metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­bis­­(2-ethyl-1H-imidazole-κN3)cadmium]-μ-sulfato-κ2O:O′]

aOrderd Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jxyuchunhua@163.com

(Received 17 March 2012; accepted 18 April 2012; online 21 April 2012)

In the title one-dimensional coordination polymer, [Cd(SO4)(C5H8N2)2(H2O)2]n, the CdII atom (site symmetry 2) is coordinated by two sulfate O atoms, two water mol­ecules and two 2-ethyl­imidazole ligands in a distorted cis-CdN2O4 octa­hedral geometry. The water mol­ecules have a cis disposition. The bridging sulfate ions (site symmetry 2) link the CdII ions into a polymeric chain extending along [001]. The chains are linked by N—H⋯O and O—H⋯O hydrogen bonds. The terminal –CH3 group of the ligand is disordered over two orientations in a 0.61 (5):0.39 (5) ratio.

Related literature

For background to ferroelectric materials, see: Zhang et al. (2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For a related structure, see: Zhu & Yu (2011[Zhu, R.-Q. & Yu, C.-H. (2011). Acta Cryst. E67, o2746.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(SO4)(C5H8N2)2(H2O)2]

  • Mr = 436.78

  • Orthorhombic, P b c n

  • a = 14.465 (10) Å

  • b = 15.83 (1) Å

  • c = 6.990 (5) Å

  • V = 1600.6 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.34 × 0.28 × 0.24 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.604, Tmax = 0.693

  • 15289 measured reflections

  • 1838 independent reflections

  • 1617 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 1.06

  • 1838 reflections

  • 107 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −1.51 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N2 2.255 (3)
Cd1—O2 2.437 (3)
Cd1—O1W 2.339 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O3i 0.86 2.11 2.936 (4) 160
O1W—H1WA⋯O3ii 0.81 (2) 1.93 (2) 2.732 (4) 172 (5)
O1W—H1WB⋯O3iii 0.80 (2) 1.97 (2) 2.762 (4) 169 (5)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) -x+1, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

According to finding potential ferroelectric phase change materials via dielectric constant measurements of compounds on the basis of temperature (Zhang et al., 2010). Unluckily, no dielectric anomaly was observed ranging from 120 K to near 290 K. In this report the crystal structure of the title compound is herein reported. A structure chart showing the structure of the title compound (Scheme 1). A viewgraph of with the symmetry related fragments and atom-numbering scheme is shown in Fig. 1. The Cd(II) atom adopts two nitrogen atoms of two 2-ethylimidazole ligands [Cd1—N2 = 2.255 (3) Å], two O atoms from two water [Cd1—O1W = 2.339 (3) Å] and two oxygen atoms of two different sulfate radical ligands [Cd1—O2 = 2.437 (3) Å]. Besides, atom C1 swings between the two positions 1:1 ration. In addition, the unite exists O—H···O and N—H···O hydrogen bonds are also present (Table 1).

Related literature top

For background to ferroelectric materials, see: Zhang et al. (2010). For a related structure, see: Zhu & Yu (2011).

Experimental top

2.4 g (25 mmol) of 2-ethylimidazole was dissolved in 20 ml water, dropping 1.23 g (12.5 mmol) of H2SO4 into it, and 6.4 g (8.3 mmol) 3CdSO4.8H2O was added to the solution. After stirring the mixture for several minutes, 6.18 g (25 mmol) of Ba(NO2)2 was joined into it forming precipitation. The turbid liquid was filtered to give a light yellow solution. Yellow blocks were obtained, but not the expecting things, by the slow evaporation of the above solution after sever days at the ambient temperature.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms but for H1A and H1B with C—H = 0.93 Å, with Uiso(H) = 1.2 Uiso(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) 1-x, y, 1/2-z; (ii) 1-x, y, 3/2-z.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the c axis. Dashed lines indicate hydrogen bonds.
catena-Poly[[diaquabis(2-ethyl-1H-imidazole- κN3)cadmium]-µ-sulfato-κ2O:O'] top
Crystal data top
[Cd(SO4)(C5H8N2)2(H2O)2]F(000) = 880
Mr = 436.78Dx = 1.813 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1838 reflections
a = 14.465 (10) Åθ = 3.9–27.5°
b = 15.83 (1) ŵ = 1.53 mm1
c = 6.990 (5) ÅT = 293 K
V = 1600.6 (19) Å3Block, yellow
Z = 40.34 × 0.28 × 0.24 mm
Data collection top
Rigaku SCXmini
diffractometer
1617 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.5°, θmin = 3.9°
ω scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2020
Tmin = 0.604, Tmax = 0.693l = 99
15289 measured reflections3 standard reflections every 180 reflections
1838 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0278P)2 + 5.5521P]
where P = (Fo2 + 2Fc2)/3
1838 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.91 e Å3
3 restraintsΔρmin = 1.51 e Å3
Crystal data top
[Cd(SO4)(C5H8N2)2(H2O)2]V = 1600.6 (19) Å3
Mr = 436.78Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 14.465 (10) ŵ = 1.53 mm1
b = 15.83 (1) ÅT = 293 K
c = 6.990 (5) Å0.34 × 0.28 × 0.24 mm
Data collection top
Rigaku SCXmini
diffractometer
1617 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.035
Tmin = 0.604, Tmax = 0.6933 standard reflections every 180 reflections
15289 measured reflections intensity decay: none
1838 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.91 e Å3
1838 reflectionsΔρmin = 1.51 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5943 (16)0.5775 (16)0.464 (3)0.0460 (9)0.39 (5)
H1A0.53290.60000.45390.069*0.39 (5)
H1B0.59610.53540.56250.069*0.39 (5)
H1C0.61170.55240.34400.069*0.39 (5)
C1'0.6100 (10)0.5679 (10)0.4805 (19)0.0460 (9)0.61 (5)
H1'A0.65290.52160.47810.069*0.61 (5)
H1'B0.57780.57070.36070.069*0.61 (5)
H1'C0.56640.55960.58230.069*0.61 (5)
C20.6611 (3)0.6480 (3)0.5124 (6)0.0460 (9)
H2A0.72110.63430.45890.055*
H2B0.63990.69950.45130.055*
C30.6724 (2)0.6645 (2)0.7199 (4)0.0249 (7)
C40.7286 (3)0.6571 (2)1.0116 (5)0.0341 (8)
H40.76620.64431.11550.041*
C50.6496 (3)0.7023 (2)1.0139 (5)0.0317 (8)
H50.62300.72631.12200.038*
N10.7422 (2)0.63387 (19)0.8256 (4)0.0312 (6)
H1D0.78780.60450.78330.037*
N20.61447 (19)0.70720 (17)0.8301 (4)0.0250 (6)
O1W0.60396 (17)0.90785 (16)0.8035 (4)0.0272 (5)
O20.53001 (17)0.82007 (15)0.4109 (3)0.0282 (5)
O30.42204 (16)0.92697 (15)0.3118 (3)0.0263 (5)
S10.50000.87254 (6)0.25000.0176 (2)
Cd10.50000.797187 (19)0.75000.02068 (12)
H1WA0.599 (3)0.917 (3)0.917 (3)0.049 (14)*
H1WB0.594 (4)0.9529 (17)0.756 (6)0.044 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.061 (2)0.0379 (18)0.0057 (17)0.0050 (15)0.0052 (16)
C1'0.039 (2)0.061 (2)0.0379 (18)0.0057 (17)0.0050 (15)0.0052 (16)
C20.039 (2)0.061 (2)0.0379 (18)0.0057 (17)0.0050 (15)0.0052 (16)
C30.0262 (16)0.0247 (15)0.0240 (16)0.0032 (12)0.0015 (12)0.0034 (12)
C40.0300 (19)0.044 (2)0.0285 (18)0.0064 (15)0.0084 (14)0.0021 (16)
C50.0338 (18)0.0401 (19)0.0214 (16)0.0082 (15)0.0046 (14)0.0020 (14)
N10.0232 (14)0.0384 (16)0.0321 (15)0.0094 (12)0.0006 (12)0.0029 (13)
N20.0249 (13)0.0298 (14)0.0202 (13)0.0046 (11)0.0018 (11)0.0004 (11)
O1W0.0305 (12)0.0280 (12)0.0230 (12)0.0035 (8)0.0025 (10)0.0009 (10)
O20.0322 (12)0.0342 (12)0.0181 (11)0.0069 (10)0.0012 (9)0.0066 (9)
O30.0244 (11)0.0297 (12)0.0248 (11)0.0057 (9)0.0018 (9)0.0005 (9)
S10.0186 (5)0.0204 (5)0.0139 (4)0.0000.0004 (4)0.000
Cd10.01904 (17)0.02334 (18)0.01966 (18)0.0000.00215 (12)0.000
Geometric parameters (Å, º) top
C1—C21.52 (2)C5—N21.384 (4)
C1—H1A0.9600C5—H50.9300
C1—H1B0.9600N1—H1D0.8600
C1—H1C0.9600O1W—H1WA0.807 (19)
C1'—C21.485 (14)O1W—H1WB0.799 (19)
C1'—H1'A0.9600O2—S11.464 (2)
C1'—H1'B0.9600O3—S11.484 (2)
C1'—H1'C0.9600S1—O2i1.464 (2)
C2—C31.483 (5)S1—O3i1.484 (2)
C2—H2A0.9700Cd1—N22.255 (3)
C2—H2B0.9700Cd1—O22.437 (3)
C3—N21.324 (4)Cd1—O1W2.339 (3)
C3—N11.341 (4)Cd1—N2ii2.255 (3)
C4—C51.348 (5)Cd1—O1Wii2.339 (3)
C4—N11.365 (5)Cd1—O2ii2.437 (3)
C4—H40.9300
C2—C1—H1A109.5C3—N1—C4108.6 (3)
C2—C1—H1B109.5C3—N1—H1D125.7
H1A—C1—H1B109.5C4—N1—H1D125.7
C2—C1—H1C109.5C3—N2—C5106.2 (3)
H1A—C1—H1C109.5C3—N2—Cd1130.0 (2)
H1B—C1—H1C109.5C5—N2—Cd1122.4 (2)
C2—C1'—H1'A109.5Cd1—O1W—H1WA104 (3)
C2—C1'—H1'B109.5Cd1—O1W—H1WB119 (4)
H1'A—C1'—H1'B109.5H1WA—O1W—H1WB103 (4)
C2—C1'—H1'C109.5S1—O2—Cd1141.16 (14)
H1'A—C1'—H1'C109.5O2i—S1—O2110.9 (2)
H1'B—C1'—H1'C109.5O2i—S1—O3109.14 (14)
C3—C2—C1'110.6 (6)O2—S1—O3109.34 (13)
C3—C2—C1114.8 (9)O2i—S1—O3i109.34 (13)
C1'—C2—C111.3 (9)O2—S1—O3i109.14 (14)
C3—C2—H2A108.6O3—S1—O3i109.0 (2)
C1'—C2—H2A101.3N2ii—Cd1—N2101.65 (15)
C1—C2—H2A108.6N2ii—Cd1—O1W170.07 (10)
C3—C2—H2B108.6N2—Cd1—O1W87.78 (11)
C1'—C2—H2B119.6N2ii—Cd1—O1Wii87.78 (11)
C1—C2—H2B108.6N2—Cd1—O1Wii170.07 (10)
H2A—C2—H2B107.5O1W—Cd1—O1Wii82.99 (14)
N2—C3—N1109.9 (3)N2ii—Cd1—O2ii101.81 (9)
N2—C3—C2126.1 (3)N2—Cd1—O2ii89.03 (10)
N1—C3—C2123.9 (3)O1W—Cd1—O2ii81.24 (8)
C5—C4—N1106.1 (3)O1Wii—Cd1—O2ii85.96 (9)
C5—C4—H4127.0N2ii—Cd1—O289.03 (10)
N1—C4—H4127.0N2—Cd1—O2101.81 (9)
C4—C5—N2109.3 (3)O1W—Cd1—O285.96 (9)
C4—C5—H5125.4O1Wii—Cd1—O281.24 (8)
N2—C5—H5125.4O2ii—Cd1—O2162.90 (12)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O3iii0.862.112.936 (4)160
O1W—H1WA···O3ii0.81 (2)1.93 (2)2.732 (4)172 (5)
O1W—H1WB···O3iv0.80 (2)1.97 (2)2.762 (4)169 (5)
Symmetry codes: (ii) x+1, y, z+3/2; (iii) x+1/2, y+3/2, z+1; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cd(SO4)(C5H8N2)2(H2O)2]
Mr436.78
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)14.465 (10), 15.83 (1), 6.990 (5)
V3)1600.6 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.34 × 0.28 × 0.24
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.604, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
15289, 1838, 1617
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.06
No. of reflections1838
No. of parameters107
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 1.51

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N22.255 (3)Cd1—O1W2.339 (3)
Cd1—O22.437 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O3i0.862.112.936 (4)160
O1W—H1WA···O3ii0.807 (19)1.93 (2)2.732 (4)172 (5)
O1W—H1WB···O3iii0.799 (19)1.97 (2)2.762 (4)169 (5)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+3/2; (iii) x+1, y+2, z+1.
 

Acknowledgements

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhu, R.-Q. & Yu, C.-H. (2011). Acta Cryst. E67, o2746.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds