organic compounds
Hydrogen bonding in 1-carboxypropanaminium nitrate
aLaboratoire des Structures, Propriétés et Interactions Interatomiques, Université Abbes Laghrour Khenchela, 40000 Khenchela, Algeria, and bUniversité Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), 69622 Villeurbanne Cedex, France
*Correspondence e-mail: benalicherif@hotmail.com
There are two crystallographically independent cations and two anions in the 4H5NO2+·NO3−. In the crystal, the 1-carboxypropanaminium cations and nitrate anions are linked to each other through strong N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional complex network. C—H⋯O interactions also occur.
of the title compound, CRelated literature
For background to inorganic–organic hybrid materials, see: Benali-Cherif, Allouche et al. (2007); Benali-Cherif, Kateb et al. (2007); Messai et al. (2009); Cherouana et al. (2003). Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by multi-scan inter-frame scaling.
Experimental
Crystal data
|
Refinement
|
Data collection: Gemini User Manual (Oxford Diffraction, 2006); cell CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812013682/ru2030sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812013682/ru2030Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812013682/ru2030Isup3.cml
colorlesse single crystals of this compound were obtained after a few days by slow evaporation, at room temperature, of an equimolar aqueous solution of 2-amino butyric acid and nitric acid.
In the absence of significant
Friedel pairs were merged.The
was arbitrarily assigned.The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:nnn) reflect changes in the illuminated volume of the crystal.
Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling.
All H atoms were positioned geometrically and refined with a riding model, fixing the bond lengths at 0.93 and 0.96 A ° for CH and CH3 groups, respectively. The Uiso(H) values were constrained to be 1.2Ueq (parent) or 1.5Ueq (methyl C).
Data collection: Gemini User Manual (Oxford Diffraction, 2006); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997)and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Aview of (I), showing the atomic labelling scheme and with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. packing view of the hydrogen-bonding network |
C4H10NO2+·NO3− | F(000) = 704 |
Mr = 166.14 | Dx = 1.453 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 7884 reflections |
a = 18.274 (2) Å | θ = 4.8–66.5° |
b = 5.6052 (4) Å | µ = 1.18 mm−1 |
c = 16.536 (2) Å | T = 150 K |
β = 116.224 (16)° | Needle, colorless |
V = 1519.4 (3) Å3 | 0.1 × 0.02 × 0.01 mm |
Z = 8 |
Oxford Xcalibur Atlas Gemini ultra diffractometer | 2683 independent reflections |
Radiation source: fine-focus sealed tube | 2441 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 10.4685 pixels mm-1 | θmax = 66.6°, θmin = 5.4° |
ω scans | h = −21→21 |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) | k = −6→6 |
Tmin = 0.987, Tmax = 0.999 | l = −19→19 |
14871 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters not refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0631P)2 + 0.5656P] where P = (Fo2 + 2Fc2)/3 |
2683 reflections | (Δ/σ)max < 0.001 |
203 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
C4H10NO2+·NO3− | V = 1519.4 (3) Å3 |
Mr = 166.14 | Z = 8 |
Monoclinic, P21/c | Cu Kα radiation |
a = 18.274 (2) Å | µ = 1.18 mm−1 |
b = 5.6052 (4) Å | T = 150 K |
c = 16.536 (2) Å | 0.1 × 0.02 × 0.01 mm |
β = 116.224 (16)° |
Oxford Xcalibur Atlas Gemini ultra diffractometer | 2683 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) | 2441 reflections with I > 2σ(I) |
Tmin = 0.987, Tmax = 0.999 | Rint = 0.054 |
14871 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters not refined |
S = 1.08 | Δρmax = 0.25 e Å−3 |
2683 reflections | Δρmin = −0.31 e Å−3 |
203 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1A | 0.05317 (6) | 0.57372 (18) | 0.29774 (7) | 0.0216 (3) | |
O2A | 0.11711 (7) | 0.2856 (2) | 0.39898 (7) | 0.0261 (3) | |
H2O | 0.1042 | 0.3668 | 0.4319 | 0.039* | |
N1A | 0.06545 (7) | 0.3190 (2) | 0.16452 (8) | 0.0153 (3) | |
H1A | 0.0142 | 0.2831 | 0.1526 | 0.023* | |
H1B | 0.0799 | 0.2372 | 0.1277 | 0.023* | |
H1C | 0.0693 | 0.4746 | 0.1563 | 0.023* | |
C1A | 0.09177 (9) | 0.3901 (3) | 0.32014 (10) | 0.0163 (3) | |
C2A | 0.12050 (8) | 0.2556 (2) | 0.25965 (9) | 0.0152 (3) | |
H2 | 0.1166 | 0.0838 | 0.2680 | 0.018* | |
C3A | 0.20896 (9) | 0.3193 (3) | 0.28412 (11) | 0.0216 (3) | |
H3A | 0.2119 | 0.4876 | 0.2722 | 0.026* | |
H3B | 0.2415 | 0.2939 | 0.3482 | 0.026* | |
C4A | 0.24575 (10) | 0.1760 (3) | 0.23296 (12) | 0.0299 (4) | |
H4A | 0.3012 | 0.2252 | 0.2515 | 0.045* | |
H4B | 0.2148 | 0.2030 | 0.1694 | 0.045* | |
H4C | 0.2445 | 0.0093 | 0.2456 | 0.045* | |
O1B | 0.45105 (7) | 0.41637 (18) | 0.24898 (7) | 0.0221 (3) | |
O2B | 0.37874 (8) | 0.6976 (2) | 0.27877 (8) | 0.0294 (3) | |
H4 | 0.3942 | 0.6267 | 0.3269 | 0.044* | |
N1B | 0.43613 (7) | 0.6551 (2) | 0.09954 (8) | 0.0154 (3) | |
H3C | 0.4859 | 0.7012 | 0.1386 | 0.023* | |
H3D | 0.4215 | 0.7326 | 0.0477 | 0.023* | |
H3E | 0.4362 | 0.4988 | 0.0900 | 0.023* | |
C1B | 0.40800 (9) | 0.5918 (3) | 0.22859 (10) | 0.0173 (3) | |
C2B | 0.37732 (9) | 0.7096 (2) | 0.13665 (9) | 0.0163 (3) | |
H6 | 0.3747 | 0.8827 | 0.1434 | 0.020* | |
C3B | 0.29190 (9) | 0.6152 (3) | 0.07476 (10) | 0.0243 (4) | |
H7A | 0.2946 | 0.4431 | 0.0704 | 0.029* | |
H7B | 0.2557 | 0.6503 | 0.1019 | 0.029* | |
C4B | 0.25584 (10) | 0.7202 (4) | −0.01973 (11) | 0.0341 (4) | |
H8A | 0.2026 | 0.6538 | −0.0548 | 0.051* | |
H8B | 0.2906 | 0.6829 | −0.0478 | 0.051* | |
H8C | 0.2516 | 0.8902 | −0.0163 | 0.051* | |
O4B | 0.08435 (8) | 0.80167 (19) | 0.13033 (7) | 0.0262 (3) | |
O3B | 0.08960 (7) | 1.04237 (18) | 0.03095 (7) | 0.0226 (3) | |
N2A | 0.08566 (7) | 0.8294 (2) | 0.05545 (8) | 0.0170 (3) | |
O3A | 0.41482 (8) | 0.32834 (19) | 0.54878 (8) | 0.0275 (3) | |
O4A | 0.41008 (7) | 0.56070 (17) | 0.44238 (7) | 0.0212 (3) | |
O5A | 0.41568 (7) | 0.17533 (18) | 0.42863 (8) | 0.0246 (3) | |
N2B | 0.41346 (7) | 0.3502 (2) | 0.47249 (8) | 0.0173 (3) | |
O5B | 0.08332 (7) | 0.65860 (18) | 0.00782 (8) | 0.0248 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0271 (6) | 0.0212 (6) | 0.0200 (6) | 0.0077 (4) | 0.0136 (5) | 0.0009 (4) |
O2A | 0.0408 (7) | 0.0267 (6) | 0.0164 (6) | 0.0118 (5) | 0.0178 (5) | 0.0036 (4) |
N1A | 0.0201 (6) | 0.0136 (6) | 0.0140 (6) | −0.0013 (4) | 0.0092 (5) | −0.0015 (4) |
C1A | 0.0190 (7) | 0.0164 (7) | 0.0154 (7) | −0.0021 (5) | 0.0093 (6) | −0.0007 (5) |
C2A | 0.0193 (7) | 0.0140 (6) | 0.0134 (7) | 0.0017 (5) | 0.0082 (6) | 0.0002 (5) |
C3A | 0.0195 (8) | 0.0246 (8) | 0.0201 (8) | 0.0000 (6) | 0.0083 (6) | −0.0039 (6) |
C4A | 0.0227 (8) | 0.0391 (10) | 0.0325 (9) | −0.0003 (7) | 0.0163 (7) | −0.0078 (7) |
O1B | 0.0280 (6) | 0.0220 (6) | 0.0182 (5) | 0.0087 (4) | 0.0119 (5) | 0.0064 (4) |
O2B | 0.0450 (7) | 0.0321 (6) | 0.0190 (6) | 0.0178 (5) | 0.0213 (6) | 0.0091 (5) |
N1B | 0.0197 (6) | 0.0141 (6) | 0.0141 (6) | −0.0016 (4) | 0.0091 (5) | 0.0000 (4) |
C1B | 0.0215 (7) | 0.0164 (7) | 0.0156 (7) | −0.0004 (5) | 0.0096 (6) | −0.0005 (5) |
C2B | 0.0210 (7) | 0.0157 (7) | 0.0153 (7) | 0.0030 (5) | 0.0110 (6) | 0.0021 (5) |
C3B | 0.0191 (8) | 0.0329 (8) | 0.0212 (8) | 0.0008 (6) | 0.0092 (7) | 0.0065 (6) |
C4B | 0.0230 (9) | 0.0497 (11) | 0.0232 (9) | −0.0038 (8) | 0.0043 (7) | 0.0112 (8) |
O4B | 0.0474 (7) | 0.0192 (5) | 0.0168 (6) | −0.0034 (5) | 0.0184 (5) | 0.0011 (4) |
O3B | 0.0373 (6) | 0.0165 (5) | 0.0196 (6) | −0.0017 (4) | 0.0176 (5) | 0.0019 (4) |
N2A | 0.0198 (6) | 0.0173 (6) | 0.0143 (6) | −0.0006 (5) | 0.0079 (5) | −0.0013 (5) |
O3A | 0.0522 (8) | 0.0186 (5) | 0.0228 (6) | 0.0024 (5) | 0.0268 (6) | 0.0028 (4) |
O4A | 0.0334 (6) | 0.0158 (5) | 0.0176 (5) | 0.0026 (4) | 0.0140 (5) | 0.0034 (4) |
O5A | 0.0320 (6) | 0.0208 (5) | 0.0242 (6) | −0.0005 (4) | 0.0153 (5) | −0.0083 (4) |
N2B | 0.0199 (6) | 0.0172 (6) | 0.0168 (6) | 0.0005 (5) | 0.0099 (5) | −0.0002 (5) |
O5B | 0.0321 (6) | 0.0208 (6) | 0.0235 (6) | 0.0007 (4) | 0.0141 (5) | −0.0079 (4) |
O1A—C1A | 1.2098 (18) | N1B—C2B | 1.4859 (17) |
O2A—C1A | 1.3127 (18) | N1B—H3C | 0.8900 |
O2A—H2O | 0.8200 | N1B—H3D | 0.8900 |
N1A—C2A | 1.4880 (18) | N1B—H3E | 0.8900 |
N1A—H1A | 0.8900 | C1B—C2B | 1.520 (2) |
N1A—H1B | 0.8900 | C2B—C3B | 1.534 (2) |
N1A—H1C | 0.8900 | C2B—H6 | 0.9800 |
C1A—C2A | 1.5193 (19) | C3B—C4B | 1.521 (2) |
C2A—C3A | 1.525 (2) | C3B—H7A | 0.9700 |
C2A—H2 | 0.9800 | C3B—H7B | 0.9700 |
C3A—C4A | 1.522 (2) | C4B—H8A | 0.9600 |
C3A—H3A | 0.9700 | C4B—H8B | 0.9600 |
C3A—H3B | 0.9700 | C4B—H8C | 0.9600 |
C4A—H4A | 0.9600 | O4B—N2A | 1.2586 (16) |
C4A—H4B | 0.9600 | O3B—N2A | 1.2727 (16) |
C4A—H4C | 0.9600 | N2A—O5B | 1.2285 (16) |
O1B—C1B | 1.2103 (18) | O3A—N2B | 1.2568 (16) |
O2B—C1B | 1.3108 (18) | O4A—N2B | 1.2714 (16) |
O2B—H4 | 0.8200 | O5A—N2B | 1.2307 (16) |
C1A—O2A—H2O | 109.5 | H3C—N1B—H3D | 109.5 |
C2A—N1A—H1A | 109.5 | C2B—N1B—H3E | 109.5 |
C2A—N1A—H1B | 109.5 | H3C—N1B—H3E | 109.5 |
H1A—N1A—H1B | 109.5 | H3D—N1B—H3E | 109.5 |
C2A—N1A—H1C | 109.5 | O1B—C1B—O2B | 126.01 (13) |
H1A—N1A—H1C | 109.5 | O1B—C1B—C2B | 122.62 (13) |
H1B—N1A—H1C | 109.5 | O2B—C1B—C2B | 111.30 (12) |
O1A—C1A—O2A | 125.85 (13) | N1B—C2B—C1B | 108.01 (11) |
O1A—C1A—C2A | 123.02 (13) | N1B—C2B—C3B | 111.22 (12) |
O2A—C1A—C2A | 111.08 (12) | C1B—C2B—C3B | 109.52 (12) |
N1A—C2A—C1A | 107.98 (11) | N1B—C2B—H6 | 109.4 |
N1A—C2A—C3A | 111.51 (11) | C1B—C2B—H6 | 109.4 |
C1A—C2A—C3A | 110.08 (12) | C3B—C2B—H6 | 109.4 |
N1A—C2A—H2 | 109.1 | C4B—C3B—C2B | 113.77 (13) |
C1A—C2A—H2 | 109.1 | C4B—C3B—H7A | 108.8 |
C3A—C2A—H2 | 109.1 | C2B—C3B—H7A | 108.8 |
C4A—C3A—C2A | 113.94 (13) | C4B—C3B—H7B | 108.8 |
C4A—C3A—H3A | 108.8 | C2B—C3B—H7B | 108.8 |
C2A—C3A—H3A | 108.8 | H7A—C3B—H7B | 107.7 |
C4A—C3A—H3B | 108.8 | C3B—C4B—H8A | 109.5 |
C2A—C3A—H3B | 108.8 | C3B—C4B—H8B | 109.5 |
H3A—C3A—H3B | 107.7 | H8A—C4B—H8B | 109.5 |
C3A—C4A—H4A | 109.5 | C3B—C4B—H8C | 109.5 |
C3A—C4A—H4B | 109.5 | H8A—C4B—H8C | 109.5 |
H4A—C4A—H4B | 109.5 | H8B—C4B—H8C | 109.5 |
C3A—C4A—H4C | 109.5 | O5B—N2A—O4B | 121.59 (12) |
H4A—C4A—H4C | 109.5 | O5B—N2A—O3B | 121.18 (11) |
H4B—C4A—H4C | 109.5 | O4B—N2A—O3B | 117.22 (11) |
C1B—O2B—H4 | 109.5 | O5A—N2B—O3A | 121.51 (12) |
C2B—N1B—H3C | 109.5 | O5A—N2B—O4A | 121.13 (12) |
C2B—N1B—H3D | 109.5 | O3A—N2B—O4A | 117.36 (11) |
O1A—C1A—C2A—N1A | −24.57 (18) | O1B—C1B—C2B—N1B | −26.22 (19) |
O2A—C1A—C2A—N1A | 157.91 (12) | O2B—C1B—C2B—N1B | 156.73 (12) |
O1A—C1A—C2A—C3A | 97.38 (16) | O1B—C1B—C2B—C3B | 95.05 (16) |
O2A—C1A—C2A—C3A | −80.14 (15) | O2B—C1B—C2B—C3B | −82.00 (15) |
N1A—C2A—C3A—C4A | −65.55 (16) | N1B—C2B—C3B—C4B | −60.01 (17) |
C1A—C2A—C3A—C4A | 174.63 (13) | C1B—C2B—C3B—C4B | −179.33 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1Ai | 0.89 | 2.11 | 2.8590 (18) | 141 |
N1A—H1A···O5Bii | 0.89 | 2.48 | 2.9464 (18) | 113 |
N1A—H1B···O3Biii | 0.89 | 2.01 | 2.8877 (17) | 169 |
N1A—H1B···O4Biii | 0.89 | 2.44 | 3.0033 (16) | 121 |
N1A—H1C···O4B | 0.89 | 1.93 | 2.8162 (16) | 173 |
O2A—H2O···O3Biv | 0.82 | 1.84 | 2.6295 (17) | 160 |
N1B—H3C···O1Bv | 0.89 | 2.08 | 2.8470 (16) | 143 |
N1B—H3C···O5Av | 0.89 | 2.50 | 2.946 (2) | 111 |
N1B—H3D···O3Avi | 0.89 | 2.47 | 2.9917 (16) | 118 |
N1B—H3D···O4Avi | 0.89 | 2.02 | 2.9025 (16) | 169 |
N1B—H3E···O3Avii | 0.89 | 1.94 | 2.8126 (16) | 168 |
O2B—H4···O4A | 0.82 | 1.84 | 2.6206 (16) | 159 |
C4A—H4B···O3Biii | 0.96 | 2.58 | 3.382 (2) | 141 |
C2B—H6···O3Avi | 0.98 | 2.57 | 3.189 (2) | 121 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y+1, −z; (iii) x, y−1, z; (iv) x, −y+3/2, z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x, −y+3/2, z−1/2; (vii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C4H10NO2+·NO3− |
Mr | 166.14 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 18.274 (2), 5.6052 (4), 16.536 (2) |
β (°) | 116.224 (16) |
V (Å3) | 1519.4 (3) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 1.18 |
Crystal size (mm) | 0.1 × 0.02 × 0.01 |
Data collection | |
Diffractometer | Oxford Xcalibur Atlas Gemini ultra diffractometer |
Absorption correction | Analytical (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.987, 0.999 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14871, 2683, 2441 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.109, 1.08 |
No. of reflections | 2683 |
No. of parameters | 203 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.25, −0.31 |
Computer programs: Gemini User Manual (Oxford Diffraction, 2006), CrysAlis PRO (Oxford Diffraction, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997)and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1Ai | 0.8900 | 2.1100 | 2.8590 (18) | 141.00 |
N1A—H1A···O5Bii | 0.8900 | 2.4800 | 2.9464 (18) | 113.00 |
N1A—H1B···O3Biii | 0.8900 | 2.0100 | 2.8877 (17) | 169.00 |
N1A—H1B···O4Biii | 0.8900 | 2.4400 | 3.0033 (16) | 121.00 |
N1A—H1C···O4B | 0.8900 | 1.9300 | 2.8162 (16) | 173.00 |
O2A—H2O···O3Biv | 0.8200 | 1.8400 | 2.6295 (17) | 160.00 |
N1B—H3C···O1Bv | 0.8900 | 2.0800 | 2.8470 (16) | 143.00 |
N1B—H3C···O5Av | 0.8900 | 2.5000 | 2.946 (2) | 111.00 |
N1B—H3D···O3Avi | 0.8900 | 2.4700 | 2.9917 (16) | 118.00 |
N1B—H3D···O4Avi | 0.8900 | 2.0200 | 2.9025 (16) | 169.00 |
N1B—H3E···O3Avii | 0.8900 | 1.9400 | 2.8126 (16) | 168.00 |
O2B—H4···O4A | 0.8200 | 1.8400 | 2.6206 (16) | 159.00 |
C4A—H4B···O3Biii | 0.9600 | 2.5800 | 3.382 (2) | 141.00 |
C2B—H6···O3Avi | 0.9800 | 2.5700 | 3.189 (2) | 121.00 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y+1, −z; (iii) x, y−1, z; (iv) x, −y+3/2, z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x, −y+3/2, z−1/2; (vii) x, −y+1/2, z−1/2. |
Acknowledgements
We thank Professor Dominique Luneau (Laboratoire des Multimatériaux et Interfaces UMR 5615, Université Claude Bernard Lyon 1, France) for the diffraction facilities. We also thank Abbes Laghrour Khenchela University and the Ministère de l'Enseignement Supérieur et de la Recherche Scientifique–Algeria for financial support via the PNE programme.
References
Benali-Cherif, N., Allouche, F., Direm, A., Boukli-H-Benmenni, L. & Soudani, K. (2007). Acta Cryst. E63, o2643–o2645. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. & Messai, A. (2007). Acta Cryst. E63, o3251. Web of Science CSD CrossRef IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cherouana, A., Benali-Cherif, N. & Bendjeddou, L. (2003). Acta Cryst. E59, o180–o182. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2006). Gemini User Manual. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Inorganic organic hybrid materials have been studied extensively because the blending of organic and inorganic components allows to the development of materials with novel properties. (Cherouana et al., 2003; Benali-Cherif, Allouche et al., 2007; Benali-Cherif, Kateb et al., 2007; Messai et al., 2009; In particular the family of material which combine nitrate anions with organic molecules such as aromatic and aliphatic aminoacids has been studied intensively due to their numerous uses in various fields such as biomolecular science, liquid crystals, catalysts and fuel cells.
As a contribution to the study of thiscompound family, we report in this work the synthesis and the crystal structure of a new organic cation nitrate (C4H5O2N)+(N O3)- (I). The asymmetric unit in the structure of (I) contains two nitrate anions and two crystallographically independent monoprotonated 2-Ammonium butyric acid cations (Fig. 1). wich one one of these cations is R configuration and the second was the S configration. In the nitrate anions, two of the N_O distances, involving atoms O3 and O4, are slightly longer than the third, involving atom O5, while the O_N···O angles range from 117.6 (3) to 121.7 (3). The bond distances and angles of 2-Ammonium butyric acid cation are normal. The nitrate anion in (I) plays an important role in hydrogen bonding, with all three O atoms (O3, O4 and O5) being involved. The 2-Ammonium butyric acid residue forms three strong O_H··· O hydrogen bonds with the nitrate anion. The amino N atom of the phenylglycinium residue forms eight N_H···O hydrogen bonds via atoms O1, O2 and O3 of the nitrate anion, and two via the carboxyl atom O4 (Fig. 2).