organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1367

(1RS,2SR,5SR)-9-Benzyl-2-[(1RS)-1-hy­dr­oxy­benz­yl]-9-aza­bi­cyclo­[3.3.1]nonan-3-one from synchrotron data

aInstitute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok, Poland, and bSynchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Biosciences Division, Bldg 202, Argonne, IL 60439, USA
*Correspondence e-mail: lazny@uwb.edu.pl

(Received 30 March 2012; accepted 4 April 2012; online 13 April 2012)

In the crystal structure of the racemic title compound, C22H25NO2, solved and refined against sychrotron diffraction data, the hy­droxy group and the carbonyl O atom participate in the formation of O—H⋯O hydrogen bonds between pairs of enanti­omers related by a crystallographic centre of symmetry.

Related literature

For recent background literature on the synthesis, structure and applications of related granatane-derived aldols, see: Lazny et al. (2011a[Lazny, R., Wolosewicz, K., Zielinska, P., Urbanczyk-Lipkowska, Z. & Kalicki, P. (2011a). Tetrahedron, 67, 9433-9439.]) and references cited therein. For the stereoselective syntheses, applications and structures of related tropinone aldols, see: Sienkiewicz et al. (2009[Sienkiewicz, M., Wilkaniec, U. & Lazny, R. (2009). Tetrahedron Lett. 50, 7196-7198.]); Lazny et al. (2011b[Lazny, R., Nodzewska, A. & Tomczuk, I. (2011b). Tetrahedron Lett. 52, 5680-5683.]); Brzezinski et al. (2012[Brzezinski, K., Lazny, R., Sienkiewicz, M., Wojtulewski, S. & Dauter, Z. (2012). Acta Cryst. E68, o149-o150.]) and for related nortropin­one aldols, see: Lazny et al. (2001[Lazny, R., Sienkiewicz, M. & Bräse, S. (2001). Tetrahedron, 57, 5825-5832.], 2010[Lazny, R., Nodzewska, A. & Sienkiewicz, M. (2010). Lett. Org. Chem. 7, 21-26.]); Lazny & Nodzewska (2003[Lazny, R. & Nodzewska, A. (2003). Tetrahedron Lett. 44, 2441-2444.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25NO2

  • Mr = 335.43

  • Monoclinic, P 21 /c

  • a = 14.380 (3) Å

  • b = 9.3100 (19) Å

  • c = 13.270 (3) Å

  • β = 106.21 (3)°

  • V = 1705.9 (6) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.61992 Å

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.3 × 0.1 × 0.1 mm

Data collection
  • Mar Research MAR315 CCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Tmin = 0.975, Tmax = 0.992

  • 64629 measured reflections

  • 8582 independent reflections

  • 7757 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.03

  • 8582 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O3i 0.84 2.11 2.9298 (9) 165
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: NECAT APS beamline software; cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and pyMOL (DeLano, 2002[DeLano, W. L. (2002). pyMOL. DeLano Scientific, San Carlos, CA, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Granatane (9-methyl-9-azabicyclo[3.3.1]nonane) and norgranatane (9-azabicyclo[3.3.1]nonane) are known scaffolds of several molecules tested e.g. as antagonists of human serotonin type-3 receptor (5-HT3R). So far, relatively few synthetic and natural granatane derivatives have been synthesized and studied as potential pharmaceutically useful agents. Related diastereomerically and enantimerically pure aldols of granatanone have been recently described (Lazny et al., 2011a). Related aldols of tropinone have been used as key intermediates in several stereoselective syntheses of alkaloids e.g., ferrugine (Sienkiewicz et al., 2009 and references cited therein). The N-benzyl derivative is a potentially useful intermediate for synthesis of nor-aldols of granatanone, preparation of which is unknown. Effective, stereoselective syntheses of related nortropinone aldols (Lazny & Nodzewska, 2003; Lazny et al., 2001) is still an unsolved problem. Therefore synthetically equivalent N-benzylnorgranatanone aldols should open a route to preparative accessibility of substituted norgranatanes for biomedical studies. The described N-benzyl derivative was prepared by a procedure analogous to methods known for N-methyl aldols. The synthetic procedure gave a racemic product.

The crystal structure of the title compound contains one molecule in the asymmetric unit (Fig. 1). Two intermolecular hydrogen bonds are formed between a pair of enantiomers in the crystal lattice. hydroxy group and carbonyl oxygen atom of the azabicyclo[3.3.1]nonan-3-one system participate in this interaction (Table 1, Fig. 2).

Related literature top

For recent background literature on the synthesis, structure and applications of related granatane-derived aldols, see: Lazny et al. (2011a) and references cited therein. For the stereoselective syntheses, applications and structures of related tropinone aldols, see: Sienkiewicz et al. (2009); Lazny et al. (2011b); Brzezinski et al. (2012) and for related nortropinone aldols, see: Lazny et al. (2001, 2010); Lazny & Nodzewska (2003).

Experimental top

A solution of n-butyllithium in hexane (2.5M, 0.88 mL, 2.0 mmol) was added dropwise to a cooled (273 K) and stirred solution of diisopropylamine (0.3 ml, 2.2 mmol) in tetrahydrofuran (6 mL). The mixture was stirred for 30 min at 273 K, and cooled down to 195 K. Then a solution of N-benzylnorgranatanone (0.459 g, 2.0 mmol) in tetrahydrofuran (3 mL) was added dropwise. After stirring for 90 min, benzaldehyde (0.22 ml, 2.18 mmol) was added dropwise and the mixture was stirred for another 15 min. The reaction was quenched with saturated aq. NH4Cl (2 mL), the mixture was diluted with water (10 mL), and extracted with dichloromethane (3 × 20 mL). The combined organic extracts were dried over Na2SO4 and concentrated to give the crude product as a white solid (0.663 g, 99%). Crystallization from a mixed solvent system heptane/dichloromethane gave the product (0.243 g, 75%) as white crystals. Analytical sample was recrystallized from ethyl acetate. [m.p. 412–413 K, Rf: 0.65 (50% ethyl acetate/hexanes); HR (MS-ESI): MNa+, found 358.1794, C22H25NNaO2 requires 358.1783; 1H NMR (CDCl3): 7.43–7.41 (m, 4H), 7.40–7.34 (m, 1H), 7.31–7.28 (m, 1H), 7.26–7.20 (m, 3H), 6.67 (s, 1H), 5.16 (d, J= 4.0 Hz, 1H), 4.04 (q, J= 12.8 Hz, 2H), 3.41 (d, J= 3.6 Hz, 1H), 3.68–3.64 (m, 1H), 2.92 (dd, J1= 16.2 Hz, J2=7.0 Hz, 1H), 2.57 (d, J= 4.0 Hz, 1H), 2.43 (d, J= 16.2 Hz, 1H), 2.19–2.13 (m, 2H), 1.65–1.62 (m, 2H), 1.37–1.32 (m, 2H)].

Refinement top

All hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95–1.00 Å and O—H distances fixed at 0.84 Å and Uiso(H) = 1.5Ueq(C) for hydroxy hydrogen atom and 1.2Ueq(C) for others.

Computing details top

Data collection: NECAT APS beamline software; cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along z-axis. Dashed lines represent hydrogen bonds. For clarity, only hydrogen atoms involved in the intermolecular interactions are shown.
(1RS,2SR,5SR)-9-Benzyl-2-[(1RS)-1-hydroxybenzyl]- 9-azabicyclo[3.3.1]nonan-3-one top
Crystal data top
C22H25NO2F(000) = 720
Mr = 335.43Dx = 1.306 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.61992 Å
Hall symbol: -P 2ybcCell parameters from 8582 reflections
a = 14.380 (3) Åθ = 2.4–31.7°
b = 9.3100 (19) ŵ = 0.08 mm1
c = 13.270 (3) ÅT = 100 K
β = 106.21 (3)°Needle, colourless
V = 1705.9 (6) Å30.3 × 0.1 × 0.1 mm
Z = 4
Data collection top
Mar Research MAR315 CCD
diffractometer
8582 independent reflections
Radiation source: NECAT 24ID-C synchrotron beamline APS, USA7757 reflections with I > 2σ(I)
Si111 double crystal monochromatorRint = 0.046
ω scansθmax = 31.7°, θmin = 2.4°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 2423
Tmin = 0.975, Tmax = 0.992k = 150
64629 measured reflectionsl = 022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.076P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
8582 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C22H25NO2V = 1705.9 (6) Å3
Mr = 335.43Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.61992 Å
a = 14.380 (3) ŵ = 0.08 mm1
b = 9.3100 (19) ÅT = 100 K
c = 13.270 (3) Å0.3 × 0.1 × 0.1 mm
β = 106.21 (3)°
Data collection top
Mar Research MAR315 CCD
diffractometer
8582 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
7757 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.992Rint = 0.046
64629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.58 e Å3
8582 reflectionsΔρmin = 0.30 e Å3
227 parameters
Special details top

Experimental. The crystal was mounted with vaseline on a pin-attached capillary. Upon mounting, the crystal was quenched to 100 K in a nitrogen-gas stream supplied by an Oxford Cryo-Jet. Diffraction data were measured at the station 24-ID—C of the APS synchrotron by rotation method.

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30958 (3)0.78442 (5)0.11193 (4)0.00793 (8)
H10.27510.73280.15700.010*
C20.36548 (3)0.67096 (5)0.06626 (4)0.00840 (8)
H20.42140.63550.12410.010*
C30.40394 (4)0.73073 (6)0.02043 (4)0.01010 (8)
O30.48222 (3)0.69336 (5)0.03110 (4)0.01510 (8)
C40.33793 (4)0.83261 (6)0.09524 (4)0.01142 (9)
H4A0.29030.77620.14890.014*
H4B0.37680.88970.13170.014*
C50.28317 (4)0.93572 (6)0.04151 (4)0.01032 (8)
H50.23130.98370.09760.012*
C60.34966 (4)1.05349 (6)0.02088 (4)0.01288 (9)
H6A0.38321.10200.02540.015*
H6B0.30991.12610.04430.015*
C70.42514 (4)0.99255 (6)0.11677 (4)0.01233 (9)
H7A0.45881.07260.16140.015*
H7B0.47400.93700.09330.015*
C80.37747 (4)0.89508 (6)0.18111 (4)0.01071 (8)
H8A0.34020.95480.21780.013*
H8B0.42840.84420.23500.013*
N90.23546 (3)0.85037 (5)0.02376 (3)0.00863 (7)
C100.29832 (3)0.54154 (6)0.02123 (4)0.00928 (8)
H100.23450.58230.01940.011*
O100.33364 (3)0.45861 (5)0.05034 (3)0.01360 (8)
H10A0.38980.42940.02030.020*
C110.27972 (3)0.45235 (5)0.10896 (4)0.00883 (8)
C120.18961 (4)0.45726 (6)0.12906 (4)0.01206 (9)
H120.14030.51800.08810.014*
C130.17105 (4)0.37413 (7)0.20856 (5)0.01465 (10)
H130.10930.37820.22130.018*
C140.24272 (4)0.28511 (6)0.26930 (4)0.01428 (10)
H140.22980.22700.32270.017*
C150.33362 (4)0.28183 (6)0.25111 (4)0.01342 (9)
H150.38330.22280.29330.016*
C160.35203 (4)0.36467 (6)0.17144 (4)0.01158 (9)
H160.41410.36160.15950.014*
C170.16235 (4)0.93738 (6)0.05545 (4)0.01253 (9)
H17A0.11760.98060.00790.015*
H17B0.19541.01660.10140.015*
C180.10470 (4)0.85031 (6)0.11268 (4)0.01131 (9)
C190.13134 (4)0.84836 (6)0.22226 (4)0.01282 (9)
H190.18310.90760.26030.015*
C200.08325 (4)0.76093 (7)0.27672 (5)0.01567 (10)
H200.10350.75850.35120.019*
C210.00550 (4)0.67733 (7)0.22170 (5)0.01794 (11)
H210.02690.61640.25840.022*
C220.02467 (4)0.68332 (8)0.11257 (5)0.01934 (11)
H220.07940.62920.07490.023*
C230.02508 (4)0.76839 (7)0.05837 (5)0.01621 (10)
H230.00470.77070.01620.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.00930 (16)0.00893 (19)0.00596 (16)0.00061 (13)0.00280 (13)0.00010 (13)
C20.00893 (16)0.00910 (19)0.00783 (16)0.00015 (13)0.00343 (13)0.00046 (13)
C30.01167 (18)0.0101 (2)0.01030 (18)0.00211 (14)0.00599 (14)0.00254 (14)
O30.01403 (16)0.01532 (19)0.01972 (19)0.00038 (13)0.01092 (14)0.00186 (15)
C40.01423 (19)0.0137 (2)0.00782 (17)0.00160 (15)0.00560 (15)0.00005 (15)
C50.01295 (18)0.0109 (2)0.00784 (17)0.00003 (15)0.00418 (14)0.00183 (14)
C60.0171 (2)0.0097 (2)0.0129 (2)0.00171 (16)0.00595 (16)0.00079 (15)
C70.01364 (19)0.0116 (2)0.01232 (19)0.00284 (15)0.00451 (15)0.00222 (16)
C80.01263 (18)0.0115 (2)0.00778 (17)0.00095 (15)0.00251 (14)0.00161 (14)
N90.00942 (15)0.01032 (18)0.00683 (15)0.00179 (12)0.00338 (12)0.00153 (12)
C100.01063 (17)0.0100 (2)0.00774 (17)0.00114 (14)0.00340 (13)0.00120 (14)
O100.01844 (17)0.01365 (18)0.01040 (15)0.00106 (13)0.00681 (13)0.00429 (13)
C110.00996 (17)0.00859 (19)0.00832 (17)0.00088 (13)0.00316 (13)0.00087 (13)
C120.01043 (18)0.0135 (2)0.0130 (2)0.00065 (15)0.00445 (15)0.00118 (16)
C130.0149 (2)0.0158 (2)0.0156 (2)0.00242 (17)0.00802 (17)0.00100 (18)
C140.0206 (2)0.0125 (2)0.01139 (19)0.00221 (17)0.00719 (17)0.00027 (16)
C150.0181 (2)0.0119 (2)0.01043 (19)0.00227 (16)0.00425 (16)0.00130 (16)
C160.01218 (18)0.0124 (2)0.01057 (18)0.00178 (15)0.00386 (14)0.00047 (15)
C170.01361 (19)0.0129 (2)0.0126 (2)0.00440 (16)0.00617 (15)0.00246 (16)
C180.01020 (17)0.0139 (2)0.01086 (18)0.00307 (15)0.00472 (14)0.00007 (15)
C190.01191 (18)0.0166 (2)0.01089 (19)0.00131 (16)0.00477 (15)0.00027 (16)
C200.0147 (2)0.0212 (3)0.0132 (2)0.00182 (18)0.00730 (17)0.00159 (18)
C210.0158 (2)0.0205 (3)0.0214 (3)0.00107 (19)0.01156 (19)0.0008 (2)
C220.0138 (2)0.0253 (3)0.0208 (3)0.00457 (19)0.00800 (19)0.0067 (2)
C230.01207 (19)0.0241 (3)0.0130 (2)0.00040 (18)0.00449 (16)0.00376 (19)
Geometric parameters (Å, º) top
C1—N91.4784 (8)O10—H10A0.8400
C1—C81.5353 (8)C11—C121.3947 (8)
C1—C21.5496 (7)C11—C161.3977 (8)
C1—H11.0000C12—C131.3931 (8)
C2—C31.5147 (7)C12—H120.9500
C2—C101.5554 (8)C13—C141.3910 (9)
C2—H21.0000C13—H130.9500
C3—O31.2236 (7)C14—C151.3942 (9)
C3—C41.5033 (8)C14—H140.9500
C4—C51.5374 (8)C15—C161.3924 (8)
C4—H4A0.9900C15—H150.9500
C4—H4B0.9900C16—H160.9500
C5—N91.4778 (7)C17—C181.5075 (8)
C5—C61.5362 (8)C17—H17A0.9900
C5—H51.0000C17—H17B0.9900
C6—C71.5324 (9)C18—C231.3969 (9)
C6—H6A0.9900C18—C191.3966 (8)
C6—H6B0.9900C19—C201.3936 (8)
C7—C81.5326 (8)C19—H190.9500
C7—H7A0.9900C20—C211.3903 (10)
C7—H7B0.9900C20—H200.9500
C8—H8A0.9900C21—C221.3920 (10)
C8—H8B0.9900C21—H210.9500
N9—C171.4782 (7)C22—C231.3941 (9)
C10—O101.4232 (7)C22—H220.9500
C10—C111.5133 (7)C23—H230.9500
C10—H101.0000
N9—C1—C8113.09 (5)O10—C10—C2112.19 (4)
N9—C1—C2108.16 (4)C11—C10—C2110.71 (4)
C8—C1—C2112.25 (4)O10—C10—H10106.9
N9—C1—H1107.7C11—C10—H10106.9
C8—C1—H1107.7C2—C10—H10106.9
C2—C1—H1107.7C10—O10—H10A109.5
C3—C2—C1112.69 (4)C12—C11—C16118.86 (5)
C3—C2—C10108.18 (4)C12—C11—C10120.15 (5)
C1—C2—C10110.12 (4)C16—C11—C10120.99 (4)
C3—C2—H2108.6C13—C12—C11120.75 (5)
C1—C2—H2108.6C13—C12—H12119.6
C10—C2—H2108.6C11—C12—H12119.6
O3—C3—C4122.33 (5)C14—C13—C12120.14 (5)
O3—C3—C2121.74 (5)C14—C13—H13119.9
C4—C3—C2115.87 (4)C12—C13—H13119.9
C3—C4—C5113.48 (4)C13—C14—C15119.45 (5)
C3—C4—H4A108.9C13—C14—H14120.3
C5—C4—H4A108.9C15—C14—H14120.3
C3—C4—H4B108.9C16—C15—C14120.36 (5)
C5—C4—H4B108.9C16—C15—H15119.8
H4A—C4—H4B107.7C14—C15—H15119.8
N9—C5—C6112.88 (4)C15—C16—C11120.42 (5)
N9—C5—C4108.53 (5)C15—C16—H16119.8
C6—C5—C4111.92 (4)C11—C16—H16119.8
N9—C5—H5107.8N9—C17—C18112.54 (5)
C6—C5—H5107.8N9—C17—H17A109.1
C4—C5—H5107.8C18—C17—H17A109.1
C7—C6—C5111.92 (5)N9—C17—H17B109.1
C7—C6—H6A109.2C18—C17—H17B109.1
C5—C6—H6A109.2H17A—C17—H17B107.8
C7—C6—H6B109.2C23—C18—C19118.50 (5)
C5—C6—H6B109.2C23—C18—C17121.36 (5)
H6A—C6—H6B107.9C19—C18—C17120.13 (5)
C6—C7—C8111.01 (4)C20—C19—C18121.06 (6)
C6—C7—H7A109.4C20—C19—H19119.5
C8—C7—H7A109.4C18—C19—H19119.5
C6—C7—H7B109.4C21—C20—C19119.83 (6)
C8—C7—H7B109.4C21—C20—H20120.1
H7A—C7—H7B108.0C19—C20—H20120.1
C7—C8—C1111.89 (4)C22—C21—C20119.68 (6)
C7—C8—H8A109.2C22—C21—H21120.2
C1—C8—H8A109.2C20—C21—H21120.2
C7—C8—H8B109.2C21—C22—C23120.25 (6)
C1—C8—H8B109.2C21—C22—H22119.9
H8A—C8—H8B107.9C23—C22—H22119.9
C5—N9—C1109.70 (4)C22—C23—C18120.58 (6)
C5—N9—C17110.82 (4)C22—C23—H23119.7
C1—N9—C17114.54 (4)C18—C23—H23119.7
O10—C10—C11112.85 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O3i0.842.112.9298 (9)165
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H25NO2
Mr335.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.380 (3), 9.3100 (19), 13.270 (3)
β (°) 106.21 (3)
V3)1705.9 (6)
Z4
Radiation typeSynchrotron, λ = 0.61992 Å
µ (mm1)0.08
Crystal size (mm)0.3 × 0.1 × 0.1
Data collection
DiffractometerMar Research MAR315 CCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski et al., 2003)
Tmin, Tmax0.975, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
64629, 8582, 7757
Rint0.046
(sin θ/λ)max1)0.848
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.03
No. of reflections8582
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.30

Computer programs: NECAT APS beamline software, HKL-2000 (Otwinowski & Minor, 1997), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O3i0.842.112.9298 (9)164.7
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported in part by the University of Bialystok (BST-125), the National Science Center, Poland (grant No. N N204 546939), by the Intra­mural Research Program of NIH, National Cancer Institute, Center for Cancer Research, and with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract HHSN2612008000001E.

References

First citationBrzezinski, K., Lazny, R., Sienkiewicz, M., Wojtulewski, S. & Dauter, Z. (2012). Acta Cryst. E68, o149–o150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeLano, W. L. (2002). pyMOL. DeLano Scientific, San Carlos, CA, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLazny, R. & Nodzewska, A. (2003). Tetrahedron Lett. 44, 2441–2444.  Web of Science CrossRef CAS Google Scholar
First citationLazny, R., Nodzewska, A. & Sienkiewicz, M. (2010). Lett. Org. Chem. 7, 21–26.  CrossRef CAS Google Scholar
First citationLazny, R., Nodzewska, A. & Tomczuk, I. (2011b). Tetrahedron Lett. 52, 5680–5683.  Web of Science CrossRef CAS Google Scholar
First citationLazny, R., Sienkiewicz, M. & Bräse, S. (2001). Tetrahedron, 57, 5825–5832.  Web of Science CrossRef CAS Google Scholar
First citationLazny, R., Wolosewicz, K., Zielinska, P., Urbanczyk-Lipkowska, Z. & Kalicki, P. (2011a). Tetrahedron, 67, 9433–9439.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSienkiewicz, M., Wilkaniec, U. & Lazny, R. (2009). Tetrahedron Lett. 50, 7196–7198.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1367
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds