organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1389

(R)-N-(Bi­phenyl-4-yl)-tert-butane­sulfinamide

aState Key Lab of Geohazard Prevention and Geoenvironment Protection and Institute of Green Catalysis and Synthesis, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China, and bFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
*Correspondence e-mail: qinglezeng@hotmail.com

(Received 30 March 2012; accepted 5 April 2012; online 13 April 2012)

In the title compound, C16H19NOS, the dihedral angle between the two aromatic rings is 38.98 (8)°. The crystal structure is stabilized by N—H⋯O hydrogen bonds, which link neighbouring mol­ecules into chains running parallel to the a axis.

Related literature

For related structures, see: Sun et al. (2012[Sun, X., Dai, C., Tu, X., Wang, W. & Zeng, Q. (2012). Acta Cryst. E68, o773.]); Jasinski et al. (2012[Jasinski, J. P., Golen, J. A., Siddaraju, B. P., Narayana, B. & Yathirajan, H. S. (2012). Acta Cryst. E68, o362-o363.]); Gainsford et al. (2011[Gainsford, G. J., Ashraf, M. & Kay, A. J. (2011). Acta Cryst. E67, o893.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NOS

  • Mr = 273.38

  • Orthorhombic, P 21 21 21

  • a = 9.3588 (5) Å

  • b = 11.9452 (5) Å

  • c = 13.3136 (7) Å

  • V = 1488.36 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.43 × 0.41 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.988, Tmax = 1.000

  • 3983 measured reflections

  • 2766 independent reflections

  • 2325 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.097

  • S = 1.06

  • 2766 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: assigned from the known absolute structure of the (R)-tert-butanesulfinamide starting material; the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter is consistent with this assignment, 1017 Friedel pairs

  • Flack parameter: 0.03 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.35 3.144 (3) 154
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z-1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Sulfinamides, especially chiral sulfinamides, are an important class of organic compounds in modern organic chemistry, and a great number of such compounds have been synthesized. In our continuous study on chiral N-aryl-tert-butanesulfinamides (Sun et al., 2012), we have prepared the title compound and report its crystal structure herein.

In the molecule of the title compound (Fig. 1) the aromatic rings of the biphenyl are tilted to form a dihedral angle of 38.98 (8)°, which is comparable to the value observed in other related compounds containing the biphenyl group (Jasinski et al., 2012; Gainsford et al., 2011). In the crystal packing (Fig. 2), the molecules are linked by intermolecular N—H···O hydrogen bonds (Table 1) into one-dimensional chains running parallel to the the a axis.

Related literature top

For related structures, see: Sun et al. (2012); Jasinski et al. (2012); Gainsford et al. (2011).

Experimental top

A oven-dried ground test tube, which was equipped with a magnetic stir bar and fitted with a rubber septum, was charged with (R)-tert-butanesulfinamide (0.121 g, 1.0 mmol), Pd2(dba)3 (0.018 g, 0.02 mmol; dba is dibenzylideneacetone), 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl (0.0212 g, 0.05 mmol) and NaOH (0.08 g, 2 mmol). The vessel was evacuated and backfilled with argon three times, then 4-biphenyl bromide (1.3 mmol), toluene (10 ml) and degassed water (0.3 ml) were added via syringe. The solution was stirred at 90°C for 20 h. The reaction mixture was then cooled to room temperature, quenched by water, and extracted with chloroform (20 ml) for twice. The organic layers were combined, and dried over anhydrous sodium sulfate and filtrated. The filterate was condensed under vacuum. The residual was purified with silica gel column chromatography with a solution of petroleum ether and ethyl acetate (5:1 v/v) as eluent to give the title compound (R)-N-(4-biphenyl)-tert-butanesulfinamide. A test tube containing a petroleum ether and ethyl acetate (1:1 v/v) solution of the title compound was covered with a piece of filter paper and placed motionless at room temperature, and a single-crystal was cultured in the bottom of the test tube. Spectroscopic analysis: 1H NMR (300 MHz, CDCl3), δ (ppm): 7.49–7.29 (m, 7H), 7.06 (d, J = 8.5 Hz, 2H), 6.03 (d, J = 3.9 Hz, 1H), 1.37 (s, 9H). 13C NMR (300 MHz, CDCl3), δ (ppm): 114.6, 140.4, 135.6, 128.6, 127.9, 126.8, 126.6, 118.4, 56.5, 22.4. FT—IR (KBr) (cm-1): 3453, 3252, 2926, 1610, 1519, 1485, 1386, 1305, 1286, 1268, 1228, 1191, 1057, 912, 880, 838, 767. [α]D = -110.8 (c 0.15, ethyl acetate). ESI-MS (negative mode), m/z = 272 [M—H]-. Anal. Calcd for C16H19NOS: C, 70.29; H, 7.00; N, 5.12. Found: C, 70.43; H, 7.16; N 5.01.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å, C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The one-dimensional structure of (I) in the crystal packing, showing intermolecular hydrogen bonding as dashed lines.
(R)-N-(Biphenyl-4-yl)-tert-butanesulfinamide top
Crystal data top
C16H19NOSDx = 1.220 Mg m3
Mr = 273.38Melting point: 427 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 1425 reflections
a = 9.3588 (5) Åθ = 3.1–28.9°
b = 11.9452 (5) ŵ = 0.21 mm1
c = 13.3136 (7) ÅT = 293 K
V = 1488.36 (12) Å3Block, colourless
Z = 40.43 × 0.41 × 0.40 mm
F(000) = 584
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2766 independent reflections
Radiation source: Enhance (Mo) X-ray Source2325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 115
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 714
Tmin = 0.988, Tmax = 1.000l = 1616
3983 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.0448P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2766 reflectionsΔρmax = 0.19 e Å3
175 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: assigned from the known absolute structure of the (R)-tert-butanesulfinamide starting material; the Flack (1983) parameter is consistent with this assignment, 1017 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (10)
Crystal data top
C16H19NOSV = 1488.36 (12) Å3
Mr = 273.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.3588 (5) ŵ = 0.21 mm1
b = 11.9452 (5) ÅT = 293 K
c = 13.3136 (7) Å0.43 × 0.41 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2766 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2325 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 1.000Rint = 0.019
3983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.22 e Å3
2766 reflectionsAbsolute structure: assigned from the known absolute structure of the (R)-tert-butanesulfinamide starting material; the Flack (1983) parameter is consistent with this assignment, 1017 Friedel pairs
175 parametersAbsolute structure parameter: 0.03 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15256 (8)0.31264 (5)0.40407 (5)0.04256 (19)
O10.2124 (3)0.22979 (16)0.47627 (16)0.0639 (7)
N10.0065 (3)0.36901 (17)0.45167 (18)0.0488 (7)
H10.07020.32940.45360.059*
C10.0021 (3)0.4790 (2)0.48927 (19)0.0355 (6)
C20.1153 (3)0.5532 (2)0.4810 (2)0.0415 (7)
H20.19870.53180.44820.050*
C30.1032 (3)0.6600 (2)0.5220 (2)0.0400 (7)
H30.18010.70900.51660.048*
C40.0197 (3)0.6959 (2)0.57082 (17)0.0357 (6)
C50.1315 (3)0.6196 (2)0.5777 (2)0.0395 (6)
H50.21490.64040.61070.047*
C60.1217 (3)0.5131 (2)0.5366 (2)0.0423 (7)
H60.19900.46440.54100.051*
C70.0310 (3)0.8089 (2)0.61585 (18)0.0377 (6)
C80.0253 (3)0.9024 (2)0.5693 (2)0.0476 (8)
H80.06940.89440.50710.057*
C90.0181 (4)1.0075 (2)0.6126 (2)0.0558 (8)
H90.05811.06880.58010.067*
C100.0480 (4)1.0208 (3)0.7031 (3)0.0600 (9)
H100.05351.09140.73240.072*
C110.1060 (3)0.9301 (3)0.7507 (2)0.0586 (9)
H110.15140.93950.81220.070*
C120.0980 (3)0.8240 (2)0.7081 (2)0.0471 (7)
H120.13750.76300.74140.057*
C130.0712 (3)0.2310 (2)0.3024 (2)0.0461 (7)
C140.1958 (4)0.1746 (3)0.2498 (2)0.0769 (12)
H14A0.23850.12070.29410.115*
H14B0.16220.13750.19030.115*
H14C0.26560.22990.23160.115*
C150.0002 (6)0.3136 (3)0.2314 (3)0.0911 (14)
H15A0.06700.37130.21380.137*
H15B0.03010.27520.17180.137*
H15C0.08120.34650.26390.137*
C160.0316 (4)0.1448 (2)0.3427 (3)0.0670 (10)
H16A0.10880.18180.37670.100*
H16B0.06900.10130.28800.100*
H16C0.01730.09650.38890.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0340 (4)0.0355 (3)0.0581 (4)0.0019 (3)0.0013 (4)0.0073 (4)
O10.0696 (17)0.0521 (12)0.0701 (14)0.0165 (12)0.0276 (13)0.0088 (11)
N10.0381 (15)0.0330 (11)0.0754 (16)0.0062 (11)0.0102 (13)0.0137 (11)
C10.0374 (16)0.0289 (13)0.0403 (14)0.0022 (12)0.0009 (13)0.0009 (11)
C20.0343 (16)0.0364 (14)0.0538 (16)0.0000 (13)0.0130 (14)0.0031 (13)
C30.0377 (16)0.0319 (14)0.0505 (16)0.0043 (12)0.0086 (14)0.0013 (12)
C40.0386 (15)0.0326 (12)0.0360 (13)0.0026 (13)0.0008 (12)0.0012 (12)
C50.0306 (15)0.0389 (13)0.0488 (16)0.0043 (12)0.0058 (14)0.0017 (13)
C60.0363 (17)0.0353 (14)0.0552 (17)0.0038 (13)0.0004 (14)0.0009 (13)
C70.0333 (14)0.0373 (13)0.0423 (14)0.0061 (13)0.0057 (12)0.0024 (13)
C80.0546 (19)0.0393 (14)0.0488 (17)0.0007 (15)0.0038 (16)0.0023 (13)
C90.063 (2)0.0360 (14)0.068 (2)0.0014 (16)0.0094 (19)0.0060 (15)
C100.054 (2)0.0503 (18)0.075 (2)0.0092 (17)0.021 (2)0.0296 (18)
C110.046 (2)0.073 (2)0.0567 (19)0.0086 (19)0.0018 (16)0.0280 (18)
C120.0446 (18)0.0491 (16)0.0477 (16)0.0017 (15)0.0003 (15)0.0044 (15)
C130.0484 (19)0.0452 (15)0.0447 (16)0.0038 (14)0.0030 (15)0.0074 (14)
C140.075 (3)0.085 (3)0.070 (2)0.006 (2)0.014 (2)0.030 (2)
C150.125 (4)0.076 (2)0.073 (2)0.018 (3)0.036 (3)0.002 (2)
C160.065 (2)0.0593 (19)0.077 (2)0.0194 (18)0.001 (2)0.0224 (18)
Geometric parameters (Å, º) top
S1—O11.489 (2)C9—H90.9300
S1—N11.650 (2)C9—C101.364 (4)
S1—C131.833 (3)C10—H100.9300
N1—H10.8600C10—C111.367 (4)
N1—C11.407 (3)C11—H110.9300
C1—C21.385 (3)C11—C121.391 (4)
C1—C61.381 (4)C12—H120.9300
C2—H20.9300C13—C141.519 (4)
C2—C31.393 (3)C13—C151.519 (4)
C3—H30.9300C13—C161.508 (4)
C3—C41.389 (4)C14—H14A0.9600
C4—C51.390 (4)C14—H14B0.9600
C4—C71.481 (3)C14—H14C0.9600
C5—H50.9300C15—H15A0.9600
C5—C61.388 (3)C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—C81.381 (4)C16—H16A0.9600
C7—C121.390 (4)C16—H16B0.9600
C8—H80.9300C16—H16C0.9600
C8—C91.383 (4)
O1—S1—N1109.58 (13)C9—C10—H10120.1
O1—S1—C13106.21 (12)C9—C10—C11119.8 (3)
N1—S1—C1399.00 (13)C11—C10—H10120.1
S1—N1—H1118.6C10—C11—H11119.6
C1—N1—S1122.8 (2)C10—C11—C12120.8 (3)
C1—N1—H1118.6C12—C11—H11119.6
C2—C1—N1123.1 (3)C7—C12—C11120.2 (3)
C6—C1—N1117.5 (2)C7—C12—H12119.9
C6—C1—C2119.3 (2)C11—C12—H12119.9
C1—C2—H2120.2C14—C13—S1105.0 (2)
C1—C2—C3119.5 (3)C14—C13—C15109.7 (3)
C3—C2—H2120.2C15—C13—S1107.2 (2)
C2—C3—H3118.9C16—C13—S1111.5 (2)
C4—C3—C2122.2 (3)C16—C13—C14110.6 (3)
C4—C3—H3118.9C16—C13—C15112.6 (3)
C3—C4—C5116.8 (2)C13—C14—H14A109.5
C3—C4—C7122.0 (2)C13—C14—H14B109.5
C5—C4—C7121.2 (2)C13—C14—H14C109.5
C4—C5—H5119.1H14A—C14—H14B109.5
C6—C5—C4121.7 (3)H14A—C14—H14C109.5
C6—C5—H5119.1H14B—C14—H14C109.5
C1—C6—C5120.4 (3)C13—C15—H15A109.5
C1—C6—H6119.8C13—C15—H15B109.5
C5—C6—H6119.8C13—C15—H15C109.5
C8—C7—C4121.9 (2)H15A—C15—H15B109.5
C8—C7—C12117.6 (2)H15A—C15—H15C109.5
C12—C7—C4120.5 (2)H15B—C15—H15C109.5
C7—C8—H8119.1C13—C16—H16A109.5
C7—C8—C9121.9 (3)C13—C16—H16B109.5
C9—C8—H8119.1C13—C16—H16C109.5
C8—C9—H9120.1H16A—C16—H16B109.5
C10—C9—C8119.8 (3)H16A—C16—H16C109.5
C10—C9—H9120.1H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.353.144 (3)154
Symmetry code: (i) x+1/2, y1/2, z1.

Experimental details

Crystal data
Chemical formulaC16H19NOS
Mr273.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.3588 (5), 11.9452 (5), 13.3136 (7)
V3)1488.36 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.43 × 0.41 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.988, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3983, 2766, 2325
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.097, 1.06
No. of reflections2766
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22
Absolute structureAssigned from the known absolute structure of the (R)-tert-butanesulfinamide starting material; the Flack (1983) parameter is consistent with this assignment, 1017 Friedel pairs
Absolute structure parameter0.03 (10)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.353.144 (3)154.3
Symmetry code: (i) x+1/2, y1/2, z1.
 

Acknowledgements

We thank the Sci-Tech Bureau of Sichuan (No. 2011HH0016), the Opening Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No. SKLGP2012K005) and the Cultivating Programme for the Excellent Innovation Team of Chengdu University of Technology (No. HY0084) for financial support.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGainsford, G. J., Ashraf, M. & Kay, A. J. (2011). Acta Cryst. E67, o893.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Golen, J. A., Siddaraju, B. P., Narayana, B. & Yathirajan, H. S. (2012). Acta Cryst. E68, o362–o363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X., Dai, C., Tu, X., Wang, W. & Zeng, Q. (2012). Acta Cryst. E68, o773.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1389
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds