metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A triclinic polymorph of di­chlorido(2-{[2-(iso­propyl­ammonio)­eth­yl]imino­methyl-κN}-5-meth­­oxy­phenolato-κO1)zinc

aZibo Vocational Institute, Zibo 255314, People's Republic of China
*Correspondence e-mail: aitianpei@126.com

(Received 29 March 2012; accepted 3 April 2012; online 13 April 2012)

The title compound, [ZnCl2(C13H20N2O2)], was first reported in the monoclinic space group P21/n [Han et al. (2010[Han, Z.-Q., Wang, Y. & Han, S. (2010). Acta Cryst. E66, m469.]). Acta Cryst. E66, m469]. This investigation reveals a triclinic polymorph in the space group P-1 with an asymmetric unit that contains two independent mol­ecules of the mononuclear zinc(II) complex. In each mol­ecule, the ZnII atoms are coordinated in a bidentate fashion by the phenolate O and imine N atoms of the Schiff base ligand. Two Cl anions complete the tetra­hedral coordination in each case. The most obvious difference between the two forms is that the Zn—L (L = O, N, Cl) bond lengths in both unique mol­ecules are longer than those found in the monoclinic polymorph, or indeed in other similar complexes. In the crystal, mol­ecules are linked through N—H⋯O and N—H⋯Cl hydrogen bonds, forming chains along the b axis.

Related literature

For the structures of zinc complexes with Schiff base ligands, see: Munro et al. (2009[Munro, O. Q., Gillham, K. & Akerman, M. P. (2009). Acta Cryst. C65, m317-m320.]); Granifo et al. (2006[Granifo, J., Garland, M. T. & Baggio, R. (2006). Acta Cryst. C62, m56-m59.]). For a monoclinic polymorph of the title compound in the space group P21/n, see: Han et al. (2010[Han, Z.-Q., Wang, Y. & Han, S. (2010). Acta Cryst. E66, m469.]). For bond lengths in related zinc complexes, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Zhu (2008[Zhu, X.-W. (2008). Acta Cryst. E64, m1456-m1457.]); Wang (2007[Wang, S.-X. (2007). Acta Cryst. E63, m706-m707.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C13H20N2O2)]

  • Mr = 372.58

  • Triclinic, [P \overline 1]

  • a = 6.491 (3) Å

  • b = 12.351 (2) Å

  • c = 22.803 (3) Å

  • α = 90.707 (2)°

  • β = 96.201 (2)°

  • γ = 90.660 (2)°

  • V = 1817.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 298 K

  • 0.13 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.814, Tmax = 0.880

  • 8230 measured reflections

  • 5775 independent reflections

  • 4093 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.181

  • S = 1.08

  • 5775 reflections

  • 367 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 1.995 (4)
Zn1—N1 2.061 (4)
Zn1—Cl2 2.3252 (18)
Zn1—Cl1 2.3628 (17)
Zn2—O3 1.994 (4)
Zn2—N3 2.095 (5)
Zn2—Cl3 2.2994 (16)
Zn2—Cl4 2.3575 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O1i 0.90 2.03 2.904 (6) 163
N4—H4A⋯Cl2i 0.90 2.73 3.466 (5) 140
N2—H2B⋯Cl3 0.90 2.74 3.484 (5) 140
N2—H2A⋯O3 0.90 2.03 2.892 (6) 161
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The structures of zinc complexes with Schiff bases have received a great deal of attention (Munro et al., 2009; Granifo et al., 2006). The title compound was first reported in the monoclinic space group P21/n (Han et al., 2010). The author reports here a triclinic modification, I, in the space group P -1 with an asymmetric unit that contains two independent mononuclear zinc complex molecules (Fig. 1). In each molecule the Zn atoms are coordinated in a bidentate fashion by phenolate O and imine N atoms of the Schiff base ligand. Two Cl- anions complete the tetrahedral coordination sphere in each case. The Zn1–O1, 1.995 (4)Å, Zn2–O3, 1.994 (4) Å, Zn1–N1, 2.061 (3)Å, Zn2–N3, 2.095 (3)Å, Zn1–Cl1, 2.3268, Zn1–Cl2, 2.3252 (18), Zn2–Cl3 2.2994 (16) and Zn2 Cl4 2.3575 (16) bond distances in the two independent molecules are comparable to one another but are generally longer than those observed in the monoclinic polymorph. This has Zn–O, 1.9425 (19) Å, Zn–N, 1.997 (2) Zn–Cl1 2.2554 (10) and Zn–Cl2, 2.2290 (9)Å. The bond lengths in I are also longer than those reported in other zinc Schiff base complexes (Ali et al., 2008; Zhu, 2008; Wang, 2007). These differences may be due to packing effects. In the crystal, molecules are linked through N—H···O and N—H···Cl hydrogen bonds (Table 2), to form chains along the b axis (Fig. 2).

Related literature top

For the structures of zinc complexes with Schiff base ligands, see: Munro et al. (2009); Granifo et al. (2006). For a monoclinic polymorph of the title compound in the space group P21/n, see: Han et al. (2010). For bond lengths in related zinc complexes, see: Ali et al. (2008); Zhu (2008); Wang (2007).

Experimental top

4-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg), N-isopropylethane-1,2-diamine (0.1 mmol, 10.2 mg), and zinc chloride (0.1 mmol, 13.7 mg) were dissolved in methanol (15 ml). The mixture was stirred at reflux for 30 min and cooled to room temperature. Small and colorless block-like single crystals were obtained by slow evaporation of the solution in air.

Refinement top

Hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, N—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the a axis. Hydrogen bonds are drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
dichlorido(2-{[2-(isopropylammonio)ethyl]iminomethyl- κN}-5-methoxyphenolato-κO1)zinc top
Crystal data top
[ZnCl2(C13H20N2O2)]Z = 4
Mr = 372.58F(000) = 768
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.491 (3) ÅCell parameters from 3080 reflections
b = 12.351 (2) Åθ = 2.5–24.5°
c = 22.803 (3) ŵ = 1.65 mm1
α = 90.707 (2)°T = 298 K
β = 96.201 (2)°Block, colorless
γ = 90.660 (2)°0.13 × 0.10 × 0.08 mm
V = 1817.1 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5775 independent reflections
Radiation source: fine-focus sealed tube4093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 77
Tmin = 0.814, Tmax = 0.880k = 1414
8230 measured reflectionsl = 2724
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0975P)2 + 0.557P]
where P = (Fo2 + 2Fc2)/3
5775 reflections(Δ/σ)max < 0.001
367 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[ZnCl2(C13H20N2O2)]γ = 90.660 (2)°
Mr = 372.58V = 1817.1 (9) Å3
Triclinic, P1Z = 4
a = 6.491 (3) ÅMo Kα radiation
b = 12.351 (2) ŵ = 1.65 mm1
c = 22.803 (3) ÅT = 298 K
α = 90.707 (2)°0.13 × 0.10 × 0.08 mm
β = 96.201 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5775 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4093 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.880Rint = 0.027
8230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.08Δρmax = 0.63 e Å3
5775 reflectionsΔρmin = 0.57 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.74321 (12)0.83418 (5)0.23642 (3)0.0441 (2)
Cl10.9409 (3)0.81988 (11)0.32920 (7)0.0474 (4)
Cl20.4987 (2)0.97077 (12)0.22753 (8)0.0521 (4)
O10.9277 (7)0.8554 (3)0.17284 (19)0.0498 (11)
O21.4088 (9)0.7419 (4)0.0412 (2)0.0766 (16)
N10.6280 (7)0.6838 (4)0.2085 (2)0.0397 (12)
N20.5954 (8)0.5896 (3)0.3369 (2)0.0392 (11)
H2A0.55680.51940.33390.047*
H2B0.71670.59590.32140.047*
C10.8974 (9)0.6630 (4)0.1382 (3)0.0423 (14)
C20.9929 (9)0.7736 (4)0.1399 (2)0.0396 (14)
C31.1644 (10)0.7914 (5)0.1059 (3)0.0481 (16)
H31.22750.85950.10700.058*
C41.2390 (11)0.7097 (5)0.0713 (3)0.0508 (16)
C51.1530 (13)0.6025 (6)0.0688 (3)0.065 (2)
H51.20540.54790.04650.078*
C60.9840 (12)0.5833 (5)0.1021 (3)0.063 (2)
H60.92520.51420.10030.076*
C70.7202 (10)0.6298 (5)0.1696 (3)0.0448 (15)
H70.66690.56080.16040.054*
C80.4381 (10)0.6345 (5)0.2314 (3)0.0523 (17)
H8A0.43580.55710.22380.063*
H8B0.31490.66450.21010.063*
C90.4320 (10)0.6553 (5)0.2982 (3)0.0443 (15)
H9A0.29510.63640.30860.053*
H9B0.45550.73180.30670.053*
C100.6342 (12)0.6199 (6)0.4030 (3)0.0606 (19)
H100.68900.69420.40570.073*
C110.8045 (14)0.5466 (7)0.4341 (4)0.088 (3)
H11A0.76530.47200.42740.131*
H11B0.81980.56210.47580.131*
H11C0.93360.56060.41850.131*
C120.4325 (15)0.6195 (8)0.4329 (4)0.095 (3)
H12A0.33640.66900.41310.142*
H12B0.46240.64130.47350.142*
H12C0.37280.54780.43060.142*
C131.4981 (15)0.6614 (8)0.0035 (4)0.097 (3)
H13A1.53610.59830.02620.146*
H13B1.61890.69180.01120.146*
H13C1.39770.64160.02900.146*
Zn20.75666 (12)0.33416 (5)0.26356 (3)0.0443 (2)
Cl31.0020 (2)0.47085 (11)0.27261 (8)0.0523 (4)
Cl40.5584 (2)0.31981 (11)0.17081 (7)0.0475 (4)
O30.5732 (7)0.3560 (3)0.32735 (19)0.0482 (11)
O40.0905 (9)0.2412 (4)0.4588 (2)0.0797 (17)
N30.8731 (7)0.1838 (3)0.2917 (2)0.0390 (12)
N40.9042 (8)0.0893 (4)0.1632 (2)0.0422 (12)
H4A0.78340.09540.17890.051*
H4B0.93980.01910.16520.051*
C140.6016 (10)0.1639 (5)0.3615 (3)0.0453 (15)
C150.5066 (9)0.2740 (4)0.3594 (3)0.0415 (15)
C160.3387 (10)0.2910 (5)0.3940 (3)0.0495 (16)
H160.27890.35910.39390.059*
C170.2592 (11)0.2094 (5)0.4285 (3)0.0544 (18)
C180.3474 (12)0.1040 (6)0.4310 (3)0.061 (2)
H180.29610.05030.45390.074*
C190.5152 (12)0.0830 (5)0.3975 (3)0.063 (2)
H190.57220.01420.39890.075*
C200.7798 (10)0.1295 (5)0.3312 (3)0.0454 (16)
H200.83280.06160.34090.054*
C211.0593 (10)0.1347 (5)0.2682 (3)0.0521 (17)
H21A1.05680.05720.27450.063*
H21B1.18380.16410.29040.063*
C221.0700 (10)0.1552 (5)0.2021 (3)0.0443 (15)
H22A1.05050.23170.19450.053*
H22B1.20620.13600.19190.053*
C230.8673 (12)0.1201 (5)0.0974 (3)0.0581 (18)
H230.81540.19430.09580.070*
C240.6975 (15)0.0471 (7)0.0662 (4)0.088 (3)
H24A0.74250.02670.06760.132*
H24B0.66910.06850.02590.132*
H24C0.57400.05350.08560.132*
C251.0646 (15)0.1192 (8)0.0672 (4)0.092 (3)
H25A1.16090.17200.08580.138*
H25B1.03270.13640.02630.138*
H25C1.12510.04870.07050.138*
C260.0028 (15)0.1620 (7)0.4963 (4)0.093 (3)
H26A0.03520.09730.47380.140*
H26B0.11790.19150.51120.140*
H26C0.10360.14500.52880.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0476 (5)0.0345 (4)0.0517 (5)0.0044 (3)0.0124 (4)0.0003 (3)
Cl10.0494 (10)0.0459 (8)0.0460 (9)0.0042 (7)0.0015 (7)0.0037 (6)
Cl20.0399 (10)0.0434 (8)0.0735 (11)0.0052 (7)0.0088 (8)0.0091 (7)
O10.055 (3)0.036 (2)0.062 (3)0.0052 (19)0.025 (2)0.0056 (19)
O20.091 (4)0.074 (3)0.073 (4)0.014 (3)0.045 (3)0.006 (3)
N10.035 (3)0.040 (3)0.044 (3)0.003 (2)0.001 (2)0.006 (2)
N20.041 (3)0.037 (2)0.040 (3)0.001 (2)0.005 (2)0.001 (2)
C10.038 (4)0.042 (3)0.046 (3)0.000 (3)0.000 (3)0.000 (3)
C20.046 (4)0.035 (3)0.037 (3)0.006 (3)0.000 (3)0.006 (2)
C30.048 (4)0.046 (3)0.052 (4)0.002 (3)0.011 (3)0.008 (3)
C40.057 (5)0.060 (4)0.039 (4)0.019 (3)0.015 (3)0.009 (3)
C50.079 (6)0.055 (4)0.066 (5)0.008 (4)0.028 (4)0.010 (3)
C60.075 (5)0.044 (4)0.071 (5)0.005 (3)0.012 (4)0.013 (3)
C70.048 (4)0.036 (3)0.050 (4)0.007 (3)0.004 (3)0.005 (3)
C80.050 (4)0.057 (4)0.049 (4)0.016 (3)0.003 (3)0.004 (3)
C90.035 (4)0.042 (3)0.057 (4)0.001 (3)0.010 (3)0.007 (3)
C100.070 (5)0.059 (4)0.053 (4)0.011 (4)0.011 (4)0.009 (3)
C110.092 (7)0.110 (7)0.058 (5)0.004 (5)0.005 (5)0.001 (5)
C120.092 (7)0.123 (8)0.073 (6)0.013 (6)0.033 (5)0.025 (5)
C130.105 (8)0.115 (7)0.082 (7)0.027 (6)0.052 (6)0.003 (5)
Zn20.0480 (5)0.0349 (4)0.0518 (5)0.0010 (3)0.0141 (4)0.0034 (3)
Cl30.0424 (10)0.0413 (8)0.0741 (11)0.0101 (7)0.0106 (8)0.0054 (7)
Cl40.0507 (10)0.0458 (8)0.0448 (9)0.0017 (7)0.0011 (7)0.0079 (6)
O30.054 (3)0.034 (2)0.060 (3)0.0038 (19)0.024 (2)0.0033 (19)
O40.092 (4)0.076 (3)0.079 (4)0.016 (3)0.049 (3)0.009 (3)
N30.034 (3)0.036 (2)0.045 (3)0.005 (2)0.000 (2)0.006 (2)
N40.051 (3)0.037 (2)0.040 (3)0.004 (2)0.010 (2)0.004 (2)
C140.043 (4)0.047 (3)0.046 (4)0.004 (3)0.007 (3)0.004 (3)
C150.036 (4)0.045 (3)0.043 (3)0.007 (3)0.003 (3)0.014 (3)
C160.050 (4)0.046 (3)0.053 (4)0.001 (3)0.007 (3)0.010 (3)
C170.065 (5)0.052 (4)0.048 (4)0.017 (3)0.012 (3)0.007 (3)
C180.070 (5)0.063 (4)0.055 (4)0.016 (4)0.023 (4)0.006 (3)
C190.073 (5)0.046 (4)0.070 (5)0.004 (3)0.008 (4)0.010 (3)
C200.051 (4)0.038 (3)0.046 (4)0.001 (3)0.000 (3)0.004 (3)
C210.043 (4)0.058 (4)0.053 (4)0.002 (3)0.001 (3)0.019 (3)
C220.037 (4)0.040 (3)0.058 (4)0.000 (3)0.013 (3)0.004 (3)
C230.073 (5)0.047 (4)0.054 (4)0.003 (3)0.003 (4)0.005 (3)
C240.103 (7)0.101 (6)0.057 (5)0.015 (5)0.006 (5)0.009 (4)
C250.096 (7)0.123 (8)0.061 (5)0.000 (6)0.025 (5)0.012 (5)
C260.096 (8)0.101 (7)0.088 (7)0.029 (6)0.044 (6)0.000 (5)
Geometric parameters (Å, º) top
Zn1—O11.995 (4)Zn2—O31.994 (4)
Zn1—N12.061 (4)Zn2—N32.095 (5)
Zn1—Cl22.3252 (18)Zn2—Cl32.2994 (16)
Zn1—Cl12.3628 (17)Zn2—Cl42.3575 (16)
O1—C21.351 (6)O3—C151.350 (7)
O2—C41.416 (8)O4—C171.414 (8)
O2—C131.471 (9)O4—C261.458 (8)
N1—C71.304 (7)N3—C201.323 (7)
N1—C81.514 (7)N3—C211.505 (8)
N2—C101.543 (8)N4—C221.537 (7)
N2—C91.547 (7)N4—C231.548 (8)
N2—H2A0.9000N4—H4A0.9000
N2—H2B0.8999N4—H4B0.9000
C1—C61.433 (9)C14—C191.448 (9)
C1—C71.475 (8)C14—C201.474 (9)
C1—C21.492 (7)C14—C151.498 (8)
C2—C31.440 (8)C15—C161.430 (8)
C3—C41.395 (8)C16—C171.412 (9)
C3—H30.9300C16—H160.9300
C4—C51.429 (9)C17—C181.428 (10)
C5—C61.419 (10)C18—C191.420 (10)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—H70.9300C20—H200.9300
C8—C91.546 (9)C21—C221.540 (9)
C8—H8A0.9700C21—H21A0.9700
C8—H8B0.9700C21—H21B0.9700
C9—H9A0.9700C22—H22A0.9700
C9—H9B0.9700C22—H22B0.9700
C10—C121.539 (11)C23—C251.518 (11)
C10—C111.553 (11)C23—C241.524 (10)
C10—H100.9800C23—H230.9800
C11—H11A0.9600C24—H24A0.9600
C11—H11B0.9600C24—H24B0.9600
C11—H11C0.9600C24—H24C0.9600
C12—H12A0.9600C25—H25A0.9600
C12—H12B0.9600C25—H25B0.9600
C12—H12C0.9600C25—H25C0.9600
C13—H13A0.9600C26—H26A0.9600
C13—H13B0.9600C26—H26B0.9600
C13—H13C0.9600C26—H26C0.9600
O1—Zn1—N196.96 (18)O3—Zn2—N396.87 (18)
O1—Zn1—Cl2107.23 (13)O3—Zn2—Cl3107.48 (12)
N1—Zn1—Cl2114.06 (15)N3—Zn2—Cl3113.43 (14)
O1—Zn1—Cl1110.63 (14)O3—Zn2—Cl4110.55 (14)
N1—Zn1—Cl1109.73 (14)N3—Zn2—Cl4111.53 (13)
Cl2—Zn1—Cl1116.43 (6)Cl3—Zn2—Cl4115.33 (6)
C2—O1—Zn1123.6 (3)C15—O3—Zn2123.1 (3)
C4—O2—C13118.2 (6)C17—O4—C26118.0 (6)
C7—N1—C8118.9 (5)C20—N3—C21118.6 (5)
C7—N1—Zn1119.1 (4)C20—N3—Zn2119.2 (4)
C8—N1—Zn1122.0 (4)C21—N3—Zn2122.2 (4)
C10—N2—C9117.6 (5)C22—N4—C23116.8 (4)
C10—N2—H2A107.9C22—N4—H4A108.1
C9—N2—H2A107.8C23—N4—H4A108.2
C10—N2—H2B107.9C22—N4—H4B108.1
C9—N2—H2B107.9C23—N4—H4B108.1
H2A—N2—H2B107.2H4A—N4—H4B107.3
C6—C1—C7117.8 (5)C19—C14—C20115.8 (6)
C6—C1—C2116.7 (6)C19—C14—C15117.8 (6)
C7—C1—C2125.5 (5)C20—C14—C15126.3 (5)
O1—C2—C3119.7 (5)O3—C15—C16119.6 (5)
O1—C2—C1122.5 (5)O3—C15—C14123.4 (5)
C3—C2—C1117.8 (5)C16—C15—C14117.0 (5)
C4—C3—C2122.1 (6)C17—C16—C15123.2 (6)
C4—C3—H3118.9C17—C16—H16118.4
C2—C3—H3118.9C15—C16—H16118.4
C3—C4—O2114.2 (6)C16—C17—O4114.8 (6)
C3—C4—C5121.9 (6)C16—C17—C18120.7 (6)
O2—C4—C5123.9 (6)O4—C17—C18124.5 (6)
C6—C5—C4116.9 (6)C19—C18—C17118.4 (6)
C6—C5—H5121.6C19—C18—H18120.8
C4—C5—H5121.6C17—C18—H18120.8
C5—C6—C1124.6 (6)C18—C19—C14122.9 (6)
C5—C6—H6117.7C18—C19—H19118.5
C1—C6—H6117.7C14—C19—H19118.5
N1—C7—C1129.1 (5)N3—C20—C14127.6 (6)
N1—C7—H7115.5N3—C20—H20116.2
C1—C7—H7115.5C14—C20—H20116.2
N1—C8—C9112.8 (5)N3—C21—C22113.5 (5)
N1—C8—H8A109.0N3—C21—H21A108.9
C9—C8—H8A109.0C22—C21—H21A108.9
N1—C8—H8B109.0N3—C21—H21B108.9
C9—C8—H8B109.0C22—C21—H21B108.9
H8A—C8—H8B107.8H21A—C21—H21B107.7
C8—C9—N2112.9 (5)N4—C22—C21111.8 (5)
C8—C9—H9A109.0N4—C22—H22A109.3
N2—C9—H9A109.0C21—C22—H22A109.3
C8—C9—H9B109.0N4—C22—H22B109.3
N2—C9—H9B109.0C21—C22—H22B109.3
H9A—C9—H9B107.8H22A—C22—H22B107.9
C12—C10—N2112.0 (6)C25—C23—C24112.7 (6)
C12—C10—C11113.4 (7)C25—C23—N4112.8 (6)
N2—C10—C11110.1 (6)C24—C23—N4109.3 (6)
C12—C10—H10107.0C25—C23—H23107.3
N2—C10—H10107.0C24—C23—H23107.3
C11—C10—H10107.0N4—C23—H23107.3
C10—C11—H11A109.5C23—C24—H24A109.5
C10—C11—H11B109.5C23—C24—H24B109.5
H11A—C11—H11B109.5H24A—C24—H24B109.5
C10—C11—H11C109.5C23—C24—H24C109.5
H11A—C11—H11C109.5H24A—C24—H24C109.5
H11B—C11—H11C109.5H24B—C24—H24C109.5
C10—C12—H12A109.5C23—C25—H25A109.5
C10—C12—H12B109.5C23—C25—H25B109.5
H12A—C12—H12B109.5H25A—C25—H25B109.5
C10—C12—H12C109.5C23—C25—H25C109.5
H12A—C12—H12C109.5H25A—C25—H25C109.5
H12B—C12—H12C109.5H25B—C25—H25C109.5
O2—C13—H13A109.5O4—C26—H26A109.5
O2—C13—H13B109.5O4—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
O2—C13—H13C109.5O4—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1i0.902.032.904 (6)163
N4—H4A···Cl2i0.902.733.466 (5)140
N2—H2B···Cl30.902.743.484 (5)140
N2—H2A···O30.902.032.892 (6)161
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C13H20N2O2)]
Mr372.58
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.491 (3), 12.351 (2), 22.803 (3)
α, β, γ (°)90.707 (2), 96.201 (2), 90.660 (2)
V3)1817.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.13 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.814, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
8230, 5775, 4093
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.181, 1.08
No. of reflections5775
No. of parameters367
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.57

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Selected bond lengths (Å) top
Zn1—O11.995 (4)Zn2—O31.994 (4)
Zn1—N12.061 (4)Zn2—N32.095 (5)
Zn1—Cl22.3252 (18)Zn2—Cl32.2994 (16)
Zn1—Cl12.3628 (17)Zn2—Cl42.3575 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1i0.902.032.904 (6)162.6
N4—H4A···Cl2i0.902.733.466 (5)140.3
N2—H2B···Cl30.902.743.484 (5)140.4
N2—H2A···O30.902.032.892 (6)160.9
Symmetry code: (i) x, y1, z.
 

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGranifo, J., Garland, M. T. & Baggio, R. (2006). Acta Cryst. C62, m56–m59.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHan, Z.-Q., Wang, Y. & Han, S. (2010). Acta Cryst. E66, m469.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMunro, O. Q., Gillham, K. & Akerman, M. P. (2009). Acta Cryst. C65, m317–m320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-X. (2007). Acta Cryst. E63, m706–m707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-W. (2008). Acta Cryst. E64, m1456–m1457.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds