metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m691-m692

Di-μ-bromido-bis­­{[N,N-di­methyl-N′-(thio­phen-2-yl­methyl­­idene)ethane-1,2-di­amine]­copper(I)]}

aDepartment of Chemistry, Williams College, Williamstown, MA 01267, USA, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 3 April 2012; accepted 22 April 2012; online 28 April 2012)

In the crystal structure of the title compound, [Cu2Br2(C9H14N2S)2], the mol­ecule resides about a crystallographic inversion center. The coordination sphere around each copper ion has a distorted tetra­hedral geometry, with ligation by two bridging bromide ions, an amine N atom and an imine N atom. The thio­phene ring is disordered over two sites, with occupancies of 0.719 (3) and 0.281 (3). Weak C—H⋯π inter­actions feature in the crystal packing.

Related literature

For catalysts for polymerizations and organic transformations, see: Perrier et al. (2002[Perrier, S., Berthier, D., Willoughby, I., Batt-Coutrot, D. & Haddleton, D. M. (2002). Macromolecules, 35, 2941-2948.]), Cristau et al. (2005[Cristau, H.-J., Ouali, A., Spindler, J.-F. & Taillefer, M. (2005). Chem. Eur. J. 11, 2483-2492.]). For model complexes of copper proteins, see: Lee et al. (2010[Lee, Y., Lee, D.-H., Park, G. Y., Lucas, H. R., Narducci Sarjeant, A. A., Kieber-Emmons, M. T., Vance, M. A., Milligan, A. E., Solomon, E. I. & Karlin, K. D. (2010). Inorg. Chem. 49, 8873-8885.]). For metal-mediated atom-transfer radical polymerizations, see: Matyjaszewski & Tsarevsky (2009[Matyjaszewski, K. & Tsarevsky, N. V. (2009). Nat. Chem. 1, 276-288.]). For related structures with a Cu2Br2 core, see Ball et al. (2001[Ball, R. J., Genge, A. R. J., Radford, A. L., Skelton, B. W., Tolhurst, V. A. & White, A. H. (2001). J. Chem. Soc. Dalton Trans. pp. 2807-2812.]), Skelton et al. (1991[Skelton, B. W., Waters, A. F. & White, A. H. (1991). Aust. J. Chem. 44, 1207-1215.]), Churchill et al. (1984[Churchill, M. R., Davies, G., Elsayed, M. A., Fournier, J. A., Hutchinson, J. P. & Zubieta, J. A. (1984). Inorg. Chem. 23, 783-787.]). For software for searching the Cambridge Structural Database, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Br2(C9H14N2S)2]

  • Mr = 651.48

  • Monoclinic, P 21 /c

  • a = 10.2029 (3) Å

  • b = 15.4175 (3) Å

  • c = 8.04875 (19) Å

  • β = 108.628 (3)°

  • V = 1199.76 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.29 mm−1

  • T = 173 K

  • 0.15 × 0.07 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.406, Tmax = 1.000

  • 13662 measured reflections

  • 3928 independent reflections

  • 3021 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.078

  • S = 1.05

  • 3928 reflections

  • 146 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg4 are the centroids of the Br1/Cu1/Br1A/Cu1A, S1A/C1A/C2A/C3A/C4A and S1B/C1B/C2B/C3B/C4B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2AACg3i 0.93 2.87 3.721 (8) 153
C2A—H2AACg4i 0.93 2.70 3.573 (12) 157
C2B—H2BACg1 0.93 2.55 3.45 (2) 162
C2B—H2BACg1ii 0.93 2.55 3.45 (2) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper complexes of ligands containing hetero-aromatic and amine donor moieties have found multiple applications in metal catalyzed processes. Examples include catalysts for polymerizations and organic transformations (Perrier et al., 2002; Cristau et al., 2005), and model complexes in the biomimetic study of copper proteins (Lee et al., 2010). Our group has been interested in the use of neutral tridentate hetero-aromatic-amine ligands in metal-mediated atom transfer radical polymerizations (ATRP) (Matyjaszewski & Tsarevsky, 2009).

Here we report the synthesis and structure of a doubly bromide bridged dinuclear copper(I) complex with the ligand N,N-dimethyl-N'-(thiophen-2-ylmethylene)ethane-1,2-diamine, [{(C4H3S)CHNCH2CH2N(CH3)2}CuBr]2 (Fig. 1). A crystallographic inversion center generates the complete molecule from the asymmeric unit. The coordination sphere around each copper ion is arranged in a distorted tetrahedral geometry, with ligation by two bridging bromide ions, an amine nitrogen and an imine nitrogen. The thiophene ring is disordered (occupancy 0.719:0.281). The distances for the metal-amine bond (2.008 (2) Å) and the metal-imine bond (2.240 (2) Å) are within expected ranges (Allen et al., 1987). As a result of the chelate ring formation the N(am)—Cu—N(im) angle of 85.27 (8)° is significantly smaller than the tetrahedral angle leading to appreciable distortion of the tetrahedral geometry and a large N(im)—Cu—Br angle of 132.01 (6)°. The N1/C7/C6/N2 torsion angle is 58.7 (3)°. The thiophene ring and imine group are near planar, with the sulfur oriented towards the copper atoms. However, Cu—S distances of 3.20 (6) Å make interactions unlikely. The Cu2Br2 bridging unit forms a planar rhomboid arrangement, with an inversion center in the center. Related structures with a Cu2Br2 core are published (Ball et al., 2001; Skelton et al., 1991; Churchill, et al., 1984). Cu1 possesses one short (2.4241 (4) Å) and one long (2.4805 (4) Å) Cu–Br bond, and a Cu–Cu distance of 2.980 (0) Å, outside the sum of the van der Waals radii of copper. The arrangement of the bromide bridging unit is asymmetrical: the Cu–Br–Cu bridging angle is 74.829 (13)°, close to the mean value of 74.(9)° found in structural units of this kind in the Cambridge Structural Database (Bruno et al., 2002). Weak C—H···Cg π-ring intermolecular interactions contribute to molecular packing in the crystal (Table 1, Fig. 2).

Related literature top

For catalysts for polymerizations and organic transformations, see: Perrier et al. (2002), Cristau et al. (2005). For model complexes of copper proteins, see: Lee et al. (2010). For metal-mediated atom-transfer radical polymerizations, see: Matyjaszewski & Tsarevsky (2009). For related structures with a Cu2Br2 core, see Ball et al. (2001), Skelton et al. (1991), Churchill et al. (1984). For software for searching the Cambridge Structural Database, see: Bruno et al. (2002). For standard bond lengths, see Allen et al. (1987).

Experimental top

The title compound was synthesized under a dinitrogen atmosphere by reacting a light green suspension of 233 mg of CuBr (1.6 mmol) in 8 mL of dry acetonitrile with 332 mg of the ligand N,N-dimethyl-N'-(thiophen-2-ylmethylene)ethane-1,2-diamine (L, 4.8 mmol) added dropwise with a pipet. Addition of ligand resulted in an immediate color change of the solution to red-orange and dissolution of CuBr. The reaction mixture was allowed to stir overnight and filtered. The filtrate was layered with diethyl ether and stored at -25 °C for 4 days. After this time, the product was isolated as orange crystals suitable for X-ray analysis. A second crop was obtained by further addition of diethyl ether and storage at -25°C for 4 days to yield a combined crop of 440 mg of crystalline product (84% yield).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å (CH), 0.97 Å (CH2) or 0.96 Å (CH3). The isotropic displacement parameters for these atoms were set from 1.19 to 1.22 (CH, CH2), or 1.49 10 to 1.53 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I) showing the atom labeling scheme of the asymmetric unit and 30% probability displacement ellipsoids. A crystallographic inversion center generates the complete molecule. Only the major component (S1A/C1A/C2A/C3A/C4A) of the disordered thiophene ring (occupancy: 0.719) is displayed.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Only the major component (S1A/C1A/C2A/C3A/C4A) of the disordered thiophene ring (occupancy: 0.719) is displayed. The hydrogen atoms have been removed for clarity.
Di-µ-bromido-bis{[N,N-dimethyl-N'-(thiophen-2- ylmethylidene)ethane-1,2-diamine]copper(I)]} top
Crystal data top
[Cu2Br2(C9H14N2S)2]F(000) = 648
Mr = 651.48Dx = 1.803 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4548 reflections
a = 10.2029 (3) Åθ = 3.1–32.2°
b = 15.4175 (3) ŵ = 5.29 mm1
c = 8.04875 (19) ÅT = 173 K
β = 108.628 (3)°Rod, red
V = 1199.76 (5) Å30.15 × 0.07 × 0.05 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3928 independent reflections
Radiation source: Enhance (Mo) X-ray Source3021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.1500 pixels mm-1θmax = 32.2°, θmin = 3.1°
ω scansh = 1514
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1722
Tmin = 0.406, Tmax = 1.000l = 1111
13662 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0303P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3928 reflectionsΔρmax = 0.50 e Å3
146 parametersΔρmin = 0.51 e Å3
10 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (6)
Crystal data top
[Cu2Br2(C9H14N2S)2]V = 1199.76 (5) Å3
Mr = 651.48Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.2029 (3) ŵ = 5.29 mm1
b = 15.4175 (3) ÅT = 173 K
c = 8.04875 (19) Å0.15 × 0.07 × 0.05 mm
β = 108.628 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3928 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3021 reflections with I > 2σ(I)
Tmin = 0.406, Tmax = 1.000Rint = 0.046
13662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03610 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.50 e Å3
3928 reflectionsΔρmin = 0.51 e Å3
146 parameters
Special details top

Experimental. 1H-NMR (CD3CN, 298 K): δ 8.57 (s, 1H, N=CH), 7.64 (m, 2H, thiophene H3, H5), 7.13 (t, J = 4.4 Hz, 1H, thiophene H4), 3.77 (t, J = 5.1 Hz, 2H, NCH2), 2.28 (t, J = 5.5 Hz, 2H, NCH2), 2.39 (s, 6H, NCH3) p.p.m.. 13C-NMR (CD3CN, 298 K): δ 158.11 (C=N), 141.40 (thiophene C2), 135.94 (thiophene C1 or C3), 132.90 (thiophene C1 or C3), 129.16 (thiophene C4), 61.17 (NCH2), 59.33 (NCH2), 47.69 (NCH3) p.p.m.. FTIR (cm-1): 3200 (w), 3073 (m), 2989 (versus), 2855 (versus), 2822 (versus), 2779 (versus), 1810 (w), 1611 (versus), 1452 (versus), 1430 (versus), 1262 (s), 1249 (s), 1046 (s), 1027 (s), 885 (s), 713 (versus). ESI-MS: m/z 427 ([(L)2Cu]+), m/z 245 ([(L)Cu]+).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.43830 (3)0.598179 (15)0.60809 (3)0.03225 (9)
Cu10.48455 (3)0.550941 (19)0.33751 (4)0.03010 (10)
N10.2808 (2)0.54727 (13)0.1227 (3)0.0291 (4)
N20.5330 (2)0.64590 (12)0.1965 (3)0.0272 (4)
S1A0.8104 (2)0.58936 (10)0.4729 (3)0.0405 (4)0.719 (3)
C1A0.7761 (7)0.6723 (9)0.3259 (10)0.0267 (13)0.719 (3)
C2A0.8929 (7)0.7219 (5)0.3231 (9)0.0410 (15)0.719 (3)
H2AA0.89500.76880.25110.049*0.719 (3)
C3A1.0107 (7)0.6822 (3)0.4607 (8)0.0465 (13)0.719 (3)
H3AA1.09990.70420.48850.056*0.719 (3)
C4A0.9811 (5)0.6116 (4)0.5442 (7)0.0396 (13)0.719 (3)
H4AA1.04660.57980.62950.048*0.719 (3)
S1B0.9238 (5)0.7208 (4)0.3547 (7)0.0405 (4)0.281 (3)
C1B0.7753 (17)0.670 (3)0.357 (4)0.0267 (13)0.281 (3)
C2B0.797 (2)0.6021 (13)0.484 (3)0.0410 (15)0.281 (3)
H2BA0.73090.56760.50990.049*0.281 (3)
C3B0.9481 (16)0.6001 (12)0.563 (3)0.0465 (13)0.281 (3)
H3BA0.99030.55960.64880.056*0.281 (3)
C4B1.0253 (17)0.6584 (10)0.5075 (19)0.0396 (13)0.281 (3)
H4BA1.12120.66240.55010.048*0.281 (3)
C50.6420 (3)0.68954 (16)0.2103 (3)0.0308 (5)
H5A0.63230.73740.13700.037*
C60.4062 (3)0.67187 (17)0.0565 (4)0.0376 (6)
H6A0.43050.70030.03720.045*
H6B0.35410.71260.10260.045*
C70.3187 (3)0.59292 (18)0.0144 (3)0.0373 (6)
H7A0.23530.61060.10610.045*
H7B0.36950.55380.06590.045*
C80.1727 (3)0.59356 (19)0.1696 (4)0.0441 (7)
H8A0.09270.59970.06750.066*
H8B0.20600.64990.21430.066*
H8C0.14840.56150.25770.066*
C90.2323 (3)0.45972 (18)0.0614 (4)0.0440 (7)
H9A0.15550.46360.04490.066*
H9B0.20360.43050.14940.066*
H9C0.30590.42780.03980.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04731 (18)0.02362 (13)0.02861 (14)0.00286 (10)0.01606 (11)0.00094 (9)
Cu10.03302 (19)0.02855 (17)0.02764 (16)0.00042 (12)0.00816 (13)0.00348 (11)
N10.0276 (11)0.0331 (11)0.0266 (10)0.0016 (9)0.0086 (8)0.0014 (8)
N20.0286 (11)0.0240 (10)0.0284 (10)0.0017 (8)0.0085 (8)0.0006 (8)
S1A0.0361 (7)0.0372 (7)0.0417 (7)0.0028 (5)0.0033 (5)0.0064 (6)
C1A0.0332 (14)0.0278 (14)0.024 (4)0.0043 (10)0.0161 (16)0.005 (3)
C2A0.030 (3)0.054 (3)0.034 (3)0.001 (2)0.004 (2)0.001 (2)
C3A0.033 (3)0.048 (3)0.064 (4)0.010 (2)0.023 (3)0.021 (2)
C4A0.022 (2)0.045 (3)0.044 (2)0.002 (2)0.0012 (19)0.010 (2)
S1B0.0361 (7)0.0372 (7)0.0417 (7)0.0028 (5)0.0033 (5)0.0064 (6)
C1B0.0332 (14)0.0278 (14)0.024 (4)0.0043 (10)0.0161 (16)0.005 (3)
C2B0.030 (3)0.054 (3)0.034 (3)0.001 (2)0.004 (2)0.001 (2)
C3B0.033 (3)0.048 (3)0.064 (4)0.010 (2)0.023 (3)0.021 (2)
C4B0.022 (2)0.045 (3)0.044 (2)0.002 (2)0.0012 (19)0.010 (2)
C50.0361 (15)0.0243 (12)0.0340 (13)0.0020 (10)0.0140 (11)0.0022 (9)
C60.0387 (16)0.0341 (14)0.0357 (14)0.0003 (11)0.0057 (11)0.0111 (11)
C70.0346 (15)0.0486 (16)0.0265 (13)0.0048 (12)0.0068 (11)0.0045 (11)
C80.0316 (16)0.0579 (18)0.0443 (16)0.0077 (13)0.0140 (13)0.0023 (13)
C90.0428 (17)0.0437 (16)0.0417 (16)0.0137 (13)0.0084 (13)0.0083 (12)
Geometric parameters (Å, º) top
Br1—Cu1i2.4241 (4)S1B—C1B1.71 (2)
Br1—Cu12.4805 (4)C1B—C2B1.43 (2)
Cu1—N22.008 (2)C1B—C51.521 (18)
Cu1—N12.240 (2)C2B—C3B1.473 (19)
Cu1—Br1i2.4242 (4)C2B—H2BA0.9300
Cu1—Cu1i2.9803 (6)C3B—C4B1.360 (14)
N1—C81.460 (3)C3B—H3BA0.9300
N1—C71.462 (3)C4B—H4BA0.9300
N1—C91.468 (3)C5—H5A0.9300
N2—C51.274 (3)C6—C71.509 (4)
N2—C61.474 (3)C6—H6A0.9700
S1A—C4A1.685 (5)C6—H6B0.9700
S1A—C1A1.701 (9)C7—H7A0.9700
C1A—C51.413 (7)C7—H7B0.9700
C1A—C2A1.422 (11)C8—H8A0.9600
C2A—C3A1.482 (8)C8—H8B0.9600
C2A—H2AA0.9300C8—H8C0.9600
C3A—C4A1.364 (7)C9—H9A0.9600
C3A—H3AA0.9300C9—H9B0.9600
C4A—H4AA0.9300C9—H9C0.9600
S1B—C4B1.641 (11)
Cu1i—Br1—Cu174.829 (13)C1B—C2B—H2BA128.6
N2—Cu1—N185.27 (8)C3B—C2B—H2BA128.6
N2—Cu1—Br1i132.01 (6)C4B—C3B—C2B118.9 (18)
N1—Cu1—Br1i106.45 (5)C4B—C3B—H3BA120.5
N2—Cu1—Br1115.60 (6)C2B—C3B—H3BA120.5
N1—Cu1—Br1107.16 (6)C3B—C4B—S1B109.8 (15)
Br1i—Cu1—Br1105.171 (13)C3B—C4B—H4BA125.1
N2—Cu1—Cu1i154.69 (6)S1B—C4B—H4BA125.1
N1—Cu1—Cu1i118.42 (5)N2—C5—C1A126.4 (5)
Br1i—Cu1—Cu1i53.447 (11)N2—C5—C1B120.1 (10)
Br1—Cu1—Cu1i51.724 (11)N2—C5—H5A116.8
C8—N1—C7111.3 (2)C1A—C5—H5A116.8
C8—N1—C9109.6 (2)C1B—C5—H5A122.5
C7—N1—C9109.3 (2)N2—C6—C7109.8 (2)
C8—N1—Cu1112.30 (16)N2—C6—H6A109.7
C7—N1—Cu199.58 (15)C7—C6—H6A109.7
C9—N1—Cu1114.39 (16)N2—C6—H6B109.7
C5—N2—C6116.8 (2)C7—C6—H6B109.7
C5—N2—Cu1134.54 (17)H6A—C6—H6B108.2
C6—N2—Cu1108.42 (15)N1—C7—C6111.7 (2)
C4A—S1A—C1A92.6 (3)N1—C7—H7A109.3
C5—C1A—C2A121.9 (7)C6—C7—H7A109.3
C5—C1A—S1A122.7 (6)N1—C7—H7B109.3
C2A—C1A—S1A115.4 (5)C6—C7—H7B109.3
C1A—C2A—C3A104.4 (6)H7A—C7—H7B107.9
C1A—C2A—H2AA127.8N1—C8—H8A109.5
C3A—C2A—H2AA127.8N1—C8—H8B109.5
C4A—C3A—C2A116.4 (6)H8A—C8—H8B109.5
C4A—C3A—H3AA121.8N1—C8—H8C109.5
C2A—C3A—H3AA121.8H8A—C8—H8C109.5
C3A—C4A—S1A111.2 (5)H8B—C8—H8C109.5
C3A—C4A—H4AA124.4N1—C9—H9A109.5
S1A—C4A—H4AA124.4N1—C9—H9B109.5
C4B—S1B—C1B94.1 (10)H9A—C9—H9B109.5
C2B—C1B—C5126 (2)N1—C9—H9C109.5
C2B—C1B—S1B114.3 (12)H9A—C9—H9C109.5
C5—C1B—S1B118.4 (15)H9B—C9—H9C109.5
C1B—C2B—C3B102.8 (15)
Cu1i—Br1—Cu1—N2154.00 (7)C2A—C3A—C4A—S1A2.6 (7)
Cu1i—Br1—Cu1—N1113.00 (6)C1A—S1A—C4A—C3A1.5 (6)
Cu1i—Br1—Cu1—Br1i0.0C4B—S1B—C1B—C2B2 (3)
N2—Cu1—N1—C8100.19 (18)C4B—S1B—C1B—C5168 (2)
Br1i—Cu1—N1—C8127.30 (16)C5—C1B—C2B—C3B167 (3)
Br1—Cu1—N1—C815.16 (18)S1B—C1B—C2B—C3B2 (3)
Cu1i—Cu1—N1—C870.41 (18)C1B—C2B—C3B—C4B2 (3)
N2—Cu1—N1—C717.69 (15)C2B—C3B—C4B—S1B0 (2)
Br1i—Cu1—N1—C7114.82 (14)C1B—S1B—C4B—C3B0.8 (19)
Br1—Cu1—N1—C7133.04 (14)C6—N2—C5—C1A175.2 (7)
Cu1i—Cu1—N1—C7171.71 (13)Cu1—N2—C5—C1A10.8 (7)
N2—Cu1—N1—C9134.13 (18)C6—N2—C5—C1B176.8 (17)
Br1i—Cu1—N1—C91.62 (18)Cu1—N2—C5—C1B2.8 (18)
Br1—Cu1—N1—C9110.51 (17)C2A—C1A—C5—N2175.9 (7)
Cu1i—Cu1—N1—C955.26 (19)S1A—C1A—C5—N22.0 (13)
N1—Cu1—N2—C5174.8 (2)C2A—C1A—C5—C1B135 (14)
Br1i—Cu1—N2—C566.8 (3)S1A—C1A—C5—C1B47 (12)
Br1—Cu1—N2—C578.5 (2)C2B—C1B—C5—N24 (4)
Cu1i—Cu1—N2—C524.9 (3)S1B—C1B—C5—N2172.0 (16)
N1—Cu1—N2—C610.83 (16)C2B—C1B—C5—C1A132 (16)
Br1i—Cu1—N2—C6118.76 (15)S1B—C1B—C5—C1A37 (11)
Br1—Cu1—N2—C695.95 (16)C5—N2—C6—C7146.5 (2)
Cu1i—Cu1—N2—C6149.55 (14)Cu1—N2—C6—C738.0 (3)
C4A—S1A—C1A—C5177.9 (9)C8—N1—C7—C675.1 (3)
C4A—S1A—C1A—C2A0.2 (9)C9—N1—C7—C6163.7 (2)
C5—C1A—C2A—C3A179.2 (9)Cu1—N1—C7—C643.5 (2)
S1A—C1A—C2A—C3A1.1 (11)N2—C6—C7—N158.7 (3)
C1A—C2A—C3A—C4A2.3 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg4 are the centroids of the Br1/Cu1/Br1A/Cu1A, S1A/C1A/C2A/C3A/C4A and S1B/C1B/C2B/C3B/C4B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2A—H2AA···Cg3ii0.932.873.721 (8)153
C2A—H2AA···Cg4ii0.932.703.573 (12)157
C2B—H2BA···Cg10.932.553.45 (2)162
C2B—H2BA···Cg1i0.932.553.45 (2)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formula[Cu2Br2(C9H14N2S)2]
Mr651.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.2029 (3), 15.4175 (3), 8.04875 (19)
β (°) 108.628 (3)
V3)1199.76 (5)
Z2
Radiation typeMo Kα
µ (mm1)5.29
Crystal size (mm)0.15 × 0.07 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.406, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13662, 3928, 3021
Rint0.046
(sin θ/λ)max1)0.750
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.078, 1.05
No. of reflections3928
No. of parameters146
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.51

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg4 are the centroids of the Br1/Cu1/Br1A/Cu1A, S1A/C1A/C2A/C3A/C4A and S1B/C1B/C2B/C3B/C4B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2A—H2AA···Cg3i0.932.873.721 (8)153
C2A—H2AA···Cg4i0.932.703.573 (12)157
C2B—H2BA···Cg10.932.553.45 (2)162
C2B—H2BA···Cg1ii0.932.553.45 (2)162
Symmetry codes: (i) x, y+1/2, z3/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

CG acknowledges financial support from the Research Corporation for Science Advancement through RCSA Award 10776 and from a Hellman Fellowship from Williams College. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBall, R. J., Genge, A. R. J., Radford, A. L., Skelton, B. W., Tolhurst, V. A. & White, A. H. (2001). J. Chem. Soc. Dalton Trans. pp. 2807–2812.  Web of Science CSD CrossRef Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChurchill, M. R., Davies, G., Elsayed, M. A., Fournier, J. A., Hutchinson, J. P. & Zubieta, J. A. (1984). Inorg. Chem. 23, 783–787.  CSD CrossRef CAS Web of Science Google Scholar
First citationCristau, H.-J., Ouali, A., Spindler, J.-F. & Taillefer, M. (2005). Chem. Eur. J. 11, 2483–2492.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, Y., Lee, D.-H., Park, G. Y., Lucas, H. R., Narducci Sarjeant, A. A., Kieber-Emmons, M. T., Vance, M. A., Milligan, A. E., Solomon, E. I. & Karlin, K. D. (2010). Inorg. Chem. 49, 8873–8885.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMatyjaszewski, K. & Tsarevsky, N. V. (2009). Nat. Chem. 1, 276–288.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerrier, S., Berthier, D., Willoughby, I., Batt-Coutrot, D. & Haddleton, D. M. (2002). Macromolecules, 35, 2941–2948.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkelton, B. W., Waters, A. F. & White, A. H. (1991). Aust. J. Chem. 44, 1207–1215.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m691-m692
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds