organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1302

4,4-Di­fluoro-8-(4-iodo­phen­yl)-1,3,5,7-tetra­methyl-3a-aza-4a-azonia-4-borata-s-indacene

aDepartment of Biology, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: sylswx@163.com

(Received 20 January 2012; accepted 31 January 2012; online 4 April 2012)

In the title compound, C19H18BF2IN2, which is a boron–dipyrromethene (BODIPY) derivative, the BODIPY mean plane forms dihedral angles of 88.95 (4) and 78.21 (3)° with the F/B/F and 4-iodo­phenyl planes, respectively.

Related literature

For the crystal structures of related boron–dipyrromethene derivatives, see: Zhou (2010[Zhou, X. F. (2010). Acta Cryst. E66, o757.]); Chen & Jiang (2011[Chen, Y. & Jiang, J. (2011). Acta Cryst. E67, o908.]); Hinkle et al. (2011[Hinkle, L. M., Chitta, R. & Mann, K. R. (2011). Acta Cryst. E67, o2265-o2266.]); Cui et al. (2012[Cui, A.-J., An, J., Sun, F.-A., Hu, M. & Qin, J. (2012). Acta Cryst. E68, o63.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18BF2IN2

  • Mr = 450.06

  • Monoclinic, P 21 /c

  • a = 12.1004 (3) Å

  • b = 8.1992 (2) Å

  • c = 18.0607 (4) Å

  • β = 90.577 (3)°

  • V = 1791.77 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 14.24 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.102, Tmax = 0.110

  • 6829 measured reflections

  • 3348 independent reflections

  • 2770 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.166

  • S = 1.05

  • 3348 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −1.36 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our search for new potential boron-dipyrromethene (BODIPY) fluorescent dyes (Chen & Jiang, 2011), we have obtained the title compound (I). Herewith we report its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal in relation to to those observed in the related boron-dipyrromethene derivatives (Zhou, 2010; Hinkle et al., 2011; Cui et al., 2012). The C—C and C—N bond lengths within BODIPY fragment are in the range of 1.371–1.422 and 1.337–1.402 Å, respectively, without any clear distinction between single and double bonds, indicating strongly delocalized π-system. The C9BN2 fragment is essentially flat, with the maximum deviation from the least-squares mean plane of 0.065 (3) Å. The dihedral angle between the F—B—F plane and the BODIPY mean plane is 88.95 (4)°. Due to the presence of two methyl groups attached to C1 and C7 atoms in BODIPY fragment, the dihedral angles between the BODIPY mean plane and 4-iodophenyl fragment is 78.21 (3)°.

Related literature top

For the crystal structures of related boron–dipyrromethene derivatives, see: Zhou (2010); Chen & Jiang (2011); Hinkle et al. (2011); Cui et al. (2012).

Experimental top

To the mixture of p-iodobenzyldehyde (231 mg, 1 mmol) and 2,4-dimethylpyrrole (190 mg, 2.00 mmol) dissolved in CH2Cl2 (150 ml), one drop of TFA was added. After the resulting mixture was stirred for five hours at room temperature under N2 atmosphere, a solution of DDQ (227 mg, 1 mmol) in CH2Cl2 (60 ml) was added and the reaction mixture was further stirred for another 10 min. After the addition of N, N-diisopropylethylamine (DIEA) (2 ml) into the mixture for 15 min, the BF3—OEt2 (2.0 ml) was added into the reaction mixture and stirring was continued for another 30 min. The resulting mixture was evaporated, and the residue was chromatographed on a silica gel column using CH2Cl2 as eluent. Repeated chromatography followed by recrystallization from CH2Cl2 and MeOH gave the target compound as red crystals. Yield: 130 mg, 28.9%. Anal. for C19H18BF2IN2: Calc. C, 50.70; H, 4.03; N, 6.22; Found: C, 50.42; H, 4.17; N, 6.31%. The No. of CCDC: 863227.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93 - 0.96 Å and Uiso(H) > 1.2–1.5 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
2,2-difluoro-8-(4-iodophenyl)-4,6,10,12-tetramethyl-1λ5,3-diaza-2λ4- boratricyclo[7.3.0.0{3,7}]dodeca-1(12),4,6,8,10-pentaen-1-ylium top
Crystal data top
C19H18BF2IN2F(000) = 888
Mr = 450.06Dx = 1.668 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.1004 (3) ÅCell parameters from 3440 reflections
b = 8.1992 (2) ŵ = 14.24 mm1
c = 18.0607 (4) ÅT = 293 K
β = 90.577 (3)°Block, red
V = 1791.77 (8) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3348 independent reflections
Radiation source: fine-focus sealed tube2770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
phi and ω scansθmax = 70.8°, θmin = 4.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 914
Tmin = 0.102, Tmax = 0.110k = 108
6829 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0917P)2 + 0.3111P]
where P = (Fo2 + 2Fc2)/3
3348 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 1.36 e Å3
Crystal data top
C19H18BF2IN2V = 1791.77 (8) Å3
Mr = 450.06Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.1004 (3) ŵ = 14.24 mm1
b = 8.1992 (2) ÅT = 293 K
c = 18.0607 (4) Å0.20 × 0.18 × 0.16 mm
β = 90.577 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3348 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2770 reflections with I > 2σ(I)
Tmin = 0.102, Tmax = 0.110Rint = 0.044
6829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.05Δρmax = 1.33 e Å3
3348 reflectionsΔρmin = 1.36 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.46758 (4)0.22865 (6)0.54374 (2)0.0515 (2)
F11.0026 (3)0.3904 (5)0.8798 (2)0.0540 (10)
N20.8395 (4)0.2246 (6)0.8934 (3)0.0334 (11)
F20.8499 (4)0.5070 (5)0.9279 (2)0.0569 (11)
N10.8479 (3)0.4411 (6)0.7983 (2)0.0305 (10)
C150.7292 (4)0.0148 (7)0.6658 (3)0.0345 (13)
H60.80560.02330.66190.041*
C20.8031 (5)0.0117 (8)0.9496 (3)0.0401 (14)
H70.80280.09330.98530.048*
C90.7415 (4)0.1937 (7)0.7768 (3)0.0278 (11)
C10.7510 (4)0.0199 (7)0.8812 (3)0.0332 (12)
C140.6760 (4)0.0933 (7)0.7238 (3)0.0280 (11)
C100.7747 (4)0.1305 (7)0.8456 (3)0.0272 (11)
C80.7754 (4)0.3485 (7)0.7541 (3)0.0273 (11)
C70.7538 (4)0.4399 (7)0.6886 (3)0.0325 (12)
C130.9491 (6)0.7053 (9)0.7908 (4)0.0510 (17)
H15B1.02390.67420.78070.077*
H15C0.93970.71660.84320.077*
H15A0.93310.80740.76690.077*
C60.8157 (5)0.5794 (8)0.6943 (3)0.0390 (13)
H160.81920.66140.65880.047*
C40.9226 (6)0.2003 (10)1.0198 (4)0.0522 (18)
H17C0.89150.30081.03710.078*
H17A0.99720.21871.00430.078*
H17B0.92230.12141.05910.078*
C170.5569 (5)0.0896 (7)0.6206 (3)0.0357 (13)
C50.8727 (5)0.5783 (8)0.7620 (3)0.0354 (13)
C180.5021 (5)0.0124 (8)0.6784 (3)0.0370 (13)
H200.42590.02180.68260.044*
C160.6705 (5)0.0756 (8)0.6139 (3)0.0389 (14)
H210.70690.12620.57500.047*
C190.5624 (5)0.0783 (8)0.7293 (3)0.0362 (13)
H220.52600.12990.76790.043*
C30.8559 (5)0.1382 (8)0.9563 (3)0.0384 (14)
B0.8873 (5)0.3956 (9)0.8772 (4)0.0346 (14)
C120.6745 (5)0.4019 (9)0.6266 (3)0.0465 (16)
H25A0.69990.30770.60020.070*
H25C0.67030.49330.59350.070*
H25B0.60270.38040.64650.070*
C11A0.6824 (5)0.1606 (8)0.8552 (4)0.0419 (14)
H1AB0.60560.13140.85670.063*
H1AC0.69550.25290.88680.063*
H1AA0.70200.18780.80530.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.0601 (4)0.0609 (4)0.0331 (3)0.0223 (2)0.0201 (2)0.00197 (17)
F10.0302 (17)0.081 (3)0.050 (2)0.0144 (19)0.0154 (16)0.009 (2)
N20.031 (2)0.048 (3)0.021 (2)0.001 (2)0.0043 (19)0.003 (2)
F20.082 (3)0.057 (2)0.0314 (18)0.001 (2)0.0013 (19)0.0118 (17)
N10.025 (2)0.039 (3)0.027 (2)0.001 (2)0.0030 (17)0.006 (2)
C150.023 (2)0.047 (3)0.034 (3)0.000 (2)0.006 (2)0.009 (3)
C20.043 (3)0.048 (4)0.029 (3)0.003 (3)0.009 (2)0.008 (3)
C90.021 (2)0.037 (3)0.026 (3)0.002 (2)0.002 (2)0.006 (2)
C10.028 (3)0.042 (3)0.030 (3)0.004 (3)0.000 (2)0.001 (2)
C140.027 (2)0.040 (3)0.017 (2)0.003 (2)0.0031 (19)0.001 (2)
C100.020 (2)0.035 (3)0.027 (2)0.001 (2)0.0028 (19)0.005 (2)
C80.021 (2)0.033 (3)0.028 (2)0.000 (2)0.0051 (19)0.007 (2)
C70.029 (3)0.043 (3)0.026 (2)0.002 (3)0.003 (2)0.003 (2)
C130.047 (4)0.051 (4)0.055 (5)0.007 (3)0.001 (3)0.005 (3)
C60.046 (3)0.042 (3)0.029 (3)0.002 (3)0.000 (2)0.001 (2)
C40.053 (4)0.075 (5)0.029 (3)0.011 (4)0.016 (3)0.001 (3)
C170.044 (3)0.037 (3)0.026 (3)0.012 (3)0.017 (2)0.002 (2)
C50.034 (3)0.039 (3)0.033 (3)0.001 (3)0.002 (2)0.003 (2)
C180.027 (3)0.048 (4)0.036 (3)0.009 (3)0.004 (2)0.004 (3)
C160.034 (3)0.054 (4)0.028 (3)0.001 (3)0.002 (2)0.008 (3)
C190.035 (3)0.049 (3)0.025 (3)0.004 (3)0.004 (2)0.002 (2)
C30.038 (3)0.055 (4)0.023 (3)0.001 (3)0.008 (2)0.002 (3)
B0.028 (3)0.047 (4)0.028 (3)0.006 (3)0.002 (2)0.007 (3)
C120.047 (3)0.061 (4)0.032 (3)0.007 (3)0.015 (3)0.012 (3)
C11A0.038 (3)0.044 (4)0.044 (3)0.000 (3)0.001 (3)0.003 (3)
Geometric parameters (Å, º) top
I—C172.089 (5)C7—C121.500 (7)
F1—B1.397 (7)C13—C51.483 (9)
N2—C31.352 (8)C13—H15B0.9600
N2—C101.393 (7)C13—H15C0.9600
N2—B1.546 (9)C13—H15A0.9600
F2—B1.373 (8)C6—C51.399 (8)
N1—C51.337 (8)C6—H160.9300
N1—C81.403 (6)C4—C31.486 (8)
N1—B1.544 (8)C4—H17C0.9600
C15—C161.387 (8)C4—H17A0.9600
C15—C141.392 (7)C4—H17B0.9600
C15—H60.9300C17—C161.386 (8)
C2—C11.382 (8)C17—C181.394 (8)
C2—C31.390 (9)C18—C191.386 (8)
C2—H70.9300C18—H200.9300
C9—C81.396 (8)C16—H210.9300
C9—C101.402 (7)C19—H220.9300
C9—C141.485 (7)C12—H25A0.9600
C1—C101.422 (8)C12—H25C0.9600
C1—C11A1.494 (8)C12—H25B0.9600
C14—C191.385 (8)C11A—H1AB0.9600
C8—C71.422 (8)C11A—H1AC0.9600
C7—C61.370 (9)C11A—H1AA0.9600
C3—N2—C10107.9 (5)H17C—C4—H17A109.5
C3—N2—B125.6 (5)C3—C4—H17B109.5
C10—N2—B126.4 (5)H17C—C4—H17B109.5
C5—N1—C8108.6 (4)H17A—C4—H17B109.5
C5—N1—B125.9 (5)C16—C17—C18120.5 (5)
C8—N1—B125.4 (5)C16—C17—I119.6 (4)
C16—C15—C14121.2 (5)C18—C17—I119.9 (4)
C16—C15—H6119.4N1—C5—C6108.8 (5)
C14—C15—H6119.4N1—C5—C13124.2 (5)
C1—C2—C3109.1 (5)C6—C5—C13127.0 (6)
C1—C2—H7125.5C19—C18—C17119.4 (5)
C3—C2—H7125.5C19—C18—H20120.3
C8—C9—C10120.9 (5)C17—C18—H20120.3
C8—C9—C14118.1 (5)C17—C16—C15119.2 (5)
C10—C9—C14120.8 (5)C17—C16—H21120.4
C2—C1—C10105.7 (5)C15—C16—H21120.4
C2—C1—C11A124.5 (6)C14—C19—C18121.0 (5)
C10—C1—C11A129.9 (5)C14—C19—H22119.5
C19—C14—C15118.7 (5)C18—C19—H22119.5
C19—C14—C9121.7 (5)N2—C3—C2109.0 (5)
C15—C14—C9119.6 (4)N2—C3—C4122.9 (6)
N2—C10—C9120.0 (5)C2—C3—C4128.0 (6)
N2—C10—C1108.3 (5)F2—B—F1109.5 (5)
C9—C10—C1131.7 (5)F2—B—N1110.8 (5)
C9—C8—N1120.6 (5)F1—B—N1109.7 (5)
C9—C8—C7132.1 (5)F2—B—N2110.6 (5)
N1—C8—C7107.2 (5)F1—B—N2109.9 (5)
C6—C7—C8106.4 (5)N1—B—N2106.4 (5)
C6—C7—C12125.0 (6)C7—C12—H25A109.5
C8—C7—C12128.5 (5)C7—C12—H25C109.5
C5—C13—H15B109.5H25A—C12—H25C109.5
C5—C13—H15C109.5C7—C12—H25B109.5
H15B—C13—H15C109.5H25A—C12—H25B109.5
C5—C13—H15A109.5H25C—C12—H25B109.5
H15B—C13—H15A109.5C1—C11A—H1AB109.5
H15C—C13—H15A109.5C1—C11A—H1AC109.5
C7—C6—C5108.9 (5)H1AB—C11A—H1AC109.5
C7—C6—H16125.5C1—C11A—H1AA109.5
C5—C6—H16125.5H1AB—C11A—H1AA109.5
C3—C4—H17C109.5H1AC—C11A—H1AA109.5
C3—C4—H17A109.5

Experimental details

Crystal data
Chemical formulaC19H18BF2IN2
Mr450.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.1004 (3), 8.1992 (2), 18.0607 (4)
β (°) 90.577 (3)
V3)1791.77 (8)
Z4
Radiation typeCu Kα
µ (mm1)14.24
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.102, 0.110
No. of measured, independent and
observed [I > 2σ(I)] reflections
6829, 3348, 2770
Rint0.044
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.166, 1.05
No. of reflections3348
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 1.36

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. & Jiang, J. (2011). Acta Cryst. E67, o908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, A.-J., An, J., Sun, F.-A., Hu, M. & Qin, J. (2012). Acta Cryst. E68, o63.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHinkle, L. M., Chitta, R. & Mann, K. R. (2011). Acta Cryst. E67, o2265–o2266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, X. F. (2010). Acta Cryst. E66, o757.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1302
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds