metal-organic compounds
Di-μ-bromido-bis{[N,N-dimethyl-N′-(thiophen-2-ylmethylidene)ethane-1,2-diamine]copper(I)]}
aDepartment of Chemistry, Williams College, Williamstown, MA 01267, USA, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
In the 2Br2(C9H14N2S)2], the molecule resides about a crystallographic inversion center. The coordination sphere around each copper ion has a distorted tetrahedral geometry, with ligation by two bridging bromide ions, an amine N atom and an imine N atom. The thiophene ring is disordered over two sites, with occupancies of 0.719 (3) and 0.281 (3). Weak C—H⋯π interactions feature in the crystal packing.
of the title compound, [CuRelated literature
For catalysts for polymerizations and organic transformations, see: Perrier et al. (2002), Cristau et al. (2005). For model complexes of copper proteins, see: Lee et al. (2010). For metal-mediated atom-transfer radical polymerizations, see: Matyjaszewski & Tsarevsky (2009). For related structures with a Cu2Br2 core, see Ball et al. (2001), Skelton et al. (1991), Churchill et al. (1984). For software for searching the Cambridge Structural Database, see: Bruno et al. (2002). For standard bond lengths, see Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812017989/fj2540sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017989/fj2540Isup2.hkl
The title compound was synthesized under a dinitrogen atmosphere by reacting a light green suspension of 233 mg of CuBr (1.6 mmol) in 8 mL of dry acetonitrile with 332 mg of the ligand N,N-dimethyl-N'-(thiophen-2-ylmethylene)ethane-1,2-diamine (L, 4.8 mmol) added dropwise with a pipet. Addition of ligand resulted in an immediate color change of the solution to red-orange and dissolution of CuBr. The reaction mixture was allowed to stir overnight and filtered. The filtrate was layered with diethyl ether and stored at -25 °C for 4 days. After this time, the product was isolated as orange crystals suitable for X-ray analysis. A second crop was obtained by further addition of diethyl ether and storage at -25°C for 4 days to yield a combined crop of 440 mg of crystalline product (84% yield).
All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å (CH), 0.97 Å (CH2) or 0.96 Å (CH3). The isotropic displacement parameters for these atoms were set from 1.19 to 1.22 (CH, CH2), or 1.49 10 to 1.53 (CH3) times Ueq of the parent atom.
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound (I) showing the atom labeling scheme of the asymmetric unit and 30% probability displacement ellipsoids. A crystallographic inversion center generates the complete molecule. Only the major component (S1A/C1A/C2A/C3A/C4A) of the disordered thiophene ring (occupancy: 0.719) is displayed. | |
Fig. 2. Packing diagram of the title compound viewed along the b axis. Only the major component (S1A/C1A/C2A/C3A/C4A) of the disordered thiophene ring (occupancy: 0.719) is displayed. The hydrogen atoms have been removed for clarity. |
[Cu2Br2(C9H14N2S)2] | F(000) = 648 |
Mr = 651.48 | Dx = 1.803 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4548 reflections |
a = 10.2029 (3) Å | θ = 3.1–32.2° |
b = 15.4175 (3) Å | µ = 5.29 mm−1 |
c = 8.04875 (19) Å | T = 173 K |
β = 108.628 (3)° | Rod, red |
V = 1199.76 (5) Å3 | 0.15 × 0.07 × 0.05 mm |
Z = 2 |
Oxford Diffraction Xcalibur Eos Gemini diffractometer | 3928 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3021 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 16.1500 pixels mm-1 | θmax = 32.2°, θmin = 3.1° |
ω scans | h = −15→14 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −17→22 |
Tmin = 0.406, Tmax = 1.000 | l = −11→11 |
13662 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0303P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
3928 reflections | Δρmax = 0.50 e Å−3 |
146 parameters | Δρmin = −0.51 e Å−3 |
10 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0021 (6) |
[Cu2Br2(C9H14N2S)2] | V = 1199.76 (5) Å3 |
Mr = 651.48 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.2029 (3) Å | µ = 5.29 mm−1 |
b = 15.4175 (3) Å | T = 173 K |
c = 8.04875 (19) Å | 0.15 × 0.07 × 0.05 mm |
β = 108.628 (3)° |
Oxford Diffraction Xcalibur Eos Gemini diffractometer | 3928 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 3021 reflections with I > 2σ(I) |
Tmin = 0.406, Tmax = 1.000 | Rint = 0.046 |
13662 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 10 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.50 e Å−3 |
3928 reflections | Δρmin = −0.51 e Å−3 |
146 parameters |
Experimental. 1H-NMR (CD3CN, 298 K): δ 8.57 (s, 1H, N=CH), 7.64 (m, 2H, thiophene H3, H5), 7.13 (t, J = 4.4 Hz, 1H, thiophene H4), 3.77 (t, J = 5.1 Hz, 2H, NCH2), 2.28 (t, J = 5.5 Hz, 2H, NCH2), 2.39 (s, 6H, NCH3) p.p.m.. 13C-NMR (CD3CN, 298 K): δ 158.11 (C=N), 141.40 (thiophene C2), 135.94 (thiophene C1 or C3), 132.90 (thiophene C1 or C3), 129.16 (thiophene C4), 61.17 (NCH2), 59.33 (NCH2), 47.69 (NCH3) p.p.m.. FTIR (cm-1): 3200 (w), 3073 (m), 2989 (versus), 2855 (versus), 2822 (versus), 2779 (versus), 1810 (w), 1611 (versus), 1452 (versus), 1430 (versus), 1262 (s), 1249 (s), 1046 (s), 1027 (s), 885 (s), 713 (versus). ESI-MS: m/z 427 ([(L)2Cu]+), m/z 245 ([(L)Cu]+). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.43830 (3) | 0.598179 (15) | 0.60809 (3) | 0.03225 (9) | |
Cu1 | 0.48455 (3) | 0.550941 (19) | 0.33751 (4) | 0.03010 (10) | |
N1 | 0.2808 (2) | 0.54727 (13) | 0.1227 (3) | 0.0291 (4) | |
N2 | 0.5330 (2) | 0.64590 (12) | 0.1965 (3) | 0.0272 (4) | |
S1A | 0.8104 (2) | 0.58936 (10) | 0.4729 (3) | 0.0405 (4) | 0.719 (3) |
C1A | 0.7761 (7) | 0.6723 (9) | 0.3259 (10) | 0.0267 (13) | 0.719 (3) |
C2A | 0.8929 (7) | 0.7219 (5) | 0.3231 (9) | 0.0410 (15) | 0.719 (3) |
H2AA | 0.8950 | 0.7688 | 0.2511 | 0.049* | 0.719 (3) |
C3A | 1.0107 (7) | 0.6822 (3) | 0.4607 (8) | 0.0465 (13) | 0.719 (3) |
H3AA | 1.0999 | 0.7042 | 0.4885 | 0.056* | 0.719 (3) |
C4A | 0.9811 (5) | 0.6116 (4) | 0.5442 (7) | 0.0396 (13) | 0.719 (3) |
H4AA | 1.0466 | 0.5798 | 0.6295 | 0.048* | 0.719 (3) |
S1B | 0.9238 (5) | 0.7208 (4) | 0.3547 (7) | 0.0405 (4) | 0.281 (3) |
C1B | 0.7753 (17) | 0.670 (3) | 0.357 (4) | 0.0267 (13) | 0.281 (3) |
C2B | 0.797 (2) | 0.6021 (13) | 0.484 (3) | 0.0410 (15) | 0.281 (3) |
H2BA | 0.7309 | 0.5676 | 0.5099 | 0.049* | 0.281 (3) |
C3B | 0.9481 (16) | 0.6001 (12) | 0.563 (3) | 0.0465 (13) | 0.281 (3) |
H3BA | 0.9903 | 0.5596 | 0.6488 | 0.056* | 0.281 (3) |
C4B | 1.0253 (17) | 0.6584 (10) | 0.5075 (19) | 0.0396 (13) | 0.281 (3) |
H4BA | 1.1212 | 0.6624 | 0.5501 | 0.048* | 0.281 (3) |
C5 | 0.6420 (3) | 0.68954 (16) | 0.2103 (3) | 0.0308 (5) | |
H5A | 0.6323 | 0.7374 | 0.1370 | 0.037* | |
C6 | 0.4062 (3) | 0.67187 (17) | 0.0565 (4) | 0.0376 (6) | |
H6A | 0.4305 | 0.7003 | −0.0372 | 0.045* | |
H6B | 0.3541 | 0.7126 | 0.1026 | 0.045* | |
C7 | 0.3187 (3) | 0.59292 (18) | −0.0144 (3) | 0.0373 (6) | |
H7A | 0.2353 | 0.6106 | −0.1061 | 0.045* | |
H7B | 0.3695 | 0.5538 | −0.0659 | 0.045* | |
C8 | 0.1727 (3) | 0.59356 (19) | 0.1696 (4) | 0.0441 (7) | |
H8A | 0.0927 | 0.5997 | 0.0675 | 0.066* | |
H8B | 0.2060 | 0.6499 | 0.2143 | 0.066* | |
H8C | 0.1484 | 0.5615 | 0.2577 | 0.066* | |
C9 | 0.2323 (3) | 0.45972 (18) | 0.0614 (4) | 0.0440 (7) | |
H9A | 0.1555 | 0.4636 | −0.0449 | 0.066* | |
H9B | 0.2036 | 0.4305 | 0.1494 | 0.066* | |
H9C | 0.3059 | 0.4278 | 0.0398 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04731 (18) | 0.02362 (13) | 0.02861 (14) | 0.00286 (10) | 0.01606 (11) | 0.00094 (9) |
Cu1 | 0.03302 (19) | 0.02855 (17) | 0.02764 (16) | −0.00042 (12) | 0.00816 (13) | 0.00348 (11) |
N1 | 0.0276 (11) | 0.0331 (11) | 0.0266 (10) | −0.0016 (9) | 0.0086 (8) | −0.0014 (8) |
N2 | 0.0286 (11) | 0.0240 (10) | 0.0284 (10) | 0.0017 (8) | 0.0085 (8) | 0.0006 (8) |
S1A | 0.0361 (7) | 0.0372 (7) | 0.0417 (7) | −0.0028 (5) | 0.0033 (5) | 0.0064 (6) |
C1A | 0.0332 (14) | 0.0278 (14) | 0.024 (4) | −0.0043 (10) | 0.0161 (16) | −0.005 (3) |
C2A | 0.030 (3) | 0.054 (3) | 0.034 (3) | 0.001 (2) | 0.004 (2) | 0.001 (2) |
C3A | 0.033 (3) | 0.048 (3) | 0.064 (4) | −0.010 (2) | 0.023 (3) | −0.021 (2) |
C4A | 0.022 (2) | 0.045 (3) | 0.044 (2) | 0.002 (2) | −0.0012 (19) | −0.010 (2) |
S1B | 0.0361 (7) | 0.0372 (7) | 0.0417 (7) | −0.0028 (5) | 0.0033 (5) | 0.0064 (6) |
C1B | 0.0332 (14) | 0.0278 (14) | 0.024 (4) | −0.0043 (10) | 0.0161 (16) | −0.005 (3) |
C2B | 0.030 (3) | 0.054 (3) | 0.034 (3) | 0.001 (2) | 0.004 (2) | 0.001 (2) |
C3B | 0.033 (3) | 0.048 (3) | 0.064 (4) | −0.010 (2) | 0.023 (3) | −0.021 (2) |
C4B | 0.022 (2) | 0.045 (3) | 0.044 (2) | 0.002 (2) | −0.0012 (19) | −0.010 (2) |
C5 | 0.0361 (15) | 0.0243 (12) | 0.0340 (13) | −0.0020 (10) | 0.0140 (11) | 0.0022 (9) |
C6 | 0.0387 (16) | 0.0341 (14) | 0.0357 (14) | −0.0003 (11) | 0.0057 (11) | 0.0111 (11) |
C7 | 0.0346 (15) | 0.0486 (16) | 0.0265 (13) | −0.0048 (12) | 0.0068 (11) | 0.0045 (11) |
C8 | 0.0316 (16) | 0.0579 (18) | 0.0443 (16) | 0.0077 (13) | 0.0140 (13) | 0.0023 (13) |
C9 | 0.0428 (17) | 0.0437 (16) | 0.0417 (16) | −0.0137 (13) | 0.0084 (13) | −0.0083 (12) |
Br1—Cu1i | 2.4241 (4) | S1B—C1B | 1.71 (2) |
Br1—Cu1 | 2.4805 (4) | C1B—C2B | 1.43 (2) |
Cu1—N2 | 2.008 (2) | C1B—C5 | 1.521 (18) |
Cu1—N1 | 2.240 (2) | C2B—C3B | 1.473 (19) |
Cu1—Br1i | 2.4242 (4) | C2B—H2BA | 0.9300 |
Cu1—Cu1i | 2.9803 (6) | C3B—C4B | 1.360 (14) |
N1—C8 | 1.460 (3) | C3B—H3BA | 0.9300 |
N1—C7 | 1.462 (3) | C4B—H4BA | 0.9300 |
N1—C9 | 1.468 (3) | C5—H5A | 0.9300 |
N2—C5 | 1.274 (3) | C6—C7 | 1.509 (4) |
N2—C6 | 1.474 (3) | C6—H6A | 0.9700 |
S1A—C4A | 1.685 (5) | C6—H6B | 0.9700 |
S1A—C1A | 1.701 (9) | C7—H7A | 0.9700 |
C1A—C5 | 1.413 (7) | C7—H7B | 0.9700 |
C1A—C2A | 1.422 (11) | C8—H8A | 0.9600 |
C2A—C3A | 1.482 (8) | C8—H8B | 0.9600 |
C2A—H2AA | 0.9300 | C8—H8C | 0.9600 |
C3A—C4A | 1.364 (7) | C9—H9A | 0.9600 |
C3A—H3AA | 0.9300 | C9—H9B | 0.9600 |
C4A—H4AA | 0.9300 | C9—H9C | 0.9600 |
S1B—C4B | 1.641 (11) | ||
Cu1i—Br1—Cu1 | 74.829 (13) | C1B—C2B—H2BA | 128.6 |
N2—Cu1—N1 | 85.27 (8) | C3B—C2B—H2BA | 128.6 |
N2—Cu1—Br1i | 132.01 (6) | C4B—C3B—C2B | 118.9 (18) |
N1—Cu1—Br1i | 106.45 (5) | C4B—C3B—H3BA | 120.5 |
N2—Cu1—Br1 | 115.60 (6) | C2B—C3B—H3BA | 120.5 |
N1—Cu1—Br1 | 107.16 (6) | C3B—C4B—S1B | 109.8 (15) |
Br1i—Cu1—Br1 | 105.171 (13) | C3B—C4B—H4BA | 125.1 |
N2—Cu1—Cu1i | 154.69 (6) | S1B—C4B—H4BA | 125.1 |
N1—Cu1—Cu1i | 118.42 (5) | N2—C5—C1A | 126.4 (5) |
Br1i—Cu1—Cu1i | 53.447 (11) | N2—C5—C1B | 120.1 (10) |
Br1—Cu1—Cu1i | 51.724 (11) | N2—C5—H5A | 116.8 |
C8—N1—C7 | 111.3 (2) | C1A—C5—H5A | 116.8 |
C8—N1—C9 | 109.6 (2) | C1B—C5—H5A | 122.5 |
C7—N1—C9 | 109.3 (2) | N2—C6—C7 | 109.8 (2) |
C8—N1—Cu1 | 112.30 (16) | N2—C6—H6A | 109.7 |
C7—N1—Cu1 | 99.58 (15) | C7—C6—H6A | 109.7 |
C9—N1—Cu1 | 114.39 (16) | N2—C6—H6B | 109.7 |
C5—N2—C6 | 116.8 (2) | C7—C6—H6B | 109.7 |
C5—N2—Cu1 | 134.54 (17) | H6A—C6—H6B | 108.2 |
C6—N2—Cu1 | 108.42 (15) | N1—C7—C6 | 111.7 (2) |
C4A—S1A—C1A | 92.6 (3) | N1—C7—H7A | 109.3 |
C5—C1A—C2A | 121.9 (7) | C6—C7—H7A | 109.3 |
C5—C1A—S1A | 122.7 (6) | N1—C7—H7B | 109.3 |
C2A—C1A—S1A | 115.4 (5) | C6—C7—H7B | 109.3 |
C1A—C2A—C3A | 104.4 (6) | H7A—C7—H7B | 107.9 |
C1A—C2A—H2AA | 127.8 | N1—C8—H8A | 109.5 |
C3A—C2A—H2AA | 127.8 | N1—C8—H8B | 109.5 |
C4A—C3A—C2A | 116.4 (6) | H8A—C8—H8B | 109.5 |
C4A—C3A—H3AA | 121.8 | N1—C8—H8C | 109.5 |
C2A—C3A—H3AA | 121.8 | H8A—C8—H8C | 109.5 |
C3A—C4A—S1A | 111.2 (5) | H8B—C8—H8C | 109.5 |
C3A—C4A—H4AA | 124.4 | N1—C9—H9A | 109.5 |
S1A—C4A—H4AA | 124.4 | N1—C9—H9B | 109.5 |
C4B—S1B—C1B | 94.1 (10) | H9A—C9—H9B | 109.5 |
C2B—C1B—C5 | 126 (2) | N1—C9—H9C | 109.5 |
C2B—C1B—S1B | 114.3 (12) | H9A—C9—H9C | 109.5 |
C5—C1B—S1B | 118.4 (15) | H9B—C9—H9C | 109.5 |
C1B—C2B—C3B | 102.8 (15) | ||
Cu1i—Br1—Cu1—N2 | −154.00 (7) | C2A—C3A—C4A—S1A | −2.6 (7) |
Cu1i—Br1—Cu1—N1 | 113.00 (6) | C1A—S1A—C4A—C3A | 1.5 (6) |
Cu1i—Br1—Cu1—Br1i | 0.0 | C4B—S1B—C1B—C2B | 2 (3) |
N2—Cu1—N1—C8 | −100.19 (18) | C4B—S1B—C1B—C5 | −168 (2) |
Br1i—Cu1—N1—C8 | 127.30 (16) | C5—C1B—C2B—C3B | 167 (3) |
Br1—Cu1—N1—C8 | 15.16 (18) | S1B—C1B—C2B—C3B | −2 (3) |
Cu1i—Cu1—N1—C8 | 70.41 (18) | C1B—C2B—C3B—C4B | 2 (3) |
N2—Cu1—N1—C7 | 17.69 (15) | C2B—C3B—C4B—S1B | 0 (2) |
Br1i—Cu1—N1—C7 | −114.82 (14) | C1B—S1B—C4B—C3B | −0.8 (19) |
Br1—Cu1—N1—C7 | 133.04 (14) | C6—N2—C5—C1A | −175.2 (7) |
Cu1i—Cu1—N1—C7 | −171.71 (13) | Cu1—N2—C5—C1A | 10.8 (7) |
N2—Cu1—N1—C9 | 134.13 (18) | C6—N2—C5—C1B | 176.8 (17) |
Br1i—Cu1—N1—C9 | 1.62 (18) | Cu1—N2—C5—C1B | 2.8 (18) |
Br1—Cu1—N1—C9 | −110.51 (17) | C2A—C1A—C5—N2 | 175.9 (7) |
Cu1i—Cu1—N1—C9 | −55.26 (19) | S1A—C1A—C5—N2 | −2.0 (13) |
N1—Cu1—N2—C5 | −174.8 (2) | C2A—C1A—C5—C1B | −135 (14) |
Br1i—Cu1—N2—C5 | −66.8 (3) | S1A—C1A—C5—C1B | 47 (12) |
Br1—Cu1—N2—C5 | 78.5 (2) | C2B—C1B—C5—N2 | 4 (4) |
Cu1i—Cu1—N2—C5 | 24.9 (3) | S1B—C1B—C5—N2 | 172.0 (16) |
N1—Cu1—N2—C6 | 10.83 (16) | C2B—C1B—C5—C1A | −132 (16) |
Br1i—Cu1—N2—C6 | 118.76 (15) | S1B—C1B—C5—C1A | 37 (11) |
Br1—Cu1—N2—C6 | −95.95 (16) | C5—N2—C6—C7 | 146.5 (2) |
Cu1i—Cu1—N2—C6 | −149.55 (14) | Cu1—N2—C6—C7 | −38.0 (3) |
C4A—S1A—C1A—C5 | 177.9 (9) | C8—N1—C7—C6 | 75.1 (3) |
C4A—S1A—C1A—C2A | −0.2 (9) | C9—N1—C7—C6 | −163.7 (2) |
C5—C1A—C2A—C3A | −179.2 (9) | Cu1—N1—C7—C6 | −43.5 (2) |
S1A—C1A—C2A—C3A | −1.1 (11) | N2—C6—C7—N1 | 58.7 (3) |
C1A—C2A—C3A—C4A | 2.3 (9) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg1, Cg3 and Cg4 are the centroids of the Br1/Cu1/Br1A/Cu1A, S1A/C1A/C2A/C3A/C4A and S1B/C1B/C2B/C3B/C4B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2A—H2AA···Cg3ii | 0.93 | 2.87 | 3.721 (8) | 153 |
C2A—H2AA···Cg4ii | 0.93 | 2.70 | 3.573 (12) | 157 |
C2B—H2BA···Cg1 | 0.93 | 2.55 | 3.45 (2) | 162 |
C2B—H2BA···Cg1i | 0.93 | 2.55 | 3.45 (2) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Br2(C9H14N2S)2] |
Mr | 651.48 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 10.2029 (3), 15.4175 (3), 8.04875 (19) |
β (°) | 108.628 (3) |
V (Å3) | 1199.76 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.29 |
Crystal size (mm) | 0.15 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.406, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13662, 3928, 3021 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.750 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.078, 1.05 |
No. of reflections | 3928 |
No. of parameters | 146 |
No. of restraints | 10 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.51 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cg1, Cg3 and Cg4 are the centroids of the Br1/Cu1/Br1A/Cu1A, S1A/C1A/C2A/C3A/C4A and S1B/C1B/C2B/C3B/C4B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2A—H2AA···Cg3i | 0.93 | 2.87 | 3.721 (8) | 153 |
C2A—H2AA···Cg4i | 0.93 | 2.70 | 3.573 (12) | 157 |
C2B—H2BA···Cg1 | 0.93 | 2.55 | 3.45 (2) | 162 |
C2B—H2BA···Cg1ii | 0.93 | 2.55 | 3.45 (2) | 162 |
Symmetry codes: (i) x, −y+1/2, z−3/2; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
CG acknowledges financial support from the Research Corporation for Science Advancement through RCSA Award 10776 and from a Hellman Fellowship from Williams College. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Ball, R. J., Genge, A. R. J., Radford, A. L., Skelton, B. W., Tolhurst, V. A. & White, A. H. (2001). J. Chem. Soc. Dalton Trans. pp. 2807–2812. Web of Science CSD CrossRef Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Churchill, M. R., Davies, G., Elsayed, M. A., Fournier, J. A., Hutchinson, J. P. & Zubieta, J. A. (1984). Inorg. Chem. 23, 783–787. CSD CrossRef CAS Web of Science Google Scholar
Cristau, H.-J., Ouali, A., Spindler, J.-F. & Taillefer, M. (2005). Chem. Eur. J. 11, 2483–2492. Web of Science CrossRef PubMed CAS Google Scholar
Lee, Y., Lee, D.-H., Park, G. Y., Lucas, H. R., Narducci Sarjeant, A. A., Kieber-Emmons, M. T., Vance, M. A., Milligan, A. E., Solomon, E. I. & Karlin, K. D. (2010). Inorg. Chem. 49, 8873–8885. Web of Science CSD CrossRef CAS PubMed Google Scholar
Matyjaszewski, K. & Tsarevsky, N. V. (2009). Nat. Chem. 1, 276–288. Web of Science CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Perrier, S., Berthier, D., Willoughby, I., Batt-Coutrot, D. & Haddleton, D. M. (2002). Macromolecules, 35, 2941–2948. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skelton, B. W., Waters, A. F. & White, A. H. (1991). Aust. J. Chem. 44, 1207–1215. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Copper complexes of ligands containing hetero-aromatic and amine donor moieties have found multiple applications in metal catalyzed processes. Examples include catalysts for polymerizations and organic transformations (Perrier et al., 2002; Cristau et al., 2005), and model complexes in the biomimetic study of copper proteins (Lee et al., 2010). Our group has been interested in the use of neutral tridentate hetero-aromatic-amine ligands in metal-mediated atom transfer radical polymerizations (ATRP) (Matyjaszewski & Tsarevsky, 2009).
Here we report the synthesis and structure of a doubly bromide bridged dinuclear copper(I) complex with the ligand N,N-dimethyl-N'-(thiophen-2-ylmethylene)ethane-1,2-diamine, [{(C4H3S)CHNCH2CH2N(CH3)2}CuBr]2 (Fig. 1). A crystallographic inversion center generates the complete molecule from the asymmeric unit. The coordination sphere around each copper ion is arranged in a distorted tetrahedral geometry, with ligation by two bridging bromide ions, an amine nitrogen and an imine nitrogen. The thiophene ring is disordered (occupancy 0.719:0.281). The distances for the metal-amine bond (2.008 (2) Å) and the metal-imine bond (2.240 (2) Å) are within expected ranges (Allen et al., 1987). As a result of the chelate ring formation the N(am)—Cu—N(im) angle of 85.27 (8)° is significantly smaller than the tetrahedral angle leading to appreciable distortion of the tetrahedral geometry and a large N(im)—Cu—Br angle of 132.01 (6)°. The N1/C7/C6/N2 torsion angle is 58.7 (3)°. The thiophene ring and imine group are near planar, with the sulfur oriented towards the copper atoms. However, Cu—S distances of 3.20 (6) Å make interactions unlikely. The Cu2Br2 bridging unit forms a planar rhomboid arrangement, with an inversion center in the center. Related structures with a Cu2Br2 core are published (Ball et al., 2001; Skelton et al., 1991; Churchill, et al., 1984). Cu1 possesses one short (2.4241 (4) Å) and one long (2.4805 (4) Å) Cu–Br bond, and a Cu–Cu distance of 2.980 (0) Å, outside the sum of the van der Waals radii of copper. The arrangement of the bromide bridging unit is asymmetrical: the Cu–Br–Cu bridging angle is 74.829 (13)°, close to the mean value of 74.(9)° found in structural units of this kind in the Cambridge Structural Database (Bruno et al., 2002). Weak C—H···Cg π-ring intermolecular interactions contribute to molecular packing in the crystal (Table 1, Fig. 2).