metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m590-m591

Chlorido[1-phenyl-3-(2,3,5,6-tetra­methyl­benz­yl)benzimidazol-2-yl­­idene]silver(I)

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and dDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 23 March 2012; accepted 24 March 2012; online 13 April 2012)

In the title compound, [AgCl(C24H24N2)], the terminal phenyl and tetra­methyl­benzene rings [which form a dihedral angle of 87.92 (14)°] make dihedral angles of 59.59 (11) and 83.19 (12)° with respect to the central benzimidazole ring system. The Ag—C and Ag—Cl single-bond lengths are 2.087 (3) and 2.3267 (9) Å. The C—Ag—Cl bond angle is 172.84 (7)°. C—H⋯π inter­actions contribute to the stabilization of the crystal structure. A very weak ππ stacking inter­action between adjacent tetra­methyl­benzene rings [centroid–centroid distance = 4.0610 (18) Å] is also observed.

Related literature

For the synthesis, see: Yigit et al. (2012[Yigit, B., Gök, Y., Özdemir, İ. & Günal, S. (2012). J. Coord. Chem. 3, 371-379.]); Özdemir et al. (2010c[Özdemir, İ., Temelli, N., Günal, S. & Demir, S. (2010c). Molecules, 15, 2203-2210.]). For applications of silver N-heterocyclic carbene complexes in synthesis, catalysis, nanomaterials, and biology, see: Arduengo et al. (1993[Arduengo, A. J. III, Dias, H. V. R., Calabrese, J. C. & Davidson, F. (1993). Organometallics, 12, 3405-3409.]); Guerret et al. (1997[Guerret, O., Sole, S., Gornitzka, H., Teichert, M., Trinquier, G. & Bertrand, G. (1997). J. Am. Chem. Soc. 119, 6668-6669.]); Patil et al. (2011[Patil, S., Deally, A., Gleeson, B., Hackenberg, F., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2011). Z. Anorg. Allg. Chem. 637, 386-396.]); Özdemir et al. (2010b[Özdemir, İ., Gök, Y., Özeroglu, Ö., Kaloglu, M., Doucet, H. & Bruneau, C. (2010b). Eur. J. Inorg. Chem. 12, 1798-1805.]); Liao et al. (2008[Liao, C., Chan, K., Chiu, P., Chen, C. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973-2978.]). For related compounds, see: Patil et al. (2010[Patil, S., Dietrich, K., Deally, A., Gleeson, B., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2010). Helv. Chim. Acta, 93, 2347-2363.]); Zhou et al. (2008[Zhou, Y., Zhang, X., Chen, W. & Qiu, H. J. (2008). J. Organomet. Chem. 693, 205-215.]); Berding et al. (2009[Berding, J., Kooijman, H., Spek, A. L. & Bouwman, E. (2009). J. Organomet. Chem. 694, 2217-2221.]). For bond-length data, see: Özdemir et al. (2010a[Özdemir, İ., Demir, S., Günal, S., Özdemir, İ., Arıcı, C. & Ülkü, D. (2010a). Inorg. Chim. Acta, 363, 3803-3808.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [AgCl(C24H24N2)]

  • Mr = 483.77

  • Monoclinic, P 21 /n

  • a = 9.1439 (2) Å

  • b = 18.7633 (4) Å

  • c = 13.2710 (3) Å

  • β = 109.899 (1)°

  • V = 2140.96 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 296 K

  • 0.35 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.752, Tmax = 0.806

  • 19846 measured reflections

  • 5288 independent reflections

  • 3354 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.080

  • S = 1.01

  • 5288 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 benzene and C8–C13 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg2i 0.93 2.69 3.507 (4) 147
C22—H22ACg3ii 0.96 2.80 3.525 (4) 133
Symmetry codes: (i) -x, -y+2, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

N-Heterocyclic carbene complexes (NHCs) have developed significantly in organometallic chemistry and homogenous catalysis since discovered, and have become extremely popular. Silver NHC complexes have particular interest because of their wide use as ligand transfer agents for the synthesis other metal-NHC complexes, catalysis, nanomaterials, and also biological activity as antimicrobial agents (Arduengo et al., 1993; Guerret et al., 1997; Patil et al., 2011; Özdemir et al., 2010b; Liao et al., 2008; Patil et al., 2010; Zhou et al., 2008; Berding et al., 2009).

In connection with our papers on the synthesis of the new complexes with N-heterocyclic carbene ligands, (Yigit et al., 2012; Özdemir et al., 2010c), we report here the crystal structure of the title compound, chlorido-[1-phenyl-3-(2,3,5,6-tetramethylbenzyl)benzimidazol-2-ylidene]silver (I).

In the title compound (I), (Fig. 1), the five- and six-membered rings (N1/N2/C1/C6/C7) and (C1–C6) of the benzimidazole groups are almost co-planar with maximum deviations of -0.012 (2) Å for N1 and 0.012 (3) Å for C6, respectively. The dihedral angle between them is 4.53 (16)°. The C8–C13 phenyl and C15–C20 benzene rings make dihedral angles of 59.59 (11)° and 83.19 (12)°, respectively, with respect to the mean plane of the central N1/N2/C1–C7 benzimidazole ring system, while they make a dihedral angle of 87.92 (14)° with each other. The Ag—C and Ag—Cl single bond lengths are 2.087 (3) Å and 2.3267 (9) Å. The C—Ag—Cl bond angle is 172.84 (7)°. The values of the geometrical parameters of (I) are in agreement with those reported for similar compounds (Allen et al., 1987; Özdemir et al., 2010a).

The crystal structure is stabilized by C—H···π interactions (Table 1) and weak π-π stacking interactions between adjacent (C15–C20: Cg4) benzene rings [Cg4···Cg4(1 - x, 2 - y, 1 - z) = 4.0610 (18) Å]. Fig. 2 shows the packing of (I) in the unit cell, viewed along the a axis.

Related literature top

For the synthesis, see: Yigit et al. (2012); Özdemir et al. (2010c). For applications of silver N-heterocyclic carbene complexes in synthesis, catalysis, nanomaterials, and biology, see: Arduengo et al. (1993); Guerret et al. (1997); Patil et al. (2011); Özdemir et al. (2010b); Liao et al. (2008). For related compounds, see: Patil et al. (2010); Zhou et al. (2008); Berding et al. (2009). For bond-length data, see: Özdemir et al. (2010a); Allen et al. (1987).

Experimental top

For the originally reported synthesis, see: Yigit et al. (2012); Özdemir et al. (2010c). Single crystals of the title compound were obtained by recrystallization from dichloromethane/hexane at room temperature. (Yields: 0.281 g; 84%. M.p.: 524–525 K).

Refinement top

The H atoms were positioned geometrically with C—H = 0.93, C—H = 0.97 and C—H = 0.96 Å, for the aromatic, methylene and methyl H atoms, respectively and refined using a riding model with Uiso(H) = xUeq(C), where x = 1.5 for the methyl H atoms and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the title molecule in the unit cell, viewed along the a axis. H atoms are omitted for clarity.
Chlorido[1-phenyl-3-(2,3,5,6-tetramethylbenzyl)benzimidazol-2-ylidene]silver(I) top
Crystal data top
[AgCl(C24H24N2)]F(000) = 984
Mr = 483.77Dx = 1.501 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3354 reflections
a = 9.1439 (2) Åθ = 2.4–28.3°
b = 18.7633 (4) ŵ = 1.08 mm1
c = 13.2710 (3) ÅT = 296 K
β = 109.899 (1)°Prism, white
V = 2140.96 (8) Å30.35 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5288 independent reflections
Radiation source: fine-focus sealed tube3354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.00 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω scansh = 1012
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2516
Tmin = 0.752, Tmax = 0.806l = 1717
19846 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.160P]
where P = (Fo2 + 2Fc2)/3
5288 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[AgCl(C24H24N2)]V = 2140.96 (8) Å3
Mr = 483.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1439 (2) ŵ = 1.08 mm1
b = 18.7633 (4) ÅT = 296 K
c = 13.2710 (3) Å0.35 × 0.22 × 0.20 mm
β = 109.899 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5288 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3354 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.806Rint = 0.040
19846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
5288 reflectionsΔρmin = 0.38 e Å3
257 parameters
Special details top

Experimental. M.p.: 524–525 K. n(CN)=1593.31 cm-1. 1H NMR (DMSO) δ: 2.11, 2.18 (s, 12H, NCH2C6H(CH3)4-2,3,5,6); 5.61 (s, 2H, NCH2C6H(CH3)4-2,3,5,6); 6.66–7.87 (m, 10H, Ar-H). 13C NMR (DMSO) d: 16.4, 20.8 (NCH2C6H(CH3)4-2,3,5,6); 55.2 (NCH2C6H(CH3)4-2,3,5,6); 112.5, 112.8, 124.9, 125.4, 126.8, 129.8, 130.4, 131.3, 132.7, 133.9, 134.6, 138.9 (Ar-C); the carbene carbon was not detected. Analysis calculated for C24H24N2AgCl: C 59.58, H 5.00, N 5.79%. Found: C 59.56, H 5.01, N 5.78%.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.25184 (3)0.84953 (1)0.17444 (2)0.0476 (1)
Cl10.43000 (9)0.77142 (4)0.14398 (7)0.0572 (3)
N10.0611 (3)0.92849 (11)0.11403 (17)0.0370 (7)
N20.1099 (3)0.98412 (11)0.24355 (18)0.0419 (8)
C10.1317 (3)0.99141 (14)0.1290 (2)0.0383 (9)
C20.2743 (3)1.02215 (16)0.0728 (3)0.0516 (11)
C30.3022 (4)1.08812 (18)0.1066 (3)0.0633 (14)
C40.1939 (4)1.12282 (17)0.1930 (3)0.0600 (13)
C50.0523 (4)1.09315 (15)0.2480 (2)0.0490 (11)
C60.0233 (3)1.02675 (14)0.2127 (2)0.0400 (9)
C70.0885 (3)0.92485 (14)0.1829 (2)0.0407 (9)
C80.1372 (3)0.87529 (14)0.0361 (2)0.0365 (8)
C90.0741 (4)0.85480 (15)0.0403 (2)0.0458 (10)
C100.1480 (4)0.80302 (16)0.1139 (2)0.0552 (11)
C110.2846 (4)0.77302 (16)0.1119 (2)0.0552 (11)
C120.3471 (4)0.79363 (16)0.0351 (3)0.0536 (11)
C130.2733 (3)0.84494 (14)0.0388 (2)0.0443 (10)
C140.2555 (4)1.00783 (17)0.3248 (2)0.0575 (11)
C150.3702 (3)0.95064 (15)0.3774 (2)0.0452 (10)
C160.3525 (4)0.91300 (16)0.4642 (2)0.0480 (10)
C170.4668 (4)0.86531 (16)0.5207 (2)0.0579 (11)
C180.5916 (4)0.85445 (17)0.4869 (3)0.0675 (12)
C190.6107 (4)0.8891 (2)0.4013 (3)0.0639 (11)
C200.4998 (4)0.93808 (17)0.3455 (2)0.0556 (11)
C210.2094 (4)0.9235 (2)0.4940 (3)0.0758 (14)
C220.4607 (5)0.8255 (2)0.6185 (3)0.0917 (18)
C230.7508 (5)0.8708 (3)0.3695 (4)0.115 (2)
C240.5189 (5)0.9767 (2)0.2499 (3)0.0853 (17)
H20.347000.999200.015200.0620*
H30.396301.110500.070900.0760*
H40.218501.167300.213800.0720*
H50.020201.116100.305600.0590*
H90.017200.875700.042100.0550*
H100.105500.788300.164900.0660*
H110.335000.738800.162500.0660*
H120.438500.772900.033300.0640*
H130.315100.859200.090400.0530*
H14A0.229801.033300.380100.0690*
H14B0.305601.041400.291500.0690*
H180.667200.821800.524200.0810*
H21A0.220800.965900.536400.1140*
H21B0.195900.883200.534500.1140*
H21C0.120300.928200.430100.1140*
H22A0.372100.794400.598300.1370*
H22B0.452300.859000.670900.1370*
H22C0.553900.797900.648400.1370*
H23A0.719500.839400.308900.1730*
H23B0.828200.847800.428400.1730*
H23C0.793200.913700.351200.1730*
H24A0.597201.012900.274900.1280*
H24B0.421900.998400.208500.1280*
H24C0.549700.943300.206200.1280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0405 (1)0.0420 (2)0.0554 (2)0.0047 (1)0.0098 (1)0.0002 (1)
Cl10.0532 (5)0.0540 (5)0.0682 (5)0.0093 (4)0.0255 (4)0.0036 (4)
N10.0355 (12)0.0364 (13)0.0371 (12)0.0020 (11)0.0096 (11)0.0018 (10)
N20.0431 (14)0.0362 (14)0.0375 (13)0.0034 (11)0.0021 (11)0.0040 (11)
C10.0378 (15)0.0395 (17)0.0397 (16)0.0031 (14)0.0158 (14)0.0020 (13)
C20.0395 (17)0.055 (2)0.060 (2)0.0036 (15)0.0164 (16)0.0027 (16)
C30.048 (2)0.053 (2)0.090 (3)0.0156 (17)0.025 (2)0.0087 (19)
C40.071 (2)0.0398 (18)0.083 (3)0.0081 (19)0.044 (2)0.0009 (18)
C50.062 (2)0.0382 (18)0.0521 (19)0.0015 (16)0.0265 (18)0.0025 (14)
C60.0484 (17)0.0342 (16)0.0389 (16)0.0035 (14)0.0169 (14)0.0053 (12)
C70.0400 (16)0.0394 (17)0.0381 (15)0.0002 (14)0.0074 (14)0.0011 (13)
C80.0363 (15)0.0365 (15)0.0317 (14)0.0037 (13)0.0051 (13)0.0024 (12)
C90.0493 (17)0.0513 (19)0.0390 (15)0.0054 (15)0.0179 (14)0.0013 (14)
C100.074 (2)0.054 (2)0.0415 (18)0.0010 (18)0.0246 (18)0.0060 (15)
C110.063 (2)0.0477 (19)0.0437 (18)0.0020 (17)0.0036 (17)0.0072 (15)
C120.0391 (17)0.053 (2)0.066 (2)0.0026 (15)0.0143 (17)0.0038 (17)
C130.0399 (16)0.0464 (18)0.0474 (17)0.0000 (15)0.0161 (14)0.0064 (14)
C140.057 (2)0.0458 (19)0.0532 (19)0.0074 (17)0.0028 (16)0.0059 (15)
C150.0407 (17)0.0428 (18)0.0400 (16)0.0072 (14)0.0018 (14)0.0065 (14)
C160.0478 (18)0.0485 (19)0.0402 (17)0.0133 (15)0.0054 (15)0.0108 (14)
C170.066 (2)0.049 (2)0.0400 (17)0.0114 (17)0.0063 (17)0.0023 (15)
C180.057 (2)0.056 (2)0.064 (2)0.0075 (18)0.0126 (19)0.0112 (18)
C190.0424 (19)0.074 (2)0.066 (2)0.0081 (19)0.0065 (18)0.022 (2)
C200.056 (2)0.056 (2)0.0476 (18)0.0213 (17)0.0082 (17)0.0109 (16)
C210.064 (2)0.100 (3)0.061 (2)0.014 (2)0.018 (2)0.015 (2)
C220.123 (4)0.074 (3)0.052 (2)0.023 (3)0.004 (2)0.0150 (19)
C230.057 (3)0.153 (5)0.131 (4)0.002 (3)0.026 (3)0.044 (4)
C240.092 (3)0.098 (3)0.068 (3)0.037 (3)0.030 (2)0.003 (2)
Geometric parameters (Å, º) top
Ag1—Cl12.3267 (9)C19—C201.382 (5)
Ag1—C72.087 (3)C19—C231.518 (6)
N1—C11.392 (4)C20—C241.522 (5)
N1—C71.364 (4)C2—H20.9300
N1—C81.435 (3)C3—H30.9300
N2—C61.397 (4)C4—H40.9300
N2—C71.348 (3)C5—H50.9300
N2—C141.468 (4)C9—H90.9300
C1—C21.388 (4)C10—H100.9300
C1—C61.381 (4)C11—H110.9300
C2—C31.370 (5)C12—H120.9300
C3—C41.395 (5)C13—H130.9300
C4—C51.370 (5)C14—H14A0.9700
C5—C61.388 (4)C14—H14B0.9700
C8—C91.381 (4)C18—H180.9300
C8—C131.380 (4)C21—H21A0.9600
C9—C101.380 (4)C21—H21B0.9600
C10—C111.379 (5)C21—H21C0.9600
C11—C121.383 (5)C22—H22A0.9600
C12—C131.376 (4)C22—H22B0.9600
C14—C151.497 (4)C22—H22C0.9600
C15—C161.407 (4)C23—H23A0.9600
C15—C201.407 (5)C23—H23B0.9600
C16—C171.386 (4)C23—H23C0.9600
C16—C211.503 (5)C24—H24A0.9600
C17—C181.376 (5)C24—H24B0.9600
C17—C221.515 (5)C24—H24C0.9600
C18—C191.371 (5)
Cl1—Ag1—C7172.84 (7)C2—C3—H3119.00
C1—N1—C7110.8 (2)C4—C3—H3119.00
C1—N1—C8123.9 (2)C3—C4—H4119.00
C7—N1—C8125.3 (2)C5—C4—H4119.00
C6—N2—C7111.3 (2)C4—C5—H5122.00
C6—N2—C14121.6 (2)C6—C5—H5122.00
C7—N2—C14126.9 (3)C8—C9—H9120.00
N1—C1—C2132.2 (3)C10—C9—H9120.00
N1—C1—C6106.3 (2)C9—C10—H10120.00
C2—C1—C6121.2 (3)C11—C10—H10120.00
C1—C2—C3116.4 (3)C10—C11—H11120.00
C2—C3—C4122.1 (3)C12—C11—H11120.00
C3—C4—C5121.8 (3)C11—C12—H12120.00
C4—C5—C6116.1 (3)C13—C12—H12120.00
N2—C6—C1106.0 (2)C8—C13—H13120.00
N2—C6—C5131.5 (3)C12—C13—H13120.00
C1—C6—C5122.4 (3)N2—C14—H14A108.00
Ag1—C7—N1124.81 (18)N2—C14—H14B108.00
Ag1—C7—N2129.1 (2)C15—C14—H14A108.00
N1—C7—N2105.5 (2)C15—C14—H14B108.00
N1—C8—C9120.1 (3)H14A—C14—H14B107.00
N1—C8—C13119.2 (2)C17—C18—H18118.00
C9—C8—C13120.7 (3)C19—C18—H18118.00
C8—C9—C10119.3 (3)C16—C21—H21A109.00
C9—C10—C11120.2 (3)C16—C21—H21B109.00
C10—C11—C12120.3 (3)C16—C21—H21C109.00
C11—C12—C13119.7 (3)H21A—C21—H21B110.00
C8—C13—C12119.9 (3)H21A—C21—H21C109.00
N2—C14—C15116.2 (2)H21B—C21—H21C110.00
C14—C15—C16119.0 (3)C17—C22—H22A110.00
C14—C15—C20120.5 (3)C17—C22—H22B109.00
C16—C15—C20120.4 (3)C17—C22—H22C109.00
C15—C16—C17119.4 (3)H22A—C22—H22B109.00
C15—C16—C21120.2 (3)H22A—C22—H22C109.00
C17—C16—C21120.4 (3)H22B—C22—H22C109.00
C16—C17—C18118.4 (3)C19—C23—H23A109.00
C16—C17—C22122.7 (3)C19—C23—H23B109.00
C18—C17—C22118.9 (3)C19—C23—H23C109.00
C17—C18—C19123.6 (3)H23A—C23—H23B109.00
C18—C19—C20118.8 (3)H23A—C23—H23C110.00
C18—C19—C23118.7 (4)H23B—C23—H23C109.00
C20—C19—C23122.4 (4)C20—C24—H24A109.00
C15—C20—C19119.3 (3)C20—C24—H24B109.00
C15—C20—C24121.2 (3)C20—C24—H24C109.00
C19—C20—C24119.5 (3)H24A—C24—H24B109.00
C1—C2—H2122.00H24A—C24—H24C109.00
C3—C2—H2122.00H24B—C24—H24C110.00
C7—N1—C1—C2172.8 (3)C4—C5—C6—C11.7 (4)
C8—N1—C1—C27.1 (5)N1—C8—C9—C10179.3 (2)
C7—N1—C1—C62.1 (3)C9—C8—C13—C120.1 (4)
C8—N1—C1—C6178.0 (2)C13—C8—C9—C100.5 (4)
C1—N1—C7—Ag1169.48 (19)N1—C8—C13—C12179.7 (3)
C8—N1—C7—Ag110.4 (4)C8—C9—C10—C111.0 (4)
C1—N1—C7—N22.2 (3)C9—C10—C11—C121.1 (5)
C8—N1—C7—N2178.0 (2)C10—C11—C12—C130.8 (5)
C7—N1—C8—C13122.9 (3)C11—C12—C13—C80.3 (4)
C1—N1—C8—C9123.0 (3)N2—C14—C15—C1683.2 (3)
C7—N1—C8—C956.9 (4)N2—C14—C15—C20101.2 (3)
C1—N1—C8—C1357.2 (4)C14—C15—C16—C17173.2 (3)
C7—N2—C14—C1526.7 (4)C14—C15—C16—C217.9 (4)
C6—N2—C7—N11.4 (3)C20—C15—C16—C172.4 (4)
C14—N2—C7—N1175.3 (3)C20—C15—C16—C21176.5 (3)
C6—N2—C14—C15160.1 (3)C14—C15—C20—C19174.6 (3)
C14—N2—C6—C1174.4 (2)C14—C15—C20—C246.2 (4)
C7—N2—C6—C5176.4 (3)C16—C15—C20—C190.9 (4)
C14—N2—C6—C52.2 (5)C16—C15—C20—C24178.3 (3)
C6—N2—C7—Ag1169.7 (2)C15—C16—C17—C182.5 (4)
C14—N2—C7—Ag14.1 (4)C15—C16—C17—C22176.8 (3)
C7—N2—C6—C10.2 (3)C21—C16—C17—C18176.4 (3)
N1—C1—C2—C3175.7 (3)C21—C16—C17—C224.3 (5)
N1—C1—C6—C5178.1 (3)C16—C17—C18—C191.1 (5)
C6—C1—C2—C31.5 (5)C22—C17—C18—C19178.2 (3)
C2—C1—C6—C52.5 (4)C17—C18—C19—C200.4 (5)
C2—C1—C6—N2174.4 (3)C17—C18—C19—C23178.0 (4)
N1—C1—C6—N21.1 (3)C18—C19—C20—C150.5 (5)
C1—C2—C3—C40.2 (5)C18—C19—C20—C24179.7 (3)
C2—C3—C4—C51.0 (6)C23—C19—C20—C15177.9 (3)
C3—C4—C5—C60.0 (5)C23—C19—C20—C241.3 (5)
C4—C5—C6—N2174.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 benzene and C8–C13 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg2i0.932.693.507 (4)147
C22—H22A···Cg3ii0.962.803.525 (4)133
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[AgCl(C24H24N2)]
Mr483.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.1439 (2), 18.7633 (4), 13.2710 (3)
β (°) 109.899 (1)
V3)2140.96 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.35 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.752, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
19846, 5288, 3354
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.080, 1.01
No. of reflections5288
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 benzene and C8–C13 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg2i0.932.693.507 (4)147
C22—H22A···Cg3ii0.962.803.525 (4)133
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. We also thank the İnönü University research fund (BAP 2011/35) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArduengo, A. J. III, Dias, H. V. R., Calabrese, J. C. & Davidson, F. (1993). Organometallics, 12, 3405–3409.  CSD CrossRef CAS Web of Science Google Scholar
First citationBerding, J., Kooijman, H., Spek, A. L. & Bouwman, E. (2009). J. Organomet. Chem. 694, 2217–2221.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuerret, O., Sole, S., Gornitzka, H., Teichert, M., Trinquier, G. & Bertrand, G. (1997). J. Am. Chem. Soc. 119, 6668–6669.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiao, C., Chan, K., Chiu, P., Chen, C. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973–2978.  Web of Science CSD CrossRef CAS Google Scholar
First citationÖzdemir, İ., Demir, S., Günal, S., Özdemir, İ., Arıcı, C. & Ülkü, D. (2010a). Inorg. Chim. Acta, 363, 3803–3808.  Google Scholar
First citationÖzdemir, İ., Gök, Y., Özeroglu, Ö., Kaloglu, M., Doucet, H. & Bruneau, C. (2010b). Eur. J. Inorg. Chem. 12, 1798–1805.  Google Scholar
First citationÖzdemir, İ., Temelli, N., Günal, S. & Demir, S. (2010c). Molecules, 15, 2203–2210.  Web of Science PubMed Google Scholar
First citationPatil, S., Deally, A., Gleeson, B., Hackenberg, F., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2011). Z. Anorg. Allg. Chem. 637, 386–396.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatil, S., Dietrich, K., Deally, A., Gleeson, B., Müller-Bunz, H., Paradisi, F. & Tacke, M. (2010). Helv. Chim. Acta, 93, 2347–2363.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYigit, B., Gök, Y., Özdemir, İ. & Günal, S. (2012). J. Coord. Chem. 3, 371–379.  Google Scholar
First citationZhou, Y., Zhang, X., Chen, W. & Qiu, H. J. (2008). J. Organomet. Chem. 693, 205–215.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m590-m591
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds