organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1307-o1308

Hydrogen bonding in 1-carb­­oxy­propanaminium nitrate

aLaboratoire des Structures, Propriétés et Interactions Interatomiques, Université Abbes Laghrour Khenchela, 40000 Khenchela, Algeria, and bUniversité Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), 69622 Villeurbanne Cedex, France
*Correspondence e-mail: benalicherif@hotmail.com

(Received 7 March 2012; accepted 29 March 2012; online 4 April 2012)

There are two crystallographically independent cations and two anions in the asymmetric unit of the title compound, C4H5NO2+·NO3. In the crystal, the 1-carb­oxy­propanaminium cations and nitrate anions are linked to each other through strong N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional complex network. C—H⋯O inter­actions also occur.

Related literature

For background to inorganic–organic hybrid materials, see: Benali-Cherif, Allouche et al. (2007[Benali-Cherif, N., Allouche, F., Direm, A., Boukli-H-Benmenni, L. & Soudani, K. (2007). Acta Cryst. E63, o2643-o2645.]); Benali-Cherif, Kateb et al. (2007[Benali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. & Messai, A. (2007). Acta Cryst. E63, o3251.]); Messai et al. (2009[Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460.]); Cherouana et al. (2003[Cherouana, A., Benali-Cherif, N. & Bendjeddou, L. (2003). Acta Cryst. E59, o180-o182.]). Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) by multi-scan inter-frame scaling.

[Scheme 1]

Experimental

Crystal data
  • C4H10NO2+·NO3

  • Mr = 166.14

  • Monoclinic, P 21 /c

  • a = 18.274 (2) Å

  • b = 5.6052 (4) Å

  • c = 16.536 (2) Å

  • β = 116.224 (16)°

  • V = 1519.4 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.18 mm−1

  • T = 150 K

  • 0.1 × 0.02 × 0.01 mm

Data collection
  • Oxford Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.987, Tmax = 0.999

  • 14871 measured reflections

  • 2683 independent reflections

  • 2441 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.08

  • 2683 reflections

  • 203 parameters

  • H-atom parameters not refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1Ai 0.89 2.11 2.8590 (18) 141
N1A—H1A⋯O5Bii 0.89 2.48 2.9464 (18) 113
N1A—H1B⋯O3Biii 0.89 2.01 2.8877 (17) 169
N1A—H1B⋯O4Biii 0.89 2.44 3.0033 (16) 121
N1A—H1C⋯O4B 0.89 1.93 2.8162 (16) 173
O2A—H2O⋯O3Biv 0.82 1.84 2.6295 (17) 160
N1B—H3C⋯O1Bv 0.89 2.08 2.8470 (16) 143
N1B—H3C⋯O5Av 0.89 2.50 2.946 (2) 111
N1B—H3D⋯O3Avi 0.89 2.47 2.9917 (16) 118
N1B—H3D⋯O4Avi 0.89 2.02 2.9025 (16) 169
N1B—H3E⋯O3Avii 0.89 1.94 2.8126 (16) 168
O2B—H4⋯O4A 0.82 1.84 2.6206 (16) 159
C4A—H4B⋯O3Biii 0.96 2.58 3.382 (2) 141
C2B—H6⋯O3Avi 0.98 2.57 3.189 (2) 121
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x, y-1, z; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: Gemini User Manual (Oxford Diffraction, 2006[Oxford Diffraction (2006). Gemini User Manual. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Inorganic organic hybrid materials have been studied extensively because the blending of organic and inorganic components allows to the development of materials with novel properties. (Cherouana et al., 2003; Benali-Cherif, Allouche et al., 2007; Benali-Cherif, Kateb et al., 2007; Messai et al., 2009; In particular the family of material which combine nitrate anions with organic molecules such as aromatic and aliphatic aminoacids has been studied intensively due to their numerous uses in various fields such as biomolecular science, liquid crystals, catalysts and fuel cells.

As a contribution to the study of thiscompound family, we report in this work the synthesis and the crystal structure of a new organic cation nitrate (C4H5O2N)+(N O3)- (I). The asymmetric unit in the structure of (I) contains two nitrate anions and two crystallographically independent monoprotonated 2-Ammonium butyric acid cations (Fig. 1). wich one one of these cations is R configuration and the second was the S configration. In the nitrate anions, two of the N_O distances, involving atoms O3 and O4, are slightly longer than the third, involving atom O5, while the O_N···O angles range from 117.6 (3) to 121.7 (3). The bond distances and angles of 2-Ammonium butyric acid cation are normal. The nitrate anion in (I) plays an important role in hydrogen bonding, with all three O atoms (O3, O4 and O5) being involved. The 2-Ammonium butyric acid residue forms three strong O_H··· O hydrogen bonds with the nitrate anion. The amino N atom of the phenylglycinium residue forms eight N_H···O hydrogen bonds via atoms O1, O2 and O3 of the nitrate anion, and two via the carboxyl atom O4 (Fig. 2).

Related literature top

For background to inorganic–organic hybrid materials, see: Benali-Cherif, Allouche et al. (2007); Benali-Cherif, Kateb et al. (2007); Messai et al. (2009); Cherouana et al. (2003). Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by multi-scan inter-frame scaling.

Experimental top

colorlesse single crystals of this compound were obtained after a few days by slow evaporation, at room temperature, of an equimolar aqueous solution of 2-amino butyric acid and nitric acid.

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged.

The absolute configuration was arbitrarily assigned.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:nnn) reflect changes in the illuminated volume of the crystal.

Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling.

All H atoms were positioned geometrically and refined with a riding model, fixing the bond lengths at 0.93 and 0.96 A ° for CH and CH3 groups, respectively. The Uiso(H) values were constrained to be 1.2Ueq (parent) or 1.5Ueq (methyl C).

Computing details top

Data collection: Gemini User Manual (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997)and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Aview of (I), showing the atomic labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. packing view of the hydrogen-bonding network
1-carboxypropanaminium nitrate top
Crystal data top
C4H10NO2+·NO3F(000) = 704
Mr = 166.14Dx = 1.453 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 7884 reflections
a = 18.274 (2) Åθ = 4.8–66.5°
b = 5.6052 (4) ŵ = 1.18 mm1
c = 16.536 (2) ÅT = 150 K
β = 116.224 (16)°Needle, colorless
V = 1519.4 (3) Å30.1 × 0.02 × 0.01 mm
Z = 8
Data collection top
Oxford Xcalibur Atlas Gemini ultra
diffractometer
2683 independent reflections
Radiation source: fine-focus sealed tube2441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 10.4685 pixels mm-1θmax = 66.6°, θmin = 5.4°
ω scansh = 2121
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 66
Tmin = 0.987, Tmax = 0.999l = 1919
14871 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters not refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.5656P]
where P = (Fo2 + 2Fc2)/3
2683 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C4H10NO2+·NO3V = 1519.4 (3) Å3
Mr = 166.14Z = 8
Monoclinic, P21/cCu Kα radiation
a = 18.274 (2) ŵ = 1.18 mm1
b = 5.6052 (4) ÅT = 150 K
c = 16.536 (2) Å0.1 × 0.02 × 0.01 mm
β = 116.224 (16)°
Data collection top
Oxford Xcalibur Atlas Gemini ultra
diffractometer
2683 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
2441 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.999Rint = 0.054
14871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters not refined
S = 1.08Δρmax = 0.25 e Å3
2683 reflectionsΔρmin = 0.31 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.05317 (6)0.57372 (18)0.29774 (7)0.0216 (3)
O2A0.11711 (7)0.2856 (2)0.39898 (7)0.0261 (3)
H2O0.10420.36680.43190.039*
N1A0.06545 (7)0.3190 (2)0.16452 (8)0.0153 (3)
H1A0.01420.28310.15260.023*
H1B0.07990.23720.12770.023*
H1C0.06930.47460.15630.023*
C1A0.09177 (9)0.3901 (3)0.32014 (10)0.0163 (3)
C2A0.12050 (8)0.2556 (2)0.25965 (9)0.0152 (3)
H20.11660.08380.26800.018*
C3A0.20896 (9)0.3193 (3)0.28412 (11)0.0216 (3)
H3A0.21190.48760.27220.026*
H3B0.24150.29390.34820.026*
C4A0.24575 (10)0.1760 (3)0.23296 (12)0.0299 (4)
H4A0.30120.22520.25150.045*
H4B0.21480.20300.16940.045*
H4C0.24450.00930.24560.045*
O1B0.45105 (7)0.41637 (18)0.24898 (7)0.0221 (3)
O2B0.37874 (8)0.6976 (2)0.27877 (8)0.0294 (3)
H40.39420.62670.32690.044*
N1B0.43613 (7)0.6551 (2)0.09954 (8)0.0154 (3)
H3C0.48590.70120.13860.023*
H3D0.42150.73260.04770.023*
H3E0.43620.49880.09000.023*
C1B0.40800 (9)0.5918 (3)0.22859 (10)0.0173 (3)
C2B0.37732 (9)0.7096 (2)0.13665 (9)0.0163 (3)
H60.37470.88270.14340.020*
C3B0.29190 (9)0.6152 (3)0.07476 (10)0.0243 (4)
H7A0.29460.44310.07040.029*
H7B0.25570.65030.10190.029*
C4B0.25584 (10)0.7202 (4)0.01973 (11)0.0341 (4)
H8A0.20260.65380.05480.051*
H8B0.29060.68290.04780.051*
H8C0.25160.89020.01630.051*
O4B0.08435 (8)0.80167 (19)0.13033 (7)0.0262 (3)
O3B0.08960 (7)1.04237 (18)0.03095 (7)0.0226 (3)
N2A0.08566 (7)0.8294 (2)0.05545 (8)0.0170 (3)
O3A0.41482 (8)0.32834 (19)0.54878 (8)0.0275 (3)
O4A0.41008 (7)0.56070 (17)0.44238 (7)0.0212 (3)
O5A0.41568 (7)0.17533 (18)0.42863 (8)0.0246 (3)
N2B0.41346 (7)0.3502 (2)0.47249 (8)0.0173 (3)
O5B0.08332 (7)0.65860 (18)0.00782 (8)0.0248 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0271 (6)0.0212 (6)0.0200 (6)0.0077 (4)0.0136 (5)0.0009 (4)
O2A0.0408 (7)0.0267 (6)0.0164 (6)0.0118 (5)0.0178 (5)0.0036 (4)
N1A0.0201 (6)0.0136 (6)0.0140 (6)0.0013 (4)0.0092 (5)0.0015 (4)
C1A0.0190 (7)0.0164 (7)0.0154 (7)0.0021 (5)0.0093 (6)0.0007 (5)
C2A0.0193 (7)0.0140 (6)0.0134 (7)0.0017 (5)0.0082 (6)0.0002 (5)
C3A0.0195 (8)0.0246 (8)0.0201 (8)0.0000 (6)0.0083 (6)0.0039 (6)
C4A0.0227 (8)0.0391 (10)0.0325 (9)0.0003 (7)0.0163 (7)0.0078 (7)
O1B0.0280 (6)0.0220 (6)0.0182 (5)0.0087 (4)0.0119 (5)0.0064 (4)
O2B0.0450 (7)0.0321 (6)0.0190 (6)0.0178 (5)0.0213 (6)0.0091 (5)
N1B0.0197 (6)0.0141 (6)0.0141 (6)0.0016 (4)0.0091 (5)0.0000 (4)
C1B0.0215 (7)0.0164 (7)0.0156 (7)0.0004 (5)0.0096 (6)0.0005 (5)
C2B0.0210 (7)0.0157 (7)0.0153 (7)0.0030 (5)0.0110 (6)0.0021 (5)
C3B0.0191 (8)0.0329 (8)0.0212 (8)0.0008 (6)0.0092 (7)0.0065 (6)
C4B0.0230 (9)0.0497 (11)0.0232 (9)0.0038 (8)0.0043 (7)0.0112 (8)
O4B0.0474 (7)0.0192 (5)0.0168 (6)0.0034 (5)0.0184 (5)0.0011 (4)
O3B0.0373 (6)0.0165 (5)0.0196 (6)0.0017 (4)0.0176 (5)0.0019 (4)
N2A0.0198 (6)0.0173 (6)0.0143 (6)0.0006 (5)0.0079 (5)0.0013 (5)
O3A0.0522 (8)0.0186 (5)0.0228 (6)0.0024 (5)0.0268 (6)0.0028 (4)
O4A0.0334 (6)0.0158 (5)0.0176 (5)0.0026 (4)0.0140 (5)0.0034 (4)
O5A0.0320 (6)0.0208 (5)0.0242 (6)0.0005 (4)0.0153 (5)0.0083 (4)
N2B0.0199 (6)0.0172 (6)0.0168 (6)0.0005 (5)0.0099 (5)0.0002 (5)
O5B0.0321 (6)0.0208 (6)0.0235 (6)0.0007 (4)0.0141 (5)0.0079 (4)
Geometric parameters (Å, º) top
O1A—C1A1.2098 (18)N1B—C2B1.4859 (17)
O2A—C1A1.3127 (18)N1B—H3C0.8900
O2A—H2O0.8200N1B—H3D0.8900
N1A—C2A1.4880 (18)N1B—H3E0.8900
N1A—H1A0.8900C1B—C2B1.520 (2)
N1A—H1B0.8900C2B—C3B1.534 (2)
N1A—H1C0.8900C2B—H60.9800
C1A—C2A1.5193 (19)C3B—C4B1.521 (2)
C2A—C3A1.525 (2)C3B—H7A0.9700
C2A—H20.9800C3B—H7B0.9700
C3A—C4A1.522 (2)C4B—H8A0.9600
C3A—H3A0.9700C4B—H8B0.9600
C3A—H3B0.9700C4B—H8C0.9600
C4A—H4A0.9600O4B—N2A1.2586 (16)
C4A—H4B0.9600O3B—N2A1.2727 (16)
C4A—H4C0.9600N2A—O5B1.2285 (16)
O1B—C1B1.2103 (18)O3A—N2B1.2568 (16)
O2B—C1B1.3108 (18)O4A—N2B1.2714 (16)
O2B—H40.8200O5A—N2B1.2307 (16)
C1A—O2A—H2O109.5H3C—N1B—H3D109.5
C2A—N1A—H1A109.5C2B—N1B—H3E109.5
C2A—N1A—H1B109.5H3C—N1B—H3E109.5
H1A—N1A—H1B109.5H3D—N1B—H3E109.5
C2A—N1A—H1C109.5O1B—C1B—O2B126.01 (13)
H1A—N1A—H1C109.5O1B—C1B—C2B122.62 (13)
H1B—N1A—H1C109.5O2B—C1B—C2B111.30 (12)
O1A—C1A—O2A125.85 (13)N1B—C2B—C1B108.01 (11)
O1A—C1A—C2A123.02 (13)N1B—C2B—C3B111.22 (12)
O2A—C1A—C2A111.08 (12)C1B—C2B—C3B109.52 (12)
N1A—C2A—C1A107.98 (11)N1B—C2B—H6109.4
N1A—C2A—C3A111.51 (11)C1B—C2B—H6109.4
C1A—C2A—C3A110.08 (12)C3B—C2B—H6109.4
N1A—C2A—H2109.1C4B—C3B—C2B113.77 (13)
C1A—C2A—H2109.1C4B—C3B—H7A108.8
C3A—C2A—H2109.1C2B—C3B—H7A108.8
C4A—C3A—C2A113.94 (13)C4B—C3B—H7B108.8
C4A—C3A—H3A108.8C2B—C3B—H7B108.8
C2A—C3A—H3A108.8H7A—C3B—H7B107.7
C4A—C3A—H3B108.8C3B—C4B—H8A109.5
C2A—C3A—H3B108.8C3B—C4B—H8B109.5
H3A—C3A—H3B107.7H8A—C4B—H8B109.5
C3A—C4A—H4A109.5C3B—C4B—H8C109.5
C3A—C4A—H4B109.5H8A—C4B—H8C109.5
H4A—C4A—H4B109.5H8B—C4B—H8C109.5
C3A—C4A—H4C109.5O5B—N2A—O4B121.59 (12)
H4A—C4A—H4C109.5O5B—N2A—O3B121.18 (11)
H4B—C4A—H4C109.5O4B—N2A—O3B117.22 (11)
C1B—O2B—H4109.5O5A—N2B—O3A121.51 (12)
C2B—N1B—H3C109.5O5A—N2B—O4A121.13 (12)
C2B—N1B—H3D109.5O3A—N2B—O4A117.36 (11)
O1A—C1A—C2A—N1A24.57 (18)O1B—C1B—C2B—N1B26.22 (19)
O2A—C1A—C2A—N1A157.91 (12)O2B—C1B—C2B—N1B156.73 (12)
O1A—C1A—C2A—C3A97.38 (16)O1B—C1B—C2B—C3B95.05 (16)
O2A—C1A—C2A—C3A80.14 (15)O2B—C1B—C2B—C3B82.00 (15)
N1A—C2A—C3A—C4A65.55 (16)N1B—C2B—C3B—C4B60.01 (17)
C1A—C2A—C3A—C4A174.63 (13)C1B—C2B—C3B—C4B179.33 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1Ai0.892.112.8590 (18)141
N1A—H1A···O5Bii0.892.482.9464 (18)113
N1A—H1B···O3Biii0.892.012.8877 (17)169
N1A—H1B···O4Biii0.892.443.0033 (16)121
N1A—H1C···O4B0.891.932.8162 (16)173
O2A—H2O···O3Biv0.821.842.6295 (17)160
N1B—H3C···O1Bv0.892.082.8470 (16)143
N1B—H3C···O5Av0.892.502.946 (2)111
N1B—H3D···O3Avi0.892.472.9917 (16)118
N1B—H3D···O4Avi0.892.022.9025 (16)169
N1B—H3E···O3Avii0.891.942.8126 (16)168
O2B—H4···O4A0.821.842.6206 (16)159
C4A—H4B···O3Biii0.962.583.382 (2)141
C2B—H6···O3Avi0.982.573.189 (2)121
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y+3/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+3/2, z1/2; (vii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC4H10NO2+·NO3
Mr166.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)18.274 (2), 5.6052 (4), 16.536 (2)
β (°) 116.224 (16)
V3)1519.4 (3)
Z8
Radiation typeCu Kα
µ (mm1)1.18
Crystal size (mm)0.1 × 0.02 × 0.01
Data collection
DiffractometerOxford Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.987, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
14871, 2683, 2441
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.08
No. of reflections2683
No. of parameters203
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.25, 0.31

Computer programs: Gemini User Manual (Oxford Diffraction, 2006), CrysAlis PRO (Oxford Diffraction, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997)and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1Ai0.89002.11002.8590 (18)141.00
N1A—H1A···O5Bii0.89002.48002.9464 (18)113.00
N1A—H1B···O3Biii0.89002.01002.8877 (17)169.00
N1A—H1B···O4Biii0.89002.44003.0033 (16)121.00
N1A—H1C···O4B0.89001.93002.8162 (16)173.00
O2A—H2O···O3Biv0.82001.84002.6295 (17)160.00
N1B—H3C···O1Bv0.89002.08002.8470 (16)143.00
N1B—H3C···O5Av0.89002.50002.946 (2)111.00
N1B—H3D···O3Avi0.89002.47002.9917 (16)118.00
N1B—H3D···O4Avi0.89002.02002.9025 (16)169.00
N1B—H3E···O3Avii0.89001.94002.8126 (16)168.00
O2B—H4···O4A0.82001.84002.6206 (16)159.00
C4A—H4B···O3Biii0.96002.58003.382 (2)141.00
C2B—H6···O3Avi0.98002.57003.189 (2)121.00
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y+3/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+3/2, z1/2; (vii) x, y+1/2, z1/2.
 

Acknowledgements

We thank Professor Dominique Luneau (Laboratoire des Multimatériaux et Inter­faces UMR 5615, Université Claude Bernard Lyon 1, France) for the diffraction facilities. We also thank Abbes Laghrour Khenchela University and the Ministère de l'Enseignement Supérieur et de la Recherche Scientifique–Algeria for financial support via the PNE programme.

References

First citationBenali-Cherif, N., Allouche, F., Direm, A., Boukli-H-Benmenni, L. & Soudani, K. (2007). Acta Cryst. E63, o2643–o2645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenali-Cherif, N., Kateb, A., Boussekine, H., Boutobba, Z. & Messai, A. (2007). Acta Cryst. E63, o3251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCherouana, A., Benali-Cherif, N. & Bendjeddou, L. (2003). Acta Cryst. E59, o180–o182.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMessai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). Gemini User Manual. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1307-o1308
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds