metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­nickel(II)]-μ-pyrazine-2-carboxyl­ato-silver(I)-μ-pyrazine-2-carboxyl­ato] nitrate dihydrate]

aKey Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan Province 410083, People's Republic of China, and bInstitute of Environmental Engineering, Central South University, Changsha, Hunan Province 410083, People's Republic of China
*Correspondence e-mail: xyyi@csu.edu.cn

(Received 22 March 2012; accepted 23 April 2012; online 28 April 2012)

In the polymeric complex of the title compound, {[AgNi(C5H3N2O2)2(H2O)2]NO3·2H2O}n, the AgI ion displays an angular coordination geometry with two N atoms from pyrazine-2-carboxyl­ate ligands, and the NiII ion is hexa­coordinated by two O atoms from two water mol­ecules, two O and two N atoms from pyrazine-2-carboxyl­ate ligands in a distorted octa­hedral geometry. In the crystal, the AgI and NiII ions lie on a mirror plane and an inversion centre, respectively. The complex chains, the nitrate ions and the uncoordinated water mol­ecules are linked together through O—H⋯O hydrogen bonds and weak Ag⋯O inter­actions [2.619 (17)–2.749 (17) Å] into a three-dimensional network.

Related literature

A similar one-dimensional chain mixed-metal Co–Ag coord­ination polymer {[AgCo(C4H3N2CO2)2(H2O)]NO3}n (Ciurtin et al., 2002[Ciurtin, D. M., Smith, M. D. & Loye, H. C. (2002). Solid State Sci. 4, 461-465.]) and a pillared Ni–Ag–Re polymer {[AgNi(C4H3N2CO2)2(H2O)2](ReO4)}n (Maggard et al., 2005[Maggard, P. A., Yan, B. & Luo, J. (2005). Angew. Chem. Int. Ed. 44, 2553-2556.]) have been reported.

[Scheme 1]

Experimental

Crystal data
  • [AgNi(C5H3N2O2)2(H2O)2]NO3·2H2O

  • Mr = 546.84

  • Monoclinic, P 21 /m

  • a = 5.1997 (10) Å

  • b = 27.188 (5) Å

  • c = 6.4347 (13) Å

  • β = 111.24 (3)°

  • V = 847.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.61, Tmax = 0.98

  • 8224 measured reflections

  • 1972 independent reflections

  • 1526 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.245

  • S = 1.01

  • 1972 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.85 1.90 2.729 (7) 164
O1W—H1WB⋯O2ii 0.85 1.91 2.699 (7) 155
O2W—H2WA⋯O2i 0.85 2.09 2.926 (11) 166
O2W—H2WB⋯O4 0.85 2.11 2.883 (12) 151
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

One of the major goals in inorganic chemistry is the self-assembly of polynuclear coordination arrays. The pyrazine-2-carboxylate (pyzc), as a bidentate herteroaromatic linker, is a suitable ligand to generate well defined architectures in a controlled fashion. Many mixed metal complexes with pyzc ligand have been reported. Here we describe the crystal structure of Ni–Ag coordination polymer {[AgNi(C4H3N2CO2)2(H2O)2)]NO3.2H2O}n.

The title complex is a polymeric structure consisting of Ni(C4H3N2CO2)2(H2O)2 units linked into infinite chains by Ag+ center [Ag1—N1 2.255 (7) Å] (Fig. 1). The pseudo-octahedral {NiO4N2} coordination environment around each Ni center consists of two O atoms from coordinated waters and two O and two N atoms from two chelating pyzc ligands [Ni1—O1 2.059 (5), Ni1—N2 2.079 (6), Ni1—O1w 2.057 (5) Å]. The hydrogen bonds are observed between coordinated water O1w and carboxylato O atom of pyzc ligand, and between uncoordinated water O2w and one carboxylato oxygen atom and one nitrito O atom (Table 1 and Fig. 2). The charge-balanced anionic nitrate ion acts both as a bidentate donor through O3 and O5 atoms [Ag—O3 2.749 (17), Ag—O5 2.712 (18) Å] and as a monodentate donor through O3 [Ag—O3 2.619 (17) Å] to be weakly bound to two Ag+ from two neighbor chain (Fig. 3). The combination of hydrogen bonding and weak Ag···O interactions serves to effectively link individual chains into a three-dimensional network.

Related literature top

A similar one-dimensional chain mixed-metal Co–Ag coordination polymer {[AgCo(C4H3N2CO2)2(H2O)]NO3}n (Ciurtin et al., 2002) and a pillared Ni–Ag–Re polymer {[AgNi(C4H3N2CO2)2(H2O)2](ReO4)}n (Maggard et al., 2005) have been reported.

Experimental top

A mixture of [Ni(pyzc)2(H2O)2].xH2O (17.0 mg, 0.05 mmol) and AgNO3 (8.5 mg, 0.05 mmol) in water (2 ml) was heated to 80 °C for 30 min. The resulting solution held there undisturbedly overnight. The darkish green block crystals suitable for the X-ray diffraction study were obtained (yield 10%).

Refinement top

H atoms were placed in geometrically idealized positions (C—H = 0.93 and O—H = 0.85 Å) and constrained to ride on their parents atoms with Uiso(H) = 1.2Ueq(C,O). The highest residual electron peak is located 1.12 Å from atom Ag and the deepest hole is 0.48 Å from atom O4. The most disagreeable reflections with Delta(F2)/e.s.d. > 8 have been omitted.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A polymeric one-dimensional chain showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of a two-dimensional network generated by O—H···O hydrogen bonding.
[Figure 3] Fig. 3. View of a two-dimensional network generated by Ag···O weak interactions.
catena-Poly[[[diaquanickel(II)]-µ-pyrazine-2-carboxylato-silver(I)-µ-pyrazine-2-carboxylato] nitrate dihydrate] top
Crystal data top
[AgNi(C5H3N2O2)2(H2O)2]NO3·2H2OF(000) = 544
Mr = 546.84Dx = 2.142 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 5.1997 (10) ÅCell parameters from 6237 reflections
b = 27.188 (5) Åθ = 3.0–25.0°
c = 6.4347 (13) ŵ = 2.34 mm1
β = 111.24 (3)°T = 293 K
V = 847.9 (3) Å3Block, dark-green
Z = 20.15 × 0.10 × 0.08 mm
Data collection top
Rigaku Mercury
diffractometer
1972 independent reflections
Radiation source: fine-focus sealed tube1526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 66
Tmin = 0.61, Tmax = 0.98k = 3435
8224 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.245H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.180P)2]
where P = (Fo2 + 2Fc2)/3
1972 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
[AgNi(C5H3N2O2)2(H2O)2]NO3·2H2OV = 847.9 (3) Å3
Mr = 546.84Z = 2
Monoclinic, P21/mMo Kα radiation
a = 5.1997 (10) ŵ = 2.34 mm1
b = 27.188 (5) ÅT = 293 K
c = 6.4347 (13) Å0.15 × 0.10 × 0.08 mm
β = 111.24 (3)°
Data collection top
Rigaku Mercury
diffractometer
1972 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1526 reflections with I > 2σ(I)
Tmin = 0.61, Tmax = 0.98Rint = 0.065
8224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.245H-atom parameters constrained
S = 1.01Δρmax = 1.31 e Å3
1972 reflectionsΔρmin = 1.09 e Å3
136 parameters
Special details top

Experimental. IR (KBr, cm-1): 445(m), 478(m), 731(m), 791(m), 791(m), 872(m), 1050(s), 1160(s), 1380(s) [ν(N=O)], 1421(m), 1588(m), 1661(s) [ν(C=O)].

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.3011 (3)0.25000.2938 (2)0.0617 (5)
Ni10.00000.50000.00000.0221 (4)
N10.2323 (14)0.3299 (2)0.1956 (11)0.0377 (15)
N20.1250 (11)0.4272 (2)0.0665 (9)0.0249 (12)
N30.958 (4)0.25000.613 (4)0.083 (5)
C10.3158 (15)0.3494 (3)0.0409 (14)0.0358 (17)
H10.41080.32990.02610.043*
C20.2639 (14)0.3976 (3)0.0208 (12)0.0278 (14)
H20.32780.41020.12760.033*
C30.0911 (16)0.3592 (3)0.2839 (12)0.0343 (16)
H30.02670.34640.39000.041*
C40.0390 (14)0.4078 (2)0.2212 (10)0.0229 (13)
C50.1318 (13)0.4409 (2)0.3121 (10)0.0231 (13)
O10.1725 (10)0.48437 (18)0.2343 (8)0.0280 (11)
O20.2190 (12)0.4236 (2)0.4499 (9)0.0370 (12)
O30.838 (3)0.25000.405 (3)0.106 (5)
O40.822 (4)0.25000.728 (4)0.130 (7)
O51.220 (3)0.25000.687 (3)0.115 (6)
O1W0.3534 (10)0.5258 (2)0.2428 (8)0.0377 (13)
H1WA0.51290.51840.24450.045*
H1WB0.33850.53450.36480.045*
O2W0.638 (2)0.3502 (4)0.7228 (15)0.086 (3)
H2WA0.66760.36810.62530.104*
H2WB0.62920.31930.69990.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0824 (9)0.0176 (5)0.1053 (10)0.0000.0582 (8)0.000
Ni10.0277 (7)0.0187 (6)0.0239 (6)0.0046 (4)0.0143 (5)0.0031 (4)
N10.052 (4)0.023 (3)0.049 (4)0.003 (3)0.030 (3)0.002 (3)
N20.025 (3)0.023 (3)0.029 (3)0.008 (2)0.014 (2)0.006 (2)
N30.099 (12)0.028 (6)0.157 (17)0.0000.090 (13)0.000
C10.038 (4)0.022 (3)0.053 (4)0.009 (3)0.024 (4)0.001 (3)
C20.029 (3)0.024 (3)0.035 (4)0.005 (3)0.016 (3)0.003 (3)
C30.050 (4)0.021 (3)0.037 (4)0.006 (3)0.021 (3)0.005 (3)
C40.030 (3)0.017 (3)0.023 (3)0.003 (2)0.011 (3)0.001 (2)
C50.025 (3)0.022 (3)0.021 (3)0.003 (2)0.007 (2)0.004 (2)
O10.031 (2)0.027 (2)0.031 (2)0.010 (2)0.018 (2)0.0028 (19)
O20.054 (3)0.033 (3)0.034 (3)0.002 (2)0.029 (3)0.001 (2)
O30.072 (9)0.128 (15)0.128 (13)0.0000.051 (9)0.000
O40.160 (15)0.073 (10)0.23 (2)0.0000.164 (16)0.000
O50.069 (9)0.178 (19)0.098 (10)0.0000.028 (8)0.000
O1W0.032 (3)0.050 (3)0.034 (3)0.007 (2)0.016 (2)0.011 (2)
O2W0.124 (7)0.065 (6)0.092 (6)0.003 (5)0.064 (6)0.001 (4)
Geometric parameters (Å, º) top
Ag1—N1i2.255 (7)N3—O51.27 (2)
Ag1—N12.255 (7)C1—C21.369 (10)
Ni1—O1Wii2.057 (5)C1—H10.9300
Ni1—O1W2.057 (5)C2—H20.9300
Ni1—O12.059 (5)C3—C41.381 (10)
Ni1—O1ii2.059 (5)C3—H30.9300
Ni1—N2ii2.079 (6)C4—C51.521 (9)
Ni1—N22.079 (6)C5—O21.226 (8)
N1—C11.331 (10)C5—O11.272 (8)
N1—C31.340 (9)O1W—H1WA0.8500
N2—C21.333 (9)O1W—H1WB0.8500
N2—C41.339 (8)O2W—H2WA0.8501
N3—O41.194 (19)O2W—H2WB0.8501
N3—O31.26 (2)
N1i—Ag1—N1149.0 (4)O4—N3—O5124 (2)
O1Wii—Ni1—O1W180.0 (3)O3—N3—O5117.0 (16)
O1Wii—Ni1—O188.8 (2)N1—C1—C2121.0 (7)
O1W—Ni1—O191.2 (2)N1—C1—H1119.5
O1Wii—Ni1—O1ii91.2 (2)C2—C1—H1119.5
O1W—Ni1—O1ii88.8 (2)N2—C2—C1122.4 (7)
O1—Ni1—O1ii180.0 (3)N2—C2—H2118.8
O1Wii—Ni1—N2ii92.4 (2)C1—C2—H2118.8
O1W—Ni1—N2ii87.6 (2)N1—C3—C4121.6 (7)
O1—Ni1—N2ii99.2 (2)N1—C3—H3119.2
O1ii—Ni1—N2ii80.8 (2)C4—C3—H3119.2
O1Wii—Ni1—N287.6 (2)N2—C4—C3120.8 (6)
O1W—Ni1—N292.4 (2)N2—C4—C5116.9 (6)
O1—Ni1—N280.8 (2)C3—C4—C5122.2 (6)
O1ii—Ni1—N299.2 (2)O2—C5—O1126.0 (6)
N2ii—Ni1—N2180.000 (1)O2—C5—C4118.2 (6)
C1—N1—C3117.3 (6)O1—C5—C4115.8 (5)
C1—N1—Ag1122.1 (5)C5—O1—Ni1115.2 (4)
C3—N1—Ag1120.6 (5)Ni1—O1W—H1WA121.9
C2—N2—C4117.0 (6)Ni1—O1W—H1WB116.2
C2—N2—Ni1131.6 (5)H1WA—O1W—H1WB118.0
C4—N2—Ni1111.4 (4)H2WA—O2W—H2WB116.8
O4—N3—O3119 (2)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1iii0.851.902.729 (7)164
O1W—H1WB···O2iv0.851.912.699 (7)155
O2W—H2WA···O2iii0.852.092.926 (11)166
O2W—H2WB···O40.852.112.883 (12)151
Symmetry codes: (iii) x+1, y, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[AgNi(C5H3N2O2)2(H2O)2]NO3·2H2O
Mr546.84
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)5.1997 (10), 27.188 (5), 6.4347 (13)
β (°) 111.24 (3)
V3)847.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.61, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
8224, 1972, 1526
Rint0.065
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.245, 1.01
No. of reflections1972
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 1.09

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.851.902.729 (7)164
O1W—H1WB···O2ii0.851.912.699 (7)155
O2W—H2WA···O2i0.852.092.926 (11)166
O2W—H2WB···O40.852.112.883 (12)151
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (2011M500129) and the Postdoctoral Science Foundation of Central South University.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCiurtin, D. M., Smith, M. D. & Loye, H. C. (2002). Solid State Sci. 4, 461–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaggard, P. A., Yan, B. & Luo, J. (2005). Angew. Chem. Int. Ed. 44, 2553–2556.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds