3B120.0
Cl1—Bi—Cl288.99 (4)H3A—N3—H3B120.0
Cl2ii—Bi—Cl284.47 (6)C2—N4—H4A120.0
Biiii—Cl2—Bi148.77 (10)C2—N4—H4B120.0
N1—C1—O120.6 (7)H4A—N4—H4B120.0
Symmetry codes: (i) x, y+1/2, z; (ii) x1/2, y, z+3/2; (iii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1ii0.862.613.271 (8)135
N1—H1B···Cl2iv0.862.503.329 (7)162
N2—H2···Cl4iv0.862.703.524 (7)160
N3—H3A···Ov0.862.213.053 (8)167
N3—H3B···O0.862.082.734 (8)132
N4—H4A···Cl1vi0.862.533.347 (7)160
N4—H4B···Cl4iv0.862.593.421 (7)162
Symmetry codes: (ii) x1/2, y, z+3/2; (iv) x1, y, z; (v) x+1/2, y+1, z1/2; (vi) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula(C2H7N4O)2[BiCl5]
Mr592.46
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)7.3795 (8), 20.706 (4), 11.028 (2)
V3)1685.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)11.27
Crystal size (mm)0.53 × 0.25 × 0.17
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.048, 0.094
No. of measured, independent and
observed [I > 2σ(I)] reflections
2612, 1880, 1596
Rint0.018
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.10
No. of reflections1880
No. of parameters98
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)3.03, 1.73

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.6073.271 (8)134.77
N1—H1B···Cl2ii0.862.4993.329 (7)162.41
N2—H2···Cl4ii0.862.7023.524 (7)160.39
N3—H3A···Oiii0.862.213.053 (8)167
N3—H3B···O0.862.082.734 (8)132
N4—H4A···Cl1iv0.862.5253.347 (7)160.30
N4—H4B···Cl4ii0.862.5943.421 (7)161.75
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x1, y, z; (iii) x+1/2, y+1, z1/2; (iv) x1/2, y, z+1/2.
 

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBremner, C. A. & Harrison, W. T. A. (2002). Acta Cryst. E58, m254–m256.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m596–m598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFisher, G. A. & Norman, N. C. (1994). Adv. Inorg. Chem. 41, 233–271.  CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMasmoudi, W., Kamoun, S. & Ayedi, H. F. (2011). J. Chem. Crystallogr. 41, 693–696.  Web of Science CSD CrossRef CAS Google Scholar
First citationMousdis, G. A., Papavassiliou, G. C., Terzis, A. & Rapatopoulou, C. P. (1998). Z. Naturforsch. Teil B, 53, 927–931.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPapavassiliou, G. C., Koutselas, I. B., Terzis, A. & Rapatopoulou, C. P. (1995). Z. Naturforsch. Teil B, 50, 1566–1969.  CAS Google Scholar
First citationRhandour, R., Quasri, A., Roussel, P. & Mazzah, A. (2011). J. Mol. Struct. 990, 95–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationRitchie, L. K. & Harrison, W. T. A. (2003). Acta Cryst. E59, o1296–o1298.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamet, A., Boughzala, H., Khemakhem, H. & Abid, Y. (2010). J. Mol. Struct. 984, 23–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds