organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1522

2-[2-(Tri­fluoro­meth­yl)phen­yl]-2H-1-benzo­pyran-4(3H)-one

aVINČA Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11010 Belgrade, Serbia, and cInstitute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
*Correspondence e-mail: blucic@pharmacy.bg.ac.rs

(Received 30 March 2012; accepted 17 April 2012; online 25 April 2012)

In the title compound, C16H11F3O2, the γ-pyran­one ring adopts an envelope conformation with the chiral C atom standing out of the ring plane. In the crystal, molecules are linked by C—H⋯O and C—H⋯F inter­actions.

Related literature

For general background to flavones, see: Harborne & Williams (2000[Harborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481-504.]). For related flavonoids, see: Benavente-García & Castillo (2008[Benavente-García, O. & Castillo, J. (2008). J. Agric. Food Chem. 56, 6185-6205.]); Rodeiro et al. (2006[Rodeiro, I., Cancino, L., González, J. E., Morffi, J., Garrido, G., González, R. M., Nuñez, A. & Delgado, R. (2006). Food Chem. Toxicol. 44, 1707-1713.]). For related structures, see: Wera et al. (2012[Wera, M., Chalyi, A. G., Roshal, A. D. & Błażejowski, J. (2012). Acta Cryst. E68, o253-o254.]); Białońska et al. (2007[Białońska, A., Ciunik, Z., Kostrzewa-Susłow, E. & Dmochowska-Gładysz, J. (2007). Acta Cryst. E63, o432-o433.]); Krishnaiah et al. (2005[Krishnaiah, M., Ravi Kumar, R., Jagadeesh Kumar, N., Gunasekar, D. & Jayaprakasam, B. (2005). Acta Cryst. E61, o3565-o3567.]); Wu et al. (2005[Wu, H., Xu, Z., Wan, Y., Liang, Y.-M. & Yu, K.-B. (2005). Acta Cryst. E61, o1692-o1693.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11F3O2

  • Mr = 292.25

  • Orthorhombic, P n a 21

  • a = 8.2291 (9) Å

  • b = 22.020 (3) Å

  • c = 7.3355 (11) Å

  • V = 1329.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.18 × 0.02 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer

  • 4585 measured reflections

  • 2558 independent reflections

  • 1462 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.109

  • S = 1.12

  • 2558 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.54 3.311 (5) 140
C5—H5⋯F3ii 0.93 2.54 3.313 (5) 141
Symmetry codes: (i) x+1, y, z; (ii) [-x, -y+2, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd., Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The title compound belongs to the group of flavanones which occur predominantly in citrus fruits. Citrus flavonoids were reported (Benavente-García & Castillo, 2008) as having antimicrobial, antifungal, antiviral, anti–allergenic, anti-inflammatory (Harborne & Williams, 2000) and antioxidant (Rodeiro et al., 2006) properties. Case control studies suggest that flavonoids may reduce the risk of cardiovascular disease and stroke. Considering the wide spectrum of activities of natural flavonoids further structure modification of these molecules is aimed to enhance their interaction with the target sites in cells.

The title compound adopts a typical conformation of flavanones with the γ–pyranone ring adopting the envelope conformation. In this conformation the carbon atoms C1, C6, C7, C8 and oxygen O1 are nearly coplanar with a root mean square deviation from the mean plane of 0.035 Å, while the C9 carbon atom is standing out from this plane with an atom–to–plane distance of 0.652 (6) Å. All bond lengths and angles in the title compound show usual values for this type of compounds (Wera et al., 2012; Białońska et al., 2007; Krishnaiah et al., 2005; Wu et al., 2005). In this crystal packing of the title compound there are 4 intramolecular, 2 intermolecular (C—H···O and C—H···F) and one ππ interaction. All of the fluoride atoms participate in weak intramolecular C—H···F interactions (Fig. 1) with H···F distances equal or shorter than 2.50 Å, which is shorter than the sum of their Van der Waals radii (Bondi, 1964). Two of the fluoride atoms interact with the hydrogen atom connected to the chiral carbon atom C9 while the third fluoride atom interacts with one of the phenyl hydrogen atoms (Table 1). The dihedral angle between Cg1 and Cg2 rings in previously published structures of flavanones (Wera et al., 2012; Białońska et al., 2007; Krishnaiah et al., 2005; Wu et al., 2005) is in the range from 55 to 75° while the corresponding dihedral angle in the case of the title compound is 66.06 (15)°.

The flavanone molecules are connected into rows by the C3—H3···O2 intermolecular interaction forming chains down the crystallographic a axis (Fig. 2). The second intermolecular interaction, C5—H5···F3, connects the molecules into another chain in the direction of the screw axis following the crystallographic c axis, thus forming a two dimensional net of molecules (Fig. 3). Strings of molecules along the crystallographic c axis are further connected by ππ interactions (Fig. 4). Perpendicular distance from the centroid of one Cg1 ring, molecule at (x, y, z), to the plane of the second Cg1 ring, molecule at (1 - x, 2 - y, 1/2 + z), and vice versa are 3.70 and 3.62 Å respectively, while the distance between the ring centroids measures 4.101 (3) Å. The Cg1 ring planes of molecules at (x, y, z) and (1 - x, 2 - y, 1/2 + z) are nearly parallel with the dihedral angle being 5.59 (3)°.

Related literature top

For general background to flavones, see: Harborne & Williams (2000). For related flavonoids, see: Benavente-García & Castillo (2008); Rodeiro et al. (2006). For related structures, see: Wera et al. (2012); Białońska et al. (2007); Krishnaiah et al. (2005); Wu et al. (2005). For van der Waals radii, see: Bondi (1964).

Experimental top

The proposed compound was prepared in two steps. The first step in the synthetic route consisted of the condensation of 2-hydroxy acetophenone with 2-trifluoromethylbenzaldehyde to give an α,β-unsaturated ketone (chalcone). In the second step the obtained chalcone was dissolved under stirring in a 50:50 water/ethanol mixture. The pH was set to 9.0 with 0.1 M NaOH and the reaction mixture was refluxed for 2 h after which it was cooled over night to room temperature. Small crystals of the title compound formed in the reaction vessel and, after draining excess fluid, the crystals were dried at room temperature.

Refinement top

The H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93 Å for aromatic C atoms, 0.97 Å for the secondary CH2 group and 0.98 Å for the tertiary CH group. Their Uiso(H) values were equal to 1.2 times Ueq of the corresponding C atom.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined so the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non–H atoms. H atoms are represented as small spheres of arbitrary radii. Intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. Molecular packing of the title compound and intermolecular interactions along the crystallographic a axis.
[Figure 3] Fig. 3. Molecular packing of the title compound and intermolecular interactions along the crystallographic c axis.
[Figure 4] Fig. 4. ππ interactions of two neighbouring Cg1 rings. Symmetry code: (i) 1 - x, 2 - y, 1/2 + z.
2-[2-(Trifluoromethyl)phenyl]-2H-1-benzopyran-4(3H)-one top
Crystal data top
C16H11F3O2F(000) = 600
Mr = 292.25Dx = 1.460 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 966 reflections
a = 8.2291 (9) Åθ = 3.3–28.9°
b = 22.020 (3) ŵ = 0.12 mm1
c = 7.3355 (11) ÅT = 293 K
V = 1329.2 (3) Å3Needle, colourless
Z = 40.18 × 0.02 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
1462 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.049
Graphite monochromatorθmax = 28.9°, θmin = 3.7°
Detector resolution: 16.3280 pixels mm-1h = 1110
ω scansk = 2829
4585 measured reflectionsl = 99
2558 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
2558 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C16H11F3O2V = 1329.2 (3) Å3
Mr = 292.25Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.2291 (9) ŵ = 0.12 mm1
b = 22.020 (3) ÅT = 293 K
c = 7.3355 (11) Å0.18 × 0.02 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
1462 reflections with I > 2σ(I)
4585 measured reflectionsRint = 0.049
2558 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0871 restraint
wR(F2) = 0.109H-atom parameters constrained
S = 1.12Δρmax = 0.16 e Å3
2558 reflectionsΔρmin = 0.15 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3661 (3)0.90660 (11)0.7245 (5)0.0481 (8)
O20.0253 (3)1.02162 (14)0.7338 (6)0.0901 (14)
F10.0147 (4)0.74844 (13)0.3065 (5)0.1002 (11)
F20.1886 (3)0.82036 (13)0.2974 (4)0.0759 (8)
F30.0440 (3)0.83559 (15)0.4155 (5)0.0867 (10)
C10.3889 (4)0.96841 (17)0.7160 (7)0.0394 (10)
C20.5488 (4)0.98855 (19)0.7098 (7)0.0475 (12)
H20.63390.96080.71050.057*
C30.5801 (5)1.04910 (19)0.7029 (7)0.0496 (12)
H30.68721.06260.70230.060*
C40.4543 (5)1.09121 (19)0.6967 (7)0.0581 (13)
H40.47671.13250.68780.070*
C50.2973 (5)1.07110 (18)0.7040 (7)0.0557 (13)
H50.21321.09930.70280.067*
C60.2595 (4)1.00912 (18)0.7131 (7)0.0416 (11)
C70.0917 (5)0.98787 (19)0.7367 (8)0.0563 (14)
C80.0756 (4)0.92045 (17)0.7675 (7)0.0555 (15)
H8A0.03020.90700.72540.067*
H8B0.08310.91190.89690.067*
C90.2082 (4)0.88567 (18)0.6662 (6)0.0393 (11)
H90.19640.89250.53490.047*
C100.2017 (4)0.81852 (19)0.7043 (6)0.0365 (10)
C110.1381 (5)0.7759 (2)0.5836 (6)0.0387 (11)
C120.1326 (5)0.7148 (2)0.6313 (7)0.0478 (13)
H120.08770.68680.55090.057*
C130.1925 (5)0.6955 (2)0.7952 (8)0.0540 (12)
H130.18840.65450.82530.065*
C140.2581 (5)0.7360 (2)0.9145 (7)0.0583 (14)
H140.29980.72271.02540.070*
C150.2626 (5)0.7976 (2)0.8697 (7)0.0505 (13)
H150.30710.82520.95180.061*
C160.0756 (6)0.7942 (2)0.4026 (8)0.0594 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0319 (14)0.0360 (17)0.076 (2)0.0008 (13)0.0020 (16)0.001 (2)
O20.0468 (16)0.064 (2)0.160 (4)0.0188 (17)0.013 (2)0.002 (3)
F10.149 (3)0.079 (2)0.072 (2)0.041 (2)0.051 (2)0.002 (2)
F20.0938 (18)0.087 (2)0.0464 (17)0.0169 (17)0.0070 (17)0.0086 (19)
F30.0697 (18)0.097 (2)0.093 (2)0.0126 (19)0.0212 (18)0.022 (2)
C10.044 (2)0.032 (2)0.042 (3)0.002 (2)0.007 (2)0.009 (3)
C20.035 (2)0.046 (3)0.062 (3)0.000 (2)0.007 (3)0.001 (3)
C30.050 (2)0.045 (3)0.055 (3)0.011 (2)0.006 (3)0.005 (3)
C40.070 (3)0.031 (2)0.073 (4)0.011 (3)0.018 (3)0.005 (3)
C50.060 (3)0.036 (3)0.071 (3)0.009 (2)0.010 (3)0.001 (3)
C60.041 (2)0.036 (3)0.049 (3)0.002 (2)0.005 (3)0.002 (3)
C70.047 (2)0.047 (3)0.076 (4)0.002 (2)0.006 (3)0.013 (4)
C80.037 (2)0.045 (3)0.085 (4)0.002 (2)0.009 (3)0.004 (3)
C90.040 (2)0.042 (2)0.036 (3)0.003 (2)0.005 (2)0.007 (2)
C100.0344 (19)0.037 (3)0.038 (3)0.005 (2)0.001 (2)0.002 (3)
C110.030 (2)0.044 (3)0.042 (3)0.001 (2)0.002 (2)0.002 (3)
C120.056 (3)0.041 (3)0.046 (3)0.001 (3)0.004 (2)0.005 (3)
C130.060 (3)0.035 (3)0.067 (3)0.004 (3)0.005 (3)0.006 (3)
C140.066 (3)0.060 (4)0.050 (3)0.009 (3)0.014 (3)0.015 (3)
C150.061 (3)0.046 (3)0.045 (3)0.008 (2)0.001 (3)0.006 (3)
C160.060 (3)0.058 (4)0.060 (4)0.011 (3)0.016 (3)0.001 (4)
Geometric parameters (Å, º) top
O1—C11.376 (4)C7—C81.508 (5)
O1—C91.443 (4)C8—C91.526 (5)
O2—C71.217 (4)C8—H8A0.9700
F1—C161.328 (5)C8—H8B0.9700
F2—C161.339 (5)C9—C101.506 (5)
F3—C161.345 (5)C9—H90.9800
C1—C21.389 (5)C10—C151.391 (5)
C1—C61.392 (5)C10—C111.392 (5)
C2—C31.359 (5)C11—C121.390 (6)
C2—H20.9300C11—C161.480 (7)
C3—C41.390 (5)C12—C131.367 (6)
C3—H30.9300C12—H120.9300
C4—C51.367 (5)C13—C141.361 (6)
C4—H40.9300C13—H130.9300
C5—C61.401 (5)C14—C151.397 (6)
C5—H50.9300C14—H140.9300
C6—C71.468 (5)C15—H150.9300
C1—O1—C9115.2 (3)O1—C9—C8109.8 (3)
O1—C1—C2116.5 (3)C10—C9—C8112.2 (3)
O1—C1—C6122.3 (3)O1—C9—H9109.3
C2—C1—C6121.2 (3)C10—C9—H9109.3
C3—C2—C1119.6 (4)C8—C9—H9109.3
C3—C2—H2120.2C15—C10—C11117.9 (4)
C1—C2—H2120.2C15—C10—C9118.3 (4)
C2—C3—C4121.0 (4)C11—C10—C9123.9 (4)
C2—C3—H3119.5C12—C11—C10120.3 (4)
C4—C3—H3119.5C12—C11—C16118.5 (4)
C5—C4—C3119.1 (4)C10—C11—C16121.2 (4)
C5—C4—H4120.4C13—C12—C11120.7 (5)
C3—C4—H4120.4C13—C12—H12119.7
C4—C5—C6121.8 (4)C11—C12—H12119.7
C4—C5—H5119.1C14—C13—C12120.3 (5)
C6—C5—H5119.1C14—C13—H13119.8
C1—C6—C5117.3 (3)C12—C13—H13119.8
C1—C6—C7120.8 (4)C13—C14—C15119.7 (5)
C5—C6—C7121.6 (4)C13—C14—H14120.1
O2—C7—C6123.2 (4)C15—C14—H14120.1
O2—C7—C8122.3 (4)C10—C15—C14121.1 (4)
C6—C7—C8114.5 (4)C10—C15—H15119.4
C7—C8—C9111.0 (3)C14—C15—H15119.4
C7—C8—H8A109.4F1—C16—F2106.4 (5)
C9—C8—H8A109.4F1—C16—F3106.0 (4)
C7—C8—H8B109.4F2—C16—F3104.9 (4)
C9—C8—H8B109.4F1—C16—C11113.7 (4)
H8A—C8—H8B108.0F2—C16—C11113.2 (4)
O1—C9—C10106.9 (3)F3—C16—C11112.0 (5)
C9—O1—C1—C2158.8 (4)C7—C8—C9—C10176.3 (4)
C9—O1—C1—C621.0 (7)O1—C9—C10—C1543.2 (5)
O1—C1—C2—C3179.4 (5)C8—C9—C10—C1577.3 (5)
C6—C1—C2—C30.7 (8)O1—C9—C10—C11136.9 (4)
C1—C2—C3—C41.8 (8)C8—C9—C10—C11102.7 (4)
C2—C3—C4—C52.2 (8)C15—C10—C11—C121.7 (6)
C3—C4—C5—C61.6 (8)C9—C10—C11—C12178.2 (4)
O1—C1—C6—C5179.9 (4)C15—C10—C11—C16178.1 (4)
C2—C1—C6—C50.1 (7)C9—C10—C11—C162.0 (6)
O1—C1—C6—C75.9 (7)C10—C11—C12—C131.4 (6)
C2—C1—C6—C7174.3 (5)C16—C11—C12—C13178.4 (4)
C4—C5—C6—C10.5 (8)C11—C12—C13—C140.2 (7)
C4—C5—C6—C7174.7 (5)C12—C13—C14—C150.7 (7)
C1—C6—C7—O2179.4 (6)C11—C10—C15—C140.9 (6)
C5—C6—C7—O26.6 (9)C9—C10—C15—C14179.1 (4)
C1—C6—C7—C81.3 (7)C13—C14—C15—C100.3 (7)
C5—C6—C7—C8172.6 (5)C12—C11—C16—F12.2 (7)
O2—C7—C8—C9148.5 (5)C10—C11—C16—F1178.0 (4)
C6—C7—C8—C932.3 (6)C12—C11—C16—F2119.4 (4)
C1—O1—C9—C10174.2 (4)C10—C11—C16—F260.4 (6)
C1—O1—C9—C852.2 (5)C12—C11—C16—F3122.3 (4)
C7—C8—C9—O157.6 (5)C10—C11—C16—F357.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···F20.982.363.068 (5)129
C9—H9···F30.982.502.984 (5)110
C12—H12···F10.932.332.677 (6)102
C15—H15···O10.932.502.760 (5)96
C3—H3···O2i0.932.543.311 (5)140
C5—H5···F3ii0.932.543.313 (5)141
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H11F3O2
Mr292.25
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)8.2291 (9), 22.020 (3), 7.3355 (11)
V3)1329.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.18 × 0.02 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4585, 2558, 1462
Rint0.049
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.109, 1.12
No. of reflections2558
No. of parameters190
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···F20.982.363.068 (5)129
C9—H9···F30.982.502.984 (5)110
C12—H12···F10.932.332.677 (6)102
C15—H15···O10.932.502.760 (5)96
C3—H3···O2i0.932.543.311 (5)140
C5—H5···F3ii0.932.543.313 (5)141
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1/2.
 

Acknowledgements

We would like to thank Dr Vladimir Divjaković and Dr Agneš Kapor for the data acquisition and Dr Goran A. Bogdanović for his valuable suggestions. Our work was supported by Scientific Research Grants from the Serbian Ministry of Science and Technology (grant Nos. OI172041, ON172035 and ON173008).

References

First citationBenavente-García, O. & Castillo, J. (2008). J. Agric. Food Chem. 56, 6185–6205.  Web of Science PubMed Google Scholar
First citationBiałońska, A., Ciunik, Z., Kostrzewa-Susłow, E. & Dmochowska-Gładysz, J. (2007). Acta Cryst. E63, o432–o433.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481–504.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrishnaiah, M., Ravi Kumar, R., Jagadeesh Kumar, N., Gunasekar, D. & Jayaprakasam, B. (2005). Acta Cryst. E61, o3565–o3567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd., Yarnton, Oxfordshire, England.  Google Scholar
First citationRodeiro, I., Cancino, L., González, J. E., Morffi, J., Garrido, G., González, R. M., Nuñez, A. & Delgado, R. (2006). Food Chem. Toxicol. 44, 1707–1713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWera, M., Chalyi, A. G., Roshal, A. D. & Błażejowski, J. (2012). Acta Cryst. E68, o253–o254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, H., Xu, Z., Wan, Y., Liang, Y.-M. & Yu, K.-B. (2005). Acta Cryst. E61, o1692–o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1522
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds