metal-organic compounds
Poly[bis(1-carbamoylguanidinium) [tri-μ-chlorido-dichloridobismuthate(III)]]
aLaboratoire de Cristallochimie et des Materiaux, Faculté des Sciences de Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn
The structure of the title organic–inorganic hybrid compound, {(C2H7N4O)2[BiCl5]}n, consists of corrugated chains parallel to [100] of corner-joined [BiCl6] octahedra, separated by layers of organic 1-carbamoylguanidinum cations. The crystal cohesion is achieved by N—H⋯O and N—H⋯Cl hydrogen bonds, which link the organic and inorganic parts of the structure.
Related literature
For bismuth(III) halide organic–inorganic hybrid compounds, see: Masmoudi et al. (2011); Fisher & Norman (1994); Samet et al. (2010); Papavassiliou et al. (1995); Mousdis et al. (1998); Rhandour et al. (2011). For structures with similar guanidunium cations, see: Bremner & Harrison (2002, 2003); Ritchie & Harrison (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812015668/bg2453sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812015668/bg2453Isup2.hkl
Bismuth chloride BiCl3 and Cyanoguanidine (C2H4N4) (molar ratio 1:2) was dissolved in 20 ml of absolute ethanol with excess of HCl (to improve solubility). The mixture was stirred then kept at room temperature. Three months later, colorless single crystals were obtained and isolated from the reaction. A suitable single-crystal was selected for the structural determination. Supplementary data for this paper are available from the IUCR electronic archives (CCDC number: 866174).
The H atoms on carbon and on nitrogen were placed geometrically and treated as riding on their parent atoms with C—H = 0.96 Å, N—H = 0.86 Å (NH2 and NH) with Uiso(H) = 1.2Ueq (N).
Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The layred structure of (C2H7N4O)2BiCl5 build up from organic layers, separated by the inorganic 1-D corner-sharing (BiCl5)2- octahedra and showing the N—H···Cl hydrogen bonding (dashed lines). | |
Fig. 2. View of the [C2H7N4O]2[BiCl5] with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. N-H..O bonds have been omitted for clarity. Symmetry codes: (i): x, 0.5-y, z; (ii): -0.5+x, 0.5-y, 1.5-z ; (iii): 0.5+x, 0.5-y, 1.5-z ;(iv): 0.5+x, y, 1.5-z ; (v): 0.5+x, 0.5-y, 0.5-z ; (vi):0.5+x, y, 0.5-z ;(vii): x, y, -1+z. |
(C2H7N4O)2[BiCl5] | F(000) = 1112 |
Mr = 592.46 | Dx = 2.335 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 25 reflections |
a = 7.3795 (8) Å | θ = 11–15° |
b = 20.706 (4) Å | µ = 11.27 mm−1 |
c = 11.028 (2) Å | T = 298 K |
V = 1685.1 (5) Å3 | Prism, colourless |
Z = 4 | 0.53 × 0.25 × 0.17 mm |
Enraf–Nonius CAD-4 diffractometer | 1596 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
Graphite monochromator | θmax = 27.0°, θmin = 2.1° |
Non–profiled ω/2θ scans | h = −1→9 |
Absorption correction: ψ scan (North et al., 1968) | k = −2→26 |
Tmin = 0.048, Tmax = 0.094 | l = −1→14 |
2612 measured reflections | 2 standard reflections every 120 min |
1880 independent reflections | intensity decay: 5% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters not refined |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0464P)2 + 4.6267P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
1880 reflections | Δρmax = 3.03 e Å−3 |
98 parameters | Δρmin = −1.73 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0022 (2) |
(C2H7N4O)2[BiCl5] | V = 1685.1 (5) Å3 |
Mr = 592.46 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 7.3795 (8) Å | µ = 11.27 mm−1 |
b = 20.706 (4) Å | T = 298 K |
c = 11.028 (2) Å | 0.53 × 0.25 × 0.17 mm |
Enraf–Nonius CAD-4 diffractometer | 1596 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.018 |
Tmin = 0.048, Tmax = 0.094 | 2 standard reflections every 120 min |
2612 measured reflections | intensity decay: 5% |
1880 independent reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters not refined |
S = 1.10 | Δρmax = 3.03 e Å−3 |
1880 reflections | Δρmin = −1.73 e Å−3 |
98 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Bi | 0.62878 (4) | 0.2500 | 0.56736 (2) | 0.02190 (13) | |
Cl1 | 0.6373 (2) | 0.38017 (8) | 0.56635 (13) | 0.0404 (4) | |
Cl2 | 0.9594 (3) | 0.2500 | 0.7064 (2) | 0.0449 (5) | |
Cl3 | 0.3456 (3) | 0.2500 | 0.4355 (2) | 0.0405 (5) | |
Cl4 | 0.8594 (3) | 0.2500 | 0.3856 (2) | 0.0388 (5) | |
C1 | 0.1598 (8) | 0.4240 (3) | 0.5363 (6) | 0.0334 (13) | |
C2 | 0.1179 (8) | 0.4174 (3) | 0.3141 (6) | 0.0338 (13) | |
O | 0.2300 (8) | 0.4830 (3) | 0.5350 (5) | 0.0581 (14) | |
N1 | 0.1374 (9) | 0.3932 (3) | 0.6381 (6) | 0.0543 (17) | |
H1A | 0.1681 | 0.4111 | 0.7054 | 0.065* | |
H1B | 0.0918 | 0.3550 | 0.6381 | 0.065* | |
N2 | 0.1010 (8) | 0.3947 (3) | 0.4317 (4) | 0.0376 (13) | |
H2 | 0.0473 | 0.3581 | 0.4402 | 0.045* | |
N3 | 0.1813 (7) | 0.4699 (2) | 0.2905 (5) | 0.0326 (11) | |
H3A | 0.1882 | 0.4825 | 0.2163 | 0.039* | |
H3B | 0.2194 | 0.4946 | 0.3479 | 0.039* | |
N4 | 0.0551 (9) | 0.3755 (3) | 0.2320 (5) | 0.0490 (15) | |
H4A | 0.0580 | 0.3851 | 0.1562 | 0.059* | |
H4B | 0.0118 | 0.3389 | 0.2550 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Bi | 0.02407 (18) | 0.02518 (17) | 0.01645 (17) | 0.000 | 0.00075 (11) | 0.000 |
Cl1 | 0.0613 (11) | 0.0279 (7) | 0.0319 (8) | −0.0047 (7) | −0.0009 (7) | 0.0008 (5) |
Cl2 | 0.0457 (13) | 0.0501 (12) | 0.0388 (12) | 0.000 | −0.0197 (11) | 0.000 |
Cl3 | 0.0327 (11) | 0.0473 (13) | 0.0416 (13) | 0.000 | −0.0128 (9) | 0.000 |
Cl4 | 0.0432 (12) | 0.0433 (11) | 0.0300 (11) | 0.000 | 0.0137 (9) | 0.000 |
C1 | 0.034 (3) | 0.036 (3) | 0.030 (3) | 0.000 (2) | 0.004 (3) | 0.002 (3) |
C2 | 0.035 (3) | 0.035 (3) | 0.031 (3) | 0.002 (2) | 0.007 (2) | −0.003 (2) |
O | 0.065 (4) | 0.049 (3) | 0.060 (3) | −0.005 (3) | −0.003 (3) | 0.002 (3) |
N1 | 0.071 (4) | 0.058 (4) | 0.033 (3) | −0.015 (3) | −0.005 (3) | 0.010 (3) |
N2 | 0.052 (3) | 0.028 (3) | 0.033 (3) | −0.008 (2) | 0.003 (2) | 0.0019 (19) |
N3 | 0.049 (3) | 0.027 (2) | 0.022 (2) | −0.010 (2) | 0.003 (2) | 0.007 (2) |
N4 | 0.071 (4) | 0.047 (3) | 0.029 (3) | −0.017 (3) | 0.008 (3) | −0.007 (2) |
Bi—Cl3 | 2.546 (3) | C2—N3 | 1.213 (8) |
Bi—Cl4 | 2.630 (2) | C2—N4 | 1.337 (8) |
Bi—Cl1i | 2.6961 (17) | C2—N2 | 1.384 (8) |
Bi—Cl1 | 2.6962 (17) | N1—H1A | 0.8600 |
Bi—Cl2ii | 2.791 (2) | N1—H1B | 0.8600 |
Bi—Cl2 | 2.881 (3) | N2—H2 | 0.8600 |
Cl2—Biiii | 2.791 (2) | N3—H3A | 0.8600 |
C1—N1 | 1.302 (9) | N3—H3B | 0.8600 |
C1—O | 1.327 (8) | N4—H4A | 0.8600 |
C1—N2 | 1.373 (8) | N4—H4B | 0.8600 |
Cl3—Bi—Cl4 | 95.50 (10) | N1—C1—N2 | 117.9 (6) |
Cl3—Bi—Cl1i | 90.96 (4) | O—C1—N2 | 121.4 (6) |
Cl4—Bi—Cl1i | 88.95 (3) | N3—C2—N4 | 124.7 (6) |
Cl3—Bi—Cl1 | 90.96 (4) | N3—C2—N2 | 122.7 (6) |
Cl4—Bi—Cl1 | 88.95 (4) | N4—C2—N2 | 112.6 (5) |
Cl1i—Bi—Cl1 | 177.28 (8) | C1—N1—H1A | 120.0 |
Cl3—Bi—Cl2ii | 98.22 (9) | C1—N1—H1B | 120.0 |
Cl4—Bi—Cl2ii | 166.28 (8) | H1A—N1—H1B | 120.0 |
Cl1i—Bi—Cl2ii | 90.81 (3) | C1—N2—C2 | 127.5 (6) |
Cl1—Bi—Cl2ii | 90.81 (3) | C1—N2—H2 | 116.3 |
Cl3—Bi—Cl2 | 177.32 (7) | C2—N2—H2 | 116.3 |
Cl4—Bi—Cl2 | 81.82 (10) | C2—N3—H3A | 120.0 |
Cl1i—Bi—Cl2 | 88.99 (4) | C2—N3—H3B | 120.0 |
Cl1—Bi—Cl2 | 88.99 (4) | H3A—N3—H3B | 120.0 |
Cl2ii—Bi—Cl2 | 84.47 (6) | C2—N4—H4A | 120.0 |
Biiii—Cl2—Bi | 148.77 (10) | C2—N4—H4B | 120.0 |
N1—C1—O | 120.6 (7) | H4A—N4—H4B | 120.0 |
Symmetry codes: (i) x, −y+1/2, z; (ii) x−1/2, y, −z+3/2; (iii) x+1/2, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1ii | 0.86 | 2.61 | 3.271 (8) | 135 |
N1—H1B···Cl2iv | 0.86 | 2.50 | 3.329 (7) | 162 |
N2—H2···Cl4iv | 0.86 | 2.70 | 3.524 (7) | 160 |
N3—H3A···Ov | 0.86 | 2.21 | 3.053 (8) | 167 |
N3—H3B···O | 0.86 | 2.08 | 2.734 (8) | 132 |
N4—H4A···Cl1vi | 0.86 | 2.53 | 3.347 (7) | 160 |
N4—H4B···Cl4iv | 0.86 | 2.59 | 3.421 (7) | 162 |
Symmetry codes: (ii) x−1/2, y, −z+3/2; (iv) x−1, y, z; (v) −x+1/2, −y+1, z−1/2; (vi) x−1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C2H7N4O)2[BiCl5] |
Mr | 592.46 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 298 |
a, b, c (Å) | 7.3795 (8), 20.706 (4), 11.028 (2) |
V (Å3) | 1685.1 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 11.27 |
Crystal size (mm) | 0.53 × 0.25 × 0.17 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.048, 0.094 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2612, 1880, 1596 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.080, 1.10 |
No. of reflections | 1880 |
No. of parameters | 98 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 3.03, −1.73 |
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.86 | 2.607 | 3.271 (8) | 134.77 |
N1—H1B···Cl2ii | 0.86 | 2.499 | 3.329 (7) | 162.41 |
N2—H2···Cl4ii | 0.86 | 2.702 | 3.524 (7) | 160.39 |
N3—H3A···Oiii | 0.86 | 2.21 | 3.053 (8) | 167 |
N3—H3B···O | 0.86 | 2.08 | 2.734 (8) | 132 |
N4—H4A···Cl1iv | 0.86 | 2.525 | 3.347 (7) | 160.30 |
N4—H4B···Cl4ii | 0.86 | 2.594 | 3.421 (7) | 161.75 |
Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) x−1, y, z; (iii) −x+1/2, −y+1, z−1/2; (iv) x−1/2, y, −z+1/2. |
References
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bremner, C. A. & Harrison, W. T. A. (2002). Acta Cryst. E58, m254–m256. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m596–m598. Web of Science CSD CrossRef IUCr Journals Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fisher, G. A. & Norman, N. C. (1994). Adv. Inorg. Chem. 41, 233–271. CrossRef CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Masmoudi, W., Kamoun, S. & Ayedi, H. F. (2011). J. Chem. Crystallogr. 41, 693–696. Web of Science CSD CrossRef CAS Google Scholar
Mousdis, G. A., Papavassiliou, G. C., Terzis, A. & Rapatopoulou, C. P. (1998). Z. Naturforsch. Teil B, 53, 927–931. CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Papavassiliou, G. C., Koutselas, I. B., Terzis, A. & Rapatopoulou, C. P. (1995). Z. Naturforsch. Teil B, 50, 1566–1969. CAS Google Scholar
Rhandour, R., Quasri, A., Roussel, P. & Mazzah, A. (2011). J. Mol. Struct. 990, 95–101. Web of Science CSD CrossRef CAS Google Scholar
Ritchie, L. K. & Harrison, W. T. A. (2003). Acta Cryst. E59, o1296–o1298. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Samet, A., Boughzala, H., Khemakhem, H. & Abid, Y. (2010). J. Mol. Struct. 984, 23–29. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently there has been considerable interest in bismuth (III) halide organic-inorganic hybrid compounds due to their diverse electrical and optical proprieties, as well as their excellent film process ability (Masmoudi et al., 2011; Fisher & Norman, 1994; Samet et al., 2010; Papavassiliou et al., 1995; Mousdis et al., 1998; Rhandour et al., 2011). In particular, the family of bismuth chlorine-based crystals are self-organized low-dimensional nanostructures to form one-,two- or three dimensional networks where BiCl6 octahedra can be joined by corners, edges or faces.
We report in this work the synthesis and the structural investigations of the organic-inorganic one-dimensional hybrid compound; Bis(1-carbamoylguanidinum)pentachlorobismuthate(III): [C2H7N4O]2[BiCl5]. We note that this material was prepared by slow evaporation at room temperature of an aqueous solution containing Bismuth(III) chloride, cyanoguanidine and chlorhydric acid. The abscence of cyanoguanidine in the synthesis result is probably due to their protonation by the chlorhydric acid, giving the 1-carbamoylguanidine cation (protonated guanidineurea or guanylurea).
As shown in Figure 1, the inorganic backbone is stacked as zigzag chains of BiCl6 octahedra joined by corner sharing and running along the a axis. Organic cations ([C2H7N4O]2)2+ are located around the inorganic ribbons. Within the BiCl6 octahedra the bond lengths around Bi range from 2.546 (3) to 2.880 (3) Å which indicate the dominant ionic character of the Bi—Cl bonds in the inorganic framework. In spite of the notable deviation of the bond angles Cl—Bi—Cl from ideal values of 90° and 180°, the octahedral coordination of bismuth reveals the unstereochemical activity of Bi(III) 6s2 lone pair electrons.
The 1-carbamoylguanidinium cations ([C2H7N4O]2)2+ are approximately parallel to each other (distanced by 3.574 (3) Å), located around the inorganic chains and form stacks oriented along the a axis. These planar cations (r.m.s. deviation = 0.0178) have a typical geometrical parameters [dav(N—C)= 1.322 Å] as shown in Fig 2, this situation was previously observed in homologous materials involving guanidunium [C2H7N4O] cations (Bremner & Harrison, 2002; Bremner & Harrison, 2003; Ritchie & Harrison, 2003). Strong N—H···Cl hydrogen bonds link the organic part to the inorganic moiety assuming the crystal cohesion.