organic compounds
Oxyresveratrol from Mulberry as a dihydrate
aSchool of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, People's Republic of China, and bCollege of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: huxpeng@mail.sysu.edu.cn
The title compound {systematic name: 4-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,3-diol dihydrate}, C14H12O4·2H2O, a derivative of resveratrol, was isolated from mulberry. The linking C=C double bond has a trans conformation and allows the formation of a throughout the molecule. The dihedral angle between the benzene rings is 9.39 (9)°. In the crystal, molecules are connected into a three-dimensional architecture through O—H⋯O hydrogen bonds between hydroxy groups of oxyresveratrol and solvent water molecules.
Related literature
For medicinal properties and the biological activity of oxyresveratrol, see: Mongolsuk et al. (1957); Charoenlarp et al. (1981, 1989); Zheng et al. (2010, 2011); Kim et al. (2002, 2004); Shin et al. (1998); Lipipun et al. (2011); Galindo et al. (2011); Sasivimolphan et al. (2009); Chuanasa et al. (2008); Likhitwitayawuid (2008); Likhitwitayawuid et al. (2005, 2006); Liu et al. (2009); Breuer et al. (2006); Chung et al. (2003); Chao et al. (2008); Ban et al. (2006, 2008); Breuer et al. (2006); Andrabi et al. (2004). For related structures, see: Piao et al. (2009); Qiu et al.(1996); Hano et al. (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812014018/tk5080sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: 10.1107/S1600536812014018/tk5080Isup2.mol
Structure factors: contains datablock I. DOI: 10.1107/S1600536812014018/tk5080Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536812014018/tk5080Isup4.cml
The dried root bark of Morus alba L. (1 kg) was powdered and extracted with 95% ethanol at room temperature for 48 h. After removal of the solvent under reduced pressure, a brown extract was suspended with water, and sequentially partitioned with petroleum ether, acetyl acetate and n-butanol. The acetyl acetate extract (9 g) was subjected to δ 7.33 (d, J = 9.2 Hz, 1H), 7.27 (d, J = 16.5 Hz, 1H), 6.82 (d, J = 16.4 Hz,1H), 6.46 (d, J = 2.1 Hz, 2H), 6.34 – 6.32 (m, 1H), 6.31 (s, 1H), 6.15 (t, J = 2.2 Hz, 1H); O—H not observed.
on silica gel (200–300 mesh) with increasing concentrations of ethyl acetate in petroleum ether. Oxyresveratrol was afforded from the fraction (petroleum ether-ethyl acetate 6/4, v/v). The title compound was colourless to light-yellow crystal with M.pt: 474–476 K,. Crystals suitable for X-ray analysis were obtained by slow evaporation from its chloroform–methanol (4/1, v/v) solution. 1H NMR (400 MHz, MeOD)The hydroxy- and C-bound H-atoms were placed in calculated positions [O—H = 0.84 Å, Uiso(H) = 1.5Ueq(O); C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the
in the riding model approximation. The water-H atoms were refined with O—H = 0.90±0.01 Å, and with Uiso(H) = 1.5Ueq(O). The O6-water molecule was found to be disordered over three positions, one with full weight, the others with 0.5 site occupancy factors.Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. A view of the molecular structure of compound (I). The displacement ellipsoids are at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. |
C14H12O4·2H2O | Z = 2 |
Mr = 280.27 | F(000) = 296 |
Triclinic, P1 | Dx = 1.422 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54178 Å |
a = 6.6523 (5) Å | Cell parameters from 2627 reflections |
b = 9.2005 (9) Å | θ = 4.1–71.3° |
c = 11.5294 (8) Å | µ = 0.95 mm−1 |
α = 72.533 (7)° | T = 293 K |
β = 78.686 (6)° | Block, colourless |
γ = 79.651 (7)° | 0.40 × 0.30 × 0.20 mm |
V = 654.51 (9) Å3 |
Agilent Xcalibur Onyx Nova diffractometer | 2297 independent reflections |
Radiation source: Nova (Cu) X-ray Source | 2002 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.022 |
Detector resolution: 8.2417 pixels mm-1 | θmax = 66.6°, θmin = 4.1° |
ω scans | h = −7→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −10→8 |
Tmin = 0.704, Tmax = 0.834 | l = −13→13 |
4145 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.081P)2 + 0.176P] where P = (Fo2 + 2Fc2)/3 |
2297 reflections | (Δ/σ)max < 0.001 |
197 parameters | Δρmax = 0.50 e Å−3 |
5 restraints | Δρmin = −0.44 e Å−3 |
C14H12O4·2H2O | γ = 79.651 (7)° |
Mr = 280.27 | V = 654.51 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.6523 (5) Å | Cu Kα radiation |
b = 9.2005 (9) Å | µ = 0.95 mm−1 |
c = 11.5294 (8) Å | T = 293 K |
α = 72.533 (7)° | 0.40 × 0.30 × 0.20 mm |
β = 78.686 (6)° |
Agilent Xcalibur Onyx Nova diffractometer | 2297 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 2002 reflections with I > 2σ(I) |
Tmin = 0.704, Tmax = 0.834 | Rint = 0.022 |
4145 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 5 restraints |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | Δρmax = 0.50 e Å−3 |
2297 reflections | Δρmin = −0.44 e Å−3 |
197 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | −0.1126 (3) | 0.9054 (2) | 0.76812 (16) | 0.0253 (4) | |
C2 | −0.2896 (3) | 0.8772 (2) | 0.85658 (16) | 0.0251 (4) | |
C3 | −0.4773 (3) | 0.9699 (2) | 0.84350 (16) | 0.0260 (4) | |
H3 | −0.5945 | 0.9490 | 0.9051 | 0.031* | |
C4 | −0.4925 (3) | 1.0933 (2) | 0.73988 (17) | 0.0270 (4) | |
C5 | −0.3191 (3) | 1.1277 (2) | 0.65217 (18) | 0.0304 (4) | |
H5 | −0.3286 | 1.2143 | 0.5825 | 0.036* | |
C6 | −0.1329 (3) | 1.0347 (2) | 0.66730 (17) | 0.0291 (4) | |
H6 | −0.0149 | 1.0594 | 0.6073 | 0.035* | |
C7 | 0.0785 (3) | 0.7976 (2) | 0.78124 (16) | 0.0265 (4) | |
H7 | 0.0724 | 0.7073 | 0.8482 | 0.032* | |
C8 | 0.2599 (3) | 0.8143 (2) | 0.70802 (17) | 0.0266 (4) | |
H8 | 0.2682 | 0.9072 | 0.6438 | 0.032* | |
C9 | 0.4478 (3) | 0.7025 (2) | 0.71754 (16) | 0.0241 (4) | |
C10 | 0.6184 (3) | 0.7319 (2) | 0.62552 (16) | 0.0258 (4) | |
H10 | 0.6122 | 0.8242 | 0.5605 | 0.031* | |
C11 | 0.7979 (3) | 0.6264 (2) | 0.62855 (16) | 0.0257 (4) | |
C12 | 0.8084 (3) | 0.4895 (2) | 0.72244 (17) | 0.0273 (4) | |
H12 | 0.9292 | 0.4163 | 0.7238 | 0.033* | |
C13 | 0.6385 (3) | 0.4623 (2) | 0.81404 (16) | 0.0260 (4) | |
C14 | 0.4594 (3) | 0.5662 (2) | 0.81327 (16) | 0.0257 (4) | |
H14 | 0.3454 | 0.5451 | 0.8771 | 0.031* | |
O1 | −0.27079 (18) | 0.75380 (14) | 0.95877 (12) | 0.0298 (3) | |
H1 | −0.3888 | 0.7321 | 0.9944 | 0.045* | |
O2 | −0.68101 (19) | 1.17941 (15) | 0.72308 (13) | 0.0352 (4) | |
H2 | −0.6634 | 1.2691 | 0.6802 | 0.053* | |
O3 | 0.95691 (19) | 0.66150 (15) | 0.53537 (12) | 0.0316 (3) | |
H3A | 1.0617 | 0.5971 | 0.5509 | 0.047* | |
O4 | 0.64072 (19) | 0.32934 (15) | 0.90904 (12) | 0.0330 (4) | |
H4 | 0.7589 | 0.2786 | 0.9044 | 0.049* | |
O5 | 0.01297 (19) | 0.14910 (15) | 0.92354 (12) | 0.0318 (3) | |
H5A | 0.085 (3) | 0.187 (3) | 0.963 (2) | 0.048* | |
H5B | 0.095 (3) | 0.148 (3) | 0.8524 (14) | 0.048* | |
O6 | 0.67051 (19) | 0.52209 (15) | 0.40983 (12) | 0.0300 (3) | |
H6A | 0.637 (4) | 0.490 (3) | 0.3506 (17) | 0.045* | |
H6B | 0.701 (7) | 0.618 (2) | 0.394 (4) | 0.045* | 0.50 |
H6C | 0.565 (6) | 0.513 (6) | 0.472 (3) | 0.045* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0192 (9) | 0.0256 (9) | 0.0278 (9) | −0.0011 (7) | −0.0025 (7) | −0.0043 (7) |
C2 | 0.0202 (8) | 0.0243 (9) | 0.0270 (9) | −0.0018 (6) | −0.0028 (7) | −0.0025 (7) |
C3 | 0.0182 (8) | 0.0268 (9) | 0.0285 (9) | −0.0011 (7) | 0.0012 (7) | −0.0051 (7) |
C4 | 0.0187 (8) | 0.0261 (9) | 0.0322 (9) | 0.0029 (7) | −0.0031 (7) | −0.0057 (7) |
C5 | 0.0249 (9) | 0.0280 (9) | 0.0300 (9) | 0.0003 (7) | −0.0011 (7) | 0.0003 (7) |
C6 | 0.0190 (8) | 0.0307 (10) | 0.0301 (9) | −0.0006 (7) | 0.0017 (7) | −0.0023 (8) |
C7 | 0.0220 (9) | 0.0234 (9) | 0.0295 (9) | 0.0010 (7) | −0.0047 (7) | −0.0023 (7) |
C8 | 0.0217 (9) | 0.0224 (9) | 0.0314 (9) | 0.0006 (7) | −0.0037 (7) | −0.0034 (7) |
C9 | 0.0204 (8) | 0.0234 (9) | 0.0280 (9) | −0.0009 (6) | −0.0029 (7) | −0.0080 (7) |
C10 | 0.0211 (9) | 0.0239 (9) | 0.0290 (9) | −0.0010 (7) | −0.0025 (7) | −0.0042 (7) |
C11 | 0.0195 (8) | 0.0280 (9) | 0.0273 (9) | −0.0042 (7) | −0.0002 (7) | −0.0056 (7) |
C12 | 0.0182 (8) | 0.0271 (9) | 0.0318 (10) | 0.0018 (7) | −0.0029 (7) | −0.0043 (7) |
C13 | 0.0205 (8) | 0.0266 (9) | 0.0269 (9) | −0.0025 (7) | −0.0021 (7) | −0.0029 (7) |
C14 | 0.0175 (8) | 0.0303 (9) | 0.0261 (9) | −0.0009 (7) | 0.0003 (7) | −0.0066 (7) |
O1 | 0.0184 (6) | 0.0289 (7) | 0.0309 (7) | −0.0003 (5) | −0.0007 (5) | 0.0049 (5) |
O2 | 0.0210 (7) | 0.0280 (7) | 0.0427 (8) | 0.0060 (5) | −0.0017 (6) | 0.0036 (6) |
O3 | 0.0180 (6) | 0.0314 (7) | 0.0341 (7) | 0.0013 (5) | 0.0036 (5) | 0.0003 (5) |
O4 | 0.0189 (6) | 0.0316 (7) | 0.0333 (7) | 0.0035 (5) | 0.0022 (5) | 0.0059 (6) |
O5 | 0.0238 (7) | 0.0339 (7) | 0.0329 (7) | 0.0019 (5) | −0.0046 (5) | −0.0050 (6) |
O6 | 0.0239 (7) | 0.0299 (7) | 0.0343 (8) | −0.0026 (5) | −0.0023 (5) | −0.0078 (6) |
C1—C6 | 1.399 (3) | C10—C11 | 1.396 (2) |
C1—C2 | 1.405 (2) | C10—H10 | 0.9500 |
C1—C7 | 1.468 (2) | C11—O3 | 1.359 (2) |
C2—O1 | 1.377 (2) | C11—C12 | 1.394 (3) |
C2—C3 | 1.387 (2) | C12—C13 | 1.389 (2) |
C3—C4 | 1.385 (3) | C12—H12 | 0.9500 |
C3—H3 | 0.9500 | C13—O4 | 1.376 (2) |
C4—O2 | 1.373 (2) | C13—C14 | 1.387 (2) |
C4—C5 | 1.391 (3) | C14—H14 | 0.9500 |
C5—C6 | 1.382 (3) | O1—H1 | 0.8400 |
C5—H5 | 0.9500 | O2—H2 | 0.8400 |
C6—H6 | 0.9500 | O3—H3A | 0.8400 |
C7—C8 | 1.335 (3) | O4—H4 | 0.8400 |
C7—H7 | 0.9500 | O5—H5A | 0.890 (10) |
C8—C9 | 1.469 (2) | O5—H5B | 0.893 (10) |
C8—H8 | 0.9500 | O6—H6A | 0.897 (10) |
C9—C10 | 1.397 (2) | O6—H6B | 0.894 (10) |
C9—C14 | 1.402 (2) | O6—H6C | 0.896 (10) |
C6—C1—C2 | 116.74 (16) | C10—C9—C8 | 118.39 (16) |
C6—C1—C7 | 123.22 (15) | C14—C9—C8 | 122.38 (15) |
C2—C1—C7 | 119.97 (16) | C11—C10—C9 | 120.38 (16) |
O1—C2—C3 | 120.45 (15) | C11—C10—H10 | 119.8 |
O1—C2—C1 | 117.62 (15) | C9—C10—H10 | 119.8 |
C3—C2—C1 | 121.93 (16) | O3—C11—C12 | 122.21 (15) |
C4—C3—C2 | 119.39 (16) | O3—C11—C10 | 117.25 (16) |
C4—C3—H3 | 120.3 | C12—C11—C10 | 120.51 (16) |
C2—C3—H3 | 120.3 | C13—C12—C11 | 118.52 (16) |
O2—C4—C3 | 119.43 (15) | C13—C12—H12 | 120.7 |
O2—C4—C5 | 120.23 (16) | C11—C12—H12 | 120.7 |
C3—C4—C5 | 120.32 (16) | O4—C13—C14 | 117.15 (15) |
C6—C5—C4 | 119.44 (17) | O4—C13—C12 | 120.98 (15) |
C6—C5—H5 | 120.3 | C14—C13—C12 | 121.86 (16) |
C4—C5—H5 | 120.3 | C13—C14—C9 | 119.49 (15) |
C5—C6—C1 | 122.11 (16) | C13—C14—H14 | 120.3 |
C5—C6—H6 | 118.9 | C9—C14—H14 | 120.3 |
C1—C6—H6 | 118.9 | C2—O1—H1 | 109.5 |
C8—C7—C1 | 126.20 (16) | C4—O2—H2 | 109.5 |
C8—C7—H7 | 116.9 | C11—O3—H3A | 109.5 |
C1—C7—H7 | 116.9 | C13—O4—H4 | 109.5 |
C7—C8—C9 | 126.05 (17) | H5A—O5—H5B | 104 (2) |
C7—C8—H8 | 117.0 | H6A—O6—H6B | 119 (4) |
C9—C8—H8 | 117.0 | H6A—O6—H6C | 109 (4) |
C10—C9—C14 | 119.21 (15) | H6B—O6—H6C | 106 (5) |
C6—C1—C2—O1 | −177.63 (15) | C1—C7—C8—C9 | −176.59 (16) |
C7—C1—C2—O1 | 5.2 (3) | C7—C8—C9—C10 | 173.61 (18) |
C6—C1—C2—C3 | 1.8 (3) | C7—C8—C9—C14 | −4.5 (3) |
C7—C1—C2—C3 | −175.39 (16) | C14—C9—C10—C11 | 0.3 (3) |
O1—C2—C3—C4 | −179.97 (16) | C8—C9—C10—C11 | −177.84 (16) |
C1—C2—C3—C4 | 0.7 (3) | C9—C10—C11—O3 | 179.27 (15) |
C2—C3—C4—O2 | 175.96 (16) | C9—C10—C11—C12 | 0.9 (3) |
C2—C3—C4—C5 | −2.6 (3) | O3—C11—C12—C13 | −179.80 (16) |
O2—C4—C5—C6 | −176.49 (17) | C10—C11—C12—C13 | −1.5 (3) |
C3—C4—C5—C6 | 2.1 (3) | C11—C12—C13—O4 | −179.83 (16) |
C4—C5—C6—C1 | 0.5 (3) | C11—C12—C13—C14 | 1.0 (3) |
C2—C1—C6—C5 | −2.3 (3) | O4—C13—C14—C9 | −179.06 (15) |
C7—C1—C6—C5 | 174.73 (18) | C12—C13—C14—C9 | 0.2 (3) |
C6—C1—C7—C8 | 6.8 (3) | C10—C9—C14—C13 | −0.8 (3) |
C2—C1—C7—C8 | −176.28 (18) | C8—C9—C14—C13 | 177.25 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.84 | 1.90 | 2.7329 (18) | 173 |
O2—H2···O6ii | 0.84 | 1.89 | 2.720 (2) | 171 |
O3—H3A···O6iii | 0.84 | 1.97 | 2.8045 (19) | 169 |
O4—H4···O5iv | 0.84 | 1.89 | 2.7259 (19) | 170 |
O5—H5A···O1i | 0.89 (2) | 1.90 (2) | 2.7879 (19) | 172 (2) |
O5—H5B···O2v | 0.89 (2) | 1.88 (2) | 2.7449 (19) | 161 (2) |
O6—H6B···O2ii | 0.90 (3) | 1.95 (3) | 2.720 (2) | 143 (4) |
O6—H6C···O6vi | 0.90 (4) | 1.87 (4) | 2.7583 (19) | 172 (5) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, −y+2, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x+1, y, z; (v) x+1, y−1, z; (vi) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H12O4·2H2O |
Mr | 280.27 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.6523 (5), 9.2005 (9), 11.5294 (8) |
α, β, γ (°) | 72.533 (7), 78.686 (6), 79.651 (7) |
V (Å3) | 654.51 (9) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.95 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Agilent Xcalibur Onyx Nova diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.704, 0.834 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4145, 2297, 2002 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.141, 1.13 |
No. of reflections | 2297 |
No. of parameters | 197 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.44 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.84 | 1.90 | 2.7329 (18) | 173 |
O2—H2···O6ii | 0.84 | 1.89 | 2.720 (2) | 171 |
O3—H3A···O6iii | 0.84 | 1.97 | 2.8045 (19) | 169 |
O4—H4···O5iv | 0.84 | 1.89 | 2.7259 (19) | 170 |
O5—H5A···O1i | 0.89 (2) | 1.90 (2) | 2.7879 (19) | 172 (2) |
O5—H5B···O2v | 0.893 (17) | 1.884 (18) | 2.7449 (19) | 161 (2) |
O6—H6B···O2ii | 0.90 (3) | 1.95 (3) | 2.720 (2) | 143 (4) |
O6—H6C···O6vi | 0.90 (4) | 1.87 (4) | 2.7583 (19) | 172 (5) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, −y+2, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x+1, y, z; (v) x+1, y−1, z; (vi) −x+1, −y+1, −z+1. |
Acknowledgements
The authors gratefully thank the Scientific Research Foundation for Returned Overseas Chinese Scholars (X. He), the State Education Ministry, the National Natural Science Foundation of China, (30800169, X. Hu) and the Research Fund for the Doctoral Program of Higher Education of China (200805581146, X. Hu).
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Andrabi, S. A., Spina, M. G., Lorenz, P., Ebmeyer, U., Wolf, G. & Horn, T. F. (2004). Brain Res. 1017, 98–107. Web of Science CrossRef PubMed CAS Google Scholar
Ban, J. Y., Cho, S. O., Choi, S. H., Ju, H. S., Kim, J. Y., Bae, K., Song, K. S. & Seong, Y. H. (2008). J. Pharmacol. Sci. 106, 68–77. Web of Science CrossRef PubMed CAS Google Scholar
Ban, J. Y., Jeon, S. Y., Nguyen, T. T., Bae, K., Song, K. S. & Seong, Y. H. (2006). Biol. Pharm. Bull. 29, 2419–2424. Web of Science CrossRef PubMed CAS Google Scholar
Breuer, C., Wolf, G., Andrabi, S. A., Lorenz, P. & Horn, T. F. (2006). Neurosci. Lett. 393, 113–118. Web of Science CrossRef PubMed CAS Google Scholar
Chao, J., Yu, M. S., Ho, Y. S., Wang, M. & Chang, R. C. (2008). Free Radical Biol. Med. 45, 1019–1026. Web of Science CrossRef CAS Google Scholar
Charoenlarp, P., Radomyos, P. & Bunnag, D. (1989). J. Med. Assoc. Thai. 72, 71–73. CAS PubMed Google Scholar
Charoenlarp, P., Radomyos, P. & Harinasuta, T. (1981). Southeast Asian J. Trop. Med. Public Health, 12, 568–570. CAS PubMed Google Scholar
Chuanasa, T., Phromjai, J., Lipipun, V., Likhitwitayawuid, K., Suzuki, M., Pramyothin, P., Hattori, M. & Shiraki, K. (2008). Antiviral Res. 80, 62–70. Web of Science CrossRef PubMed CAS Google Scholar
Chung, K. O., Kim, B. Y., Lee, M. H., Kim, Y. R., Chung, H. Y., Park, J. H. & Moon, J. O. (2003). J. Pharm. Pharmacol. 55, 1695–1700. Web of Science CrossRef PubMed CAS Google Scholar
Galindo, I., Hernaez, B., Berna, J., Fenoll, J., Cenis, J. L., Escribano, J. M. & Alonso, C. (2011). Antiviral Res. 91, 57–63. Web of Science CrossRef CAS PubMed Google Scholar
Hano, Y., Tsubura, H. & Nomura, T. (1986). Heterocycles, 24, 2603–2610. CAS Google Scholar
Kim, D. H., Kim, J. H., Baek, S. H., Seo, J. H., Kho, Y. H., Oh, T. K. & Lee, C. H. (2004). Biotechnol. Bioeng. 87, 849–854. Web of Science CrossRef PubMed CAS Google Scholar
Kim, Y. M., Yun, J., Lee, C. K., Lee, H., Min, K. R. & Kim, Y. (2002). J. Biol. Chem. 277, 16340–16344. Web of Science CrossRef PubMed CAS Google Scholar
Likhitwitayawuid, K. (2008). Curr. Sci. 94, 44–52. CAS Google Scholar
Likhitwitayawuid, K., Chaiwiriya, S., Sritularak, B. & Lipipun, V. (2006). Chem. Biodivers. 3, 1138–1143. Web of Science CrossRef PubMed CAS Google Scholar
Likhitwitayawuid, K., Sritularak, B., Benchanak, K., Lipipun, V., Mathew, J. & Schinazi, R. F. (2005). Nat. Prod. Res. 19, 177–182. Web of Science CrossRef PubMed CAS Google Scholar
Lipipun, V., Sasivimolphan, P., Yoshida, Y., Daikoku, T., Sritularak, B., Ritthidej, G., Likhitwitayawuid, K., Pramyothin, P., Hattori, M. & Shiraki, K. (2011). Antiviral Res. 91, 154–160. Web of Science CrossRef CAS PubMed Google Scholar
Liu, D., Kim, D. H., Park, J. M., Na, H. K. & Surh, Y. J. (2009). Nutr. Cancer, 61, 855–863. Web of Science CrossRef CAS PubMed Google Scholar
Mongolsuk, S., Robertson, A. & Towers, R. (1957). J. Chem. Soc. pp. 2231–2233. CrossRef Web of Science Google Scholar
Piao, S.-J., Qiu, F., Chen, L.-X., Pan, Y. & Dou, D.-Q. (2009). Helv. Chim. Acta, 92, 579–587. CrossRef CAS Google Scholar
Qiu, F., Komatsu, K., Kawasaki, K., Saito, K., Yao, X. & Kano, Y. (1996). Planta Med. 62, 559–561. CrossRef PubMed CAS Web of Science Google Scholar
Sasivimolphan, P., Lipipun, V., Likhitwitayawuid, K., Takemoto, M., Pramyothin, P., Hattori, M. & Shiraki, K. (2009). Antiviral Res. 84, 95–97. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shin, N. H., Ryu, S. Y., Choi, E. J., Kang, S. H., Chang, I. M., Min, K. R. & Kim, Y. (1998). Biochem. Biophys. Res. Commun. 243, 801–803. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, Z. P., Cheng, K. W., Zhu, Q., Wang, X. C., Lin, Z. X. & Wang, M. (2010). J. Agric. Food Chem. 58, 5368–5373. Web of Science CrossRef CAS PubMed Google Scholar
Zheng, Z. P., Zhu, Q., Fan, C. L., Tan, H. Y. & Wang, M. (2011). Food Funct. 2, 259–264. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxyresveratrol was firstly isolated from the heartwood of Artocarpus lakoocha Roxb as a abundant trans-tetrahydroxystilbene (Mongolsuk et al., 1957). Oxyresveratrol is responsible for the anthelmintic activity of the traditional Thailand anthelmintic drug "Puag-Haad" prepared from A. lakoocha (Charoenlarp et al., 1989; Charoenlarp et al., 1981). Recent investigations have revealed several interesting bioactivities of oxyresveratrol, such as tyrosinase inhibitory activity (Zheng et al., 2011; Zheng et al., 2010; Kim et al., 2004; Kim et al., 2002; Shin et al., 1998), in vitro anti-viral activity (Lipipun et al., 2011; Galindo et al., 2011; Sasivimolphan et al., 2009; Chuanasa et al., 2008; Likhitwitayawuid et al., 2006; Likhitwitayawuid et al., 2005), strong anti-oxidative and anti-inflammatory (Liu et al., 2009; Breuer et al., 2006; Chung et al., 2003), and neuroprotective properties (Chao et al., 2008; Ban et al., 2008; Ban et al., 2006; Breuer et al., 2006; Andrabi et al., 2004). These medicinal properties indicate several areas of therapeutic potential for oxyresveratrol and the compound has been recommended as a drug candidate for the treatment of neurodegenerative disorders (Breuer et al., 2006; Andrabi et al., 2004) and a skin-whitening agent in cosmetic preparations (Likhitwitayawuid, 2008). Mulberry (Morus alba L.) is a medicinal plant in east Asia. Its branch, leaf, ripe fruit and root bark are well known traditional Chinese drugs and contain a large amounts of trans-hydroxystilbenes such as mulberroside A, phaponticin, phapontigenin, resveratrol, pterostilbene, piceatannol, piceid, astringin, kuwanon Y, kuwanon Z, oxyresveratrol and its derivatives (Qiu et al., 1996; Hano et al., 1986; Piao et al., 2009). In this paper, we isolated oxyresveratrol from mulberry (Morus alba L.) and report the structure of oxyresveratrol dihydrate.
In the title compound (Fig. 1), the benzene rings form a dihedral angle of 9.39 (9)°. The presence of the trans C═C double bond allows the formation of a conjugated system, strongly stabilized through π-electron delocalization. The trans-double bond is the same as found in similar structures (Piao et al., 2009; Qiu et al., 1996; Hano et al., 1986). The molecules of the oxyresveratrol are connected into a three-dimensional architecture through O—H—O hydrogen bonds formed between its hydroxyl group and the solvent water molecules (Fig. 2 and Table 1).