organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1318-o1319

Oxyresveratrol from Mulberry as a dihydrate

aSchool of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, People's Republic of China, and bCollege of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: huxpeng@mail.sysu.edu.cn

(Received 30 March 2012; accepted 31 March 2012; online 6 April 2012)

The title compound {systematic name: 4-[(E)-2-(3,5-dihy­droxy­phen­yl)ethen­yl]benzene-1,3-diol dihydrate}, C14H12O4·2H2O, a derivative of resveratrol, was isolated from mulberry. The linking C=C double bond has a trans conformation and allows the formation of a conjugated system throughout the mol­ecule. The dihedral angle between the benzene rings is 9.39 (9)°. In the crystal, mol­ecules are connected into a three-dimensional architecture through O—H⋯O hydrogen bonds between hy­droxy groups of oxyresveratrol and solvent water mol­ecules.

Related literature

For medicinal properties and the biological activity of oxyresveratrol, see: Mongolsuk et al. (1957[Mongolsuk, S., Robertson, A. & Towers, R. (1957). J. Chem. Soc. pp. 2231-2233.]); Charoenlarp et al. (1981[Charoenlarp, P., Radomyos, P. & Harinasuta, T. (1981). Southeast Asian J. Trop. Med. Public Health, 12, 568-570.], 1989[Charoenlarp, P., Radomyos, P. & Bunnag, D. (1989). J. Med. Assoc. Thai. 72, 71-73.]); Zheng et al. (2010[Zheng, Z. P., Cheng, K. W., Zhu, Q., Wang, X. C., Lin, Z. X. & Wang, M. (2010). J. Agric. Food Chem. 58, 5368-5373.], 2011[Zheng, Z. P., Zhu, Q., Fan, C. L., Tan, H. Y. & Wang, M. (2011). Food Funct. 2, 259-264.]); Kim et al. (2002[Kim, Y. M., Yun, J., Lee, C. K., Lee, H., Min, K. R. & Kim, Y. (2002). J. Biol. Chem. 277, 16340-16344.], 2004[Kim, D. H., Kim, J. H., Baek, S. H., Seo, J. H., Kho, Y. H., Oh, T. K. & Lee, C. H. (2004). Biotechnol. Bioeng. 87, 849-854.]); Shin et al. (1998[Shin, N. H., Ryu, S. Y., Choi, E. J., Kang, S. H., Chang, I. M., Min, K. R. & Kim, Y. (1998). Biochem. Biophys. Res. Commun. 243, 801-803.]); Lipipun et al. (2011[Lipipun, V., Sasivimolphan, P., Yoshida, Y., Daikoku, T., Sritularak, B., Ritthidej, G., Likhitwitayawuid, K., Pramyothin, P., Hattori, M. & Shiraki, K. (2011). Antiviral Res. 91, 154-160.]); Galindo et al. (2011[Galindo, I., Hernaez, B., Berna, J., Fenoll, J., Cenis, J. L., Escribano, J. M. & Alonso, C. (2011). Antiviral Res. 91, 57-63.]); Sasivimolphan et al. (2009[Sasivimolphan, P., Lipipun, V., Likhitwitayawuid, K., Takemoto, M., Pramyothin, P., Hattori, M. & Shiraki, K. (2009). Antiviral Res. 84, 95-97.]); Chuanasa et al. (2008[Chuanasa, T., Phromjai, J., Lipipun, V., Likhitwitayawuid, K., Suzuki, M., Pramyothin, P., Hattori, M. & Shiraki, K. (2008). Antiviral Res. 80, 62-70.]); Likhitwitayawuid (2008[Likhitwitayawuid, K. (2008). Curr. Sci. 94, 44-52.]); Likhitwitayawuid et al. (2005[Likhitwitayawuid, K., Sritularak, B., Benchanak, K., Lipipun, V., Mathew, J. & Schinazi, R. F. (2005). Nat. Prod. Res. 19, 177-182.], 2006[Likhitwitayawuid, K., Chaiwiriya, S., Sritularak, B. & Lipipun, V. (2006). Chem. Biodivers. 3, 1138-1143.]); Liu et al. (2009[Liu, D., Kim, D. H., Park, J. M., Na, H. K. & Surh, Y. J. (2009). Nutr. Cancer, 61, 855-863.]); Breuer et al. (2006[Breuer, C., Wolf, G., Andrabi, S. A., Lorenz, P. & Horn, T. F. (2006). Neurosci. Lett. 393, 113-118.]); Chung et al. (2003[Chung, K. O., Kim, B. Y., Lee, M. H., Kim, Y. R., Chung, H. Y., Park, J. H. & Moon, J. O. (2003). J. Pharm. Pharmacol. 55, 1695-1700.]); Chao et al. (2008[Chao, J., Yu, M. S., Ho, Y. S., Wang, M. & Chang, R. C. (2008). Free Radical Biol. Med. 45, 1019-1026.]); Ban et al. (2006[Ban, J. Y., Jeon, S. Y., Nguyen, T. T., Bae, K., Song, K. S. & Seong, Y. H. (2006). Biol. Pharm. Bull. 29, 2419-2424.], 2008[Ban, J. Y., Cho, S. O., Choi, S. H., Ju, H. S., Kim, J. Y., Bae, K., Song, K. S. & Seong, Y. H. (2008). J. Pharmacol. Sci. 106, 68-77.]); Breuer et al. (2006[Breuer, C., Wolf, G., Andrabi, S. A., Lorenz, P. & Horn, T. F. (2006). Neurosci. Lett. 393, 113-118.]); Andrabi et al. (2004[Andrabi, S. A., Spina, M. G., Lorenz, P., Ebmeyer, U., Wolf, G. & Horn, T. F. (2004). Brain Res. 1017, 98-107.]). For related structures, see: Piao et al. (2009[Piao, S.-J., Qiu, F., Chen, L.-X., Pan, Y. & Dou, D.-Q. (2009). Helv. Chim. Acta, 92, 579-587.]); Qiu et al.(1996[Qiu, F., Komatsu, K., Kawasaki, K., Saito, K., Yao, X. & Kano, Y. (1996). Planta Med. 62, 559-561.]); Hano et al. (1986[Hano, Y., Tsubura, H. & Nomura, T. (1986). Heterocycles, 24, 2603-2610.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O4·2H2O

  • Mr = 280.27

  • Triclinic, [P \overline 1]

  • a = 6.6523 (5) Å

  • b = 9.2005 (9) Å

  • c = 11.5294 (8) Å

  • α = 72.533 (7)°

  • β = 78.686 (6)°

  • γ = 79.651 (7)°

  • V = 654.51 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent Xcalibur Onyx Nova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.704, Tmax = 0.834

  • 4145 measured reflections

  • 2297 independent reflections

  • 2002 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.141

  • S = 1.13

  • 2297 reflections

  • 197 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.84 1.90 2.7329 (18) 173
O2—H2⋯O6ii 0.84 1.89 2.720 (2) 171
O3—H3A⋯O6iii 0.84 1.97 2.8045 (19) 169
O4—H4⋯O5iv 0.84 1.89 2.7259 (19) 170
O5—H5A⋯O1i 0.89 (2) 1.90 (2) 2.7879 (19) 172 (2)
O5—H5B⋯O2v 0.89 (2) 1.88 (2) 2.7449 (19) 161 (2)
O6—H6B⋯O2ii 0.90 (3) 1.95 (3) 2.720 (2) 143 (4)
O6—H6C⋯O6vi 0.90 (4) 1.87 (4) 2.7583 (19) 172 (5)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+2, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x+1, y, z; (v) x+1, y-1, z; (vi) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Oxyresveratrol was firstly isolated from the heartwood of Artocarpus lakoocha Roxb as a abundant trans-tetrahydroxystilbene (Mongolsuk et al., 1957). Oxyresveratrol is responsible for the anthelmintic activity of the traditional Thailand anthelmintic drug "Puag-Haad" prepared from A. lakoocha (Charoenlarp et al., 1989; Charoenlarp et al., 1981). Recent investigations have revealed several interesting bioactivities of oxyresveratrol, such as tyrosinase inhibitory activity (Zheng et al., 2011; Zheng et al., 2010; Kim et al., 2004; Kim et al., 2002; Shin et al., 1998), in vitro anti-viral activity (Lipipun et al., 2011; Galindo et al., 2011; Sasivimolphan et al., 2009; Chuanasa et al., 2008; Likhitwitayawuid et al., 2006; Likhitwitayawuid et al., 2005), strong anti-oxidative and anti-inflammatory (Liu et al., 2009; Breuer et al., 2006; Chung et al., 2003), and neuroprotective properties (Chao et al., 2008; Ban et al., 2008; Ban et al., 2006; Breuer et al., 2006; Andrabi et al., 2004). These medicinal properties indicate several areas of therapeutic potential for oxyresveratrol and the compound has been recommended as a drug candidate for the treatment of neurodegenerative disorders (Breuer et al., 2006; Andrabi et al., 2004) and a skin-whitening agent in cosmetic preparations (Likhitwitayawuid, 2008). Mulberry (Morus alba L.) is a medicinal plant in east Asia. Its branch, leaf, ripe fruit and root bark are well known traditional Chinese drugs and contain a large amounts of trans-hydroxystilbenes such as mulberroside A, phaponticin, phapontigenin, resveratrol, pterostilbene, piceatannol, piceid, astringin, kuwanon Y, kuwanon Z, oxyresveratrol and its derivatives (Qiu et al., 1996; Hano et al., 1986; Piao et al., 2009). In this paper, we isolated oxyresveratrol from mulberry (Morus alba L.) and report the structure of oxyresveratrol dihydrate.

In the title compound (Fig. 1), the benzene rings form a dihedral angle of 9.39 (9)°. The presence of the trans CC double bond allows the formation of a conjugated system, strongly stabilized through π-electron delocalization. The trans-double bond is the same as found in similar structures (Piao et al., 2009; Qiu et al., 1996; Hano et al., 1986). The molecules of the oxyresveratrol are connected into a three-dimensional architecture through O—H—O hydrogen bonds formed between its hydroxyl group and the solvent water molecules (Fig. 2 and Table 1).

Related literature top

For medicinal properties and the biological activity of oxyresveratrol, see: Mongolsuk et al. (1957); Charoenlarp et al. (1981, 1989); Zheng et al. (2010, 2011); Kim et al. (2002, 2004);Shin et al. (1998); Lipipun et al. (2011); Galindo et al. (2011); Sasivimolphan et al. (2009); Chuanasa et al. (2008); Likhitwitayawuid (2008); Likhitwitayawuid et al. (2005, 2006, 2008); Liu et al. (2009); Breuer et al. (2006); Chung et al. (2003); Chao et al. (2008); Ban et al. (2006, 2008); Breuer et al. (2006); Andrabi et al. (2004). For related structures, see: Piao et al. (2009); Qiu et al.(1996); Hano et al. (1986).

Experimental top

The dried root bark of Morus alba L. (1 kg) was powdered and extracted with 95% ethanol at room temperature for 48 h. After removal of the solvent under reduced pressure, a brown extract was suspended with water, and sequentially partitioned with petroleum ether, acetyl acetate and n-butanol. The acetyl acetate extract (9 g) was subjected to column chromatography on silica gel (200–300 mesh) with increasing concentrations of ethyl acetate in petroleum ether. Oxyresveratrol was afforded from the fraction (petroleum ether-ethyl acetate 6/4, v/v). The title compound was colourless to light-yellow crystal with M.pt: 474–476 K,. Crystals suitable for X-ray analysis were obtained by slow evaporation from its chloroform–methanol (4/1, v/v) solution. 1H NMR (400 MHz, MeOD) δ 7.33 (d, J = 9.2 Hz, 1H), 7.27 (d, J = 16.5 Hz, 1H), 6.82 (d, J = 16.4 Hz,1H), 6.46 (d, J = 2.1 Hz, 2H), 6.34 – 6.32 (m, 1H), 6.31 (s, 1H), 6.15 (t, J = 2.2 Hz, 1H); O—H not observed.

Refinement top

The hydroxy- and C-bound H-atoms were placed in calculated positions [O—H = 0.84 Å, Uiso(H) = 1.5Ueq(O); C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The water-H atoms were refined with O—H = 0.90±0.01 Å, and with Uiso(H) = 1.5Ueq(O). The O6-water molecule was found to be disordered over three positions, one with full weight, the others with 0.5 site occupancy factors.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of compound (I). The displacement ellipsoids are at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
4-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,3-diol dihydrate top
Crystal data top
C14H12O4·2H2OZ = 2
Mr = 280.27F(000) = 296
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 6.6523 (5) ÅCell parameters from 2627 reflections
b = 9.2005 (9) Åθ = 4.1–71.3°
c = 11.5294 (8) ŵ = 0.95 mm1
α = 72.533 (7)°T = 293 K
β = 78.686 (6)°Block, colourless
γ = 79.651 (7)°0.40 × 0.30 × 0.20 mm
V = 654.51 (9) Å3
Data collection top
Agilent Xcalibur Onyx Nova
diffractometer
2297 independent reflections
Radiation source: Nova (Cu) X-ray Source2002 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 8.2417 pixels mm-1θmax = 66.6°, θmin = 4.1°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 108
Tmin = 0.704, Tmax = 0.834l = 1313
4145 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.081P)2 + 0.176P]
where P = (Fo2 + 2Fc2)/3
2297 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.50 e Å3
5 restraintsΔρmin = 0.44 e Å3
Crystal data top
C14H12O4·2H2Oγ = 79.651 (7)°
Mr = 280.27V = 654.51 (9) Å3
Triclinic, P1Z = 2
a = 6.6523 (5) ÅCu Kα radiation
b = 9.2005 (9) ŵ = 0.95 mm1
c = 11.5294 (8) ÅT = 293 K
α = 72.533 (7)°0.40 × 0.30 × 0.20 mm
β = 78.686 (6)°
Data collection top
Agilent Xcalibur Onyx Nova
diffractometer
2297 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2002 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.834Rint = 0.022
4145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0425 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.50 e Å3
2297 reflectionsΔρmin = 0.44 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1126 (3)0.9054 (2)0.76812 (16)0.0253 (4)
C20.2896 (3)0.8772 (2)0.85658 (16)0.0251 (4)
C30.4773 (3)0.9699 (2)0.84350 (16)0.0260 (4)
H30.59450.94900.90510.031*
C40.4925 (3)1.0933 (2)0.73988 (17)0.0270 (4)
C50.3191 (3)1.1277 (2)0.65217 (18)0.0304 (4)
H50.32861.21430.58250.036*
C60.1329 (3)1.0347 (2)0.66730 (17)0.0291 (4)
H60.01491.05940.60730.035*
C70.0785 (3)0.7976 (2)0.78124 (16)0.0265 (4)
H70.07240.70730.84820.032*
C80.2599 (3)0.8143 (2)0.70802 (17)0.0266 (4)
H80.26820.90720.64380.032*
C90.4478 (3)0.7025 (2)0.71754 (16)0.0241 (4)
C100.6184 (3)0.7319 (2)0.62552 (16)0.0258 (4)
H100.61220.82420.56050.031*
C110.7979 (3)0.6264 (2)0.62855 (16)0.0257 (4)
C120.8084 (3)0.4895 (2)0.72244 (17)0.0273 (4)
H120.92920.41630.72380.033*
C130.6385 (3)0.4623 (2)0.81404 (16)0.0260 (4)
C140.4594 (3)0.5662 (2)0.81327 (16)0.0257 (4)
H140.34540.54510.87710.031*
O10.27079 (18)0.75380 (14)0.95877 (12)0.0298 (3)
H10.38880.73210.99440.045*
O20.68101 (19)1.17941 (15)0.72308 (13)0.0352 (4)
H20.66341.26910.68020.053*
O30.95691 (19)0.66150 (15)0.53537 (12)0.0316 (3)
H3A1.06170.59710.55090.047*
O40.64072 (19)0.32934 (15)0.90904 (12)0.0330 (4)
H40.75890.27860.90440.049*
O50.01297 (19)0.14910 (15)0.92354 (12)0.0318 (3)
H5A0.085 (3)0.187 (3)0.963 (2)0.048*
H5B0.095 (3)0.148 (3)0.8524 (14)0.048*
O60.67051 (19)0.52209 (15)0.40983 (12)0.0300 (3)
H6A0.637 (4)0.490 (3)0.3506 (17)0.045*
H6B0.701 (7)0.618 (2)0.394 (4)0.045*0.50
H6C0.565 (6)0.513 (6)0.472 (3)0.045*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0192 (9)0.0256 (9)0.0278 (9)0.0011 (7)0.0025 (7)0.0043 (7)
C20.0202 (8)0.0243 (9)0.0270 (9)0.0018 (6)0.0028 (7)0.0025 (7)
C30.0182 (8)0.0268 (9)0.0285 (9)0.0011 (7)0.0012 (7)0.0051 (7)
C40.0187 (8)0.0261 (9)0.0322 (9)0.0029 (7)0.0031 (7)0.0057 (7)
C50.0249 (9)0.0280 (9)0.0300 (9)0.0003 (7)0.0011 (7)0.0003 (7)
C60.0190 (8)0.0307 (10)0.0301 (9)0.0006 (7)0.0017 (7)0.0023 (8)
C70.0220 (9)0.0234 (9)0.0295 (9)0.0010 (7)0.0047 (7)0.0023 (7)
C80.0217 (9)0.0224 (9)0.0314 (9)0.0006 (7)0.0037 (7)0.0034 (7)
C90.0204 (8)0.0234 (9)0.0280 (9)0.0009 (6)0.0029 (7)0.0080 (7)
C100.0211 (9)0.0239 (9)0.0290 (9)0.0010 (7)0.0025 (7)0.0042 (7)
C110.0195 (8)0.0280 (9)0.0273 (9)0.0042 (7)0.0002 (7)0.0056 (7)
C120.0182 (8)0.0271 (9)0.0318 (10)0.0018 (7)0.0029 (7)0.0043 (7)
C130.0205 (8)0.0266 (9)0.0269 (9)0.0025 (7)0.0021 (7)0.0029 (7)
C140.0175 (8)0.0303 (9)0.0261 (9)0.0009 (7)0.0003 (7)0.0066 (7)
O10.0184 (6)0.0289 (7)0.0309 (7)0.0003 (5)0.0007 (5)0.0049 (5)
O20.0210 (7)0.0280 (7)0.0427 (8)0.0060 (5)0.0017 (6)0.0036 (6)
O30.0180 (6)0.0314 (7)0.0341 (7)0.0013 (5)0.0036 (5)0.0003 (5)
O40.0189 (6)0.0316 (7)0.0333 (7)0.0035 (5)0.0022 (5)0.0059 (6)
O50.0238 (7)0.0339 (7)0.0329 (7)0.0019 (5)0.0046 (5)0.0050 (6)
O60.0239 (7)0.0299 (7)0.0343 (8)0.0026 (5)0.0023 (5)0.0078 (6)
Geometric parameters (Å, º) top
C1—C61.399 (3)C10—C111.396 (2)
C1—C21.405 (2)C10—H100.9500
C1—C71.468 (2)C11—O31.359 (2)
C2—O11.377 (2)C11—C121.394 (3)
C2—C31.387 (2)C12—C131.389 (2)
C3—C41.385 (3)C12—H120.9500
C3—H30.9500C13—O41.376 (2)
C4—O21.373 (2)C13—C141.387 (2)
C4—C51.391 (3)C14—H140.9500
C5—C61.382 (3)O1—H10.8400
C5—H50.9500O2—H20.8400
C6—H60.9500O3—H3A0.8400
C7—C81.335 (3)O4—H40.8400
C7—H70.9500O5—H5A0.890 (10)
C8—C91.469 (2)O5—H5B0.893 (10)
C8—H80.9500O6—H6A0.897 (10)
C9—C101.397 (2)O6—H6B0.894 (10)
C9—C141.402 (2)O6—H6C0.896 (10)
C6—C1—C2116.74 (16)C10—C9—C8118.39 (16)
C6—C1—C7123.22 (15)C14—C9—C8122.38 (15)
C2—C1—C7119.97 (16)C11—C10—C9120.38 (16)
O1—C2—C3120.45 (15)C11—C10—H10119.8
O1—C2—C1117.62 (15)C9—C10—H10119.8
C3—C2—C1121.93 (16)O3—C11—C12122.21 (15)
C4—C3—C2119.39 (16)O3—C11—C10117.25 (16)
C4—C3—H3120.3C12—C11—C10120.51 (16)
C2—C3—H3120.3C13—C12—C11118.52 (16)
O2—C4—C3119.43 (15)C13—C12—H12120.7
O2—C4—C5120.23 (16)C11—C12—H12120.7
C3—C4—C5120.32 (16)O4—C13—C14117.15 (15)
C6—C5—C4119.44 (17)O4—C13—C12120.98 (15)
C6—C5—H5120.3C14—C13—C12121.86 (16)
C4—C5—H5120.3C13—C14—C9119.49 (15)
C5—C6—C1122.11 (16)C13—C14—H14120.3
C5—C6—H6118.9C9—C14—H14120.3
C1—C6—H6118.9C2—O1—H1109.5
C8—C7—C1126.20 (16)C4—O2—H2109.5
C8—C7—H7116.9C11—O3—H3A109.5
C1—C7—H7116.9C13—O4—H4109.5
C7—C8—C9126.05 (17)H5A—O5—H5B104 (2)
C7—C8—H8117.0H6A—O6—H6B119 (4)
C9—C8—H8117.0H6A—O6—H6C109 (4)
C10—C9—C14119.21 (15)H6B—O6—H6C106 (5)
C6—C1—C2—O1177.63 (15)C1—C7—C8—C9176.59 (16)
C7—C1—C2—O15.2 (3)C7—C8—C9—C10173.61 (18)
C6—C1—C2—C31.8 (3)C7—C8—C9—C144.5 (3)
C7—C1—C2—C3175.39 (16)C14—C9—C10—C110.3 (3)
O1—C2—C3—C4179.97 (16)C8—C9—C10—C11177.84 (16)
C1—C2—C3—C40.7 (3)C9—C10—C11—O3179.27 (15)
C2—C3—C4—O2175.96 (16)C9—C10—C11—C120.9 (3)
C2—C3—C4—C52.6 (3)O3—C11—C12—C13179.80 (16)
O2—C4—C5—C6176.49 (17)C10—C11—C12—C131.5 (3)
C3—C4—C5—C62.1 (3)C11—C12—C13—O4179.83 (16)
C4—C5—C6—C10.5 (3)C11—C12—C13—C141.0 (3)
C2—C1—C6—C52.3 (3)O4—C13—C14—C9179.06 (15)
C7—C1—C6—C5174.73 (18)C12—C13—C14—C90.2 (3)
C6—C1—C7—C86.8 (3)C10—C9—C14—C130.8 (3)
C2—C1—C7—C8176.28 (18)C8—C9—C14—C13177.25 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.902.7329 (18)173
O2—H2···O6ii0.841.892.720 (2)171
O3—H3A···O6iii0.841.972.8045 (19)169
O4—H4···O5iv0.841.892.7259 (19)170
O5—H5A···O1i0.89 (2)1.90 (2)2.7879 (19)172 (2)
O5—H5B···O2v0.89 (2)1.88 (2)2.7449 (19)161 (2)
O6—H6B···O2ii0.90 (3)1.95 (3)2.720 (2)143 (4)
O6—H6C···O6vi0.90 (4)1.87 (4)2.7583 (19)172 (5)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+2, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+1, y1, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H12O4·2H2O
Mr280.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.6523 (5), 9.2005 (9), 11.5294 (8)
α, β, γ (°)72.533 (7), 78.686 (6), 79.651 (7)
V3)654.51 (9)
Z2
Radiation typeCu Kα
µ (mm1)0.95
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent Xcalibur Onyx Nova
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.704, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
4145, 2297, 2002
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.141, 1.13
No. of reflections2297
No. of parameters197
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.44

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.902.7329 (18)173
O2—H2···O6ii0.841.892.720 (2)171
O3—H3A···O6iii0.841.972.8045 (19)169
O4—H4···O5iv0.841.892.7259 (19)170
O5—H5A···O1i0.89 (2)1.90 (2)2.7879 (19)172 (2)
O5—H5B···O2v0.893 (17)1.884 (18)2.7449 (19)161 (2)
O6—H6B···O2ii0.90 (3)1.95 (3)2.720 (2)143 (4)
O6—H6C···O6vi0.90 (4)1.87 (4)2.7583 (19)172 (5)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+2, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+1, y1, z; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully thank the Scientific Research Foundation for Returned Overseas Chinese Scholars (X. He), the State Education Ministry, the National Natural Science Foundation of China, (30800169, X. Hu) and the Research Fund for the Doctoral Program of Higher Education of China (200805581146, X. Hu).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAndrabi, S. A., Spina, M. G., Lorenz, P., Ebmeyer, U., Wolf, G. & Horn, T. F. (2004). Brain Res. 1017, 98–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBan, J. Y., Cho, S. O., Choi, S. H., Ju, H. S., Kim, J. Y., Bae, K., Song, K. S. & Seong, Y. H. (2008). J. Pharmacol. Sci. 106, 68–77.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBan, J. Y., Jeon, S. Y., Nguyen, T. T., Bae, K., Song, K. S. & Seong, Y. H. (2006). Biol. Pharm. Bull. 29, 2419–2424.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBreuer, C., Wolf, G., Andrabi, S. A., Lorenz, P. & Horn, T. F. (2006). Neurosci. Lett. 393, 113–118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChao, J., Yu, M. S., Ho, Y. S., Wang, M. & Chang, R. C. (2008). Free Radical Biol. Med. 45, 1019–1026.  Web of Science CrossRef CAS Google Scholar
First citationCharoenlarp, P., Radomyos, P. & Bunnag, D. (1989). J. Med. Assoc. Thai. 72, 71–73.  CAS PubMed Google Scholar
First citationCharoenlarp, P., Radomyos, P. & Harinasuta, T. (1981). Southeast Asian J. Trop. Med. Public Health, 12, 568–570.  CAS PubMed Google Scholar
First citationChuanasa, T., Phromjai, J., Lipipun, V., Likhitwitayawuid, K., Suzuki, M., Pramyothin, P., Hattori, M. & Shiraki, K. (2008). Antiviral Res. 80, 62–70.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChung, K. O., Kim, B. Y., Lee, M. H., Kim, Y. R., Chung, H. Y., Park, J. H. & Moon, J. O. (2003). J. Pharm. Pharmacol. 55, 1695–1700.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGalindo, I., Hernaez, B., Berna, J., Fenoll, J., Cenis, J. L., Escribano, J. M. & Alonso, C. (2011). Antiviral Res. 91, 57–63.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHano, Y., Tsubura, H. & Nomura, T. (1986). Heterocycles, 24, 2603–2610.  CAS Google Scholar
First citationKim, D. H., Kim, J. H., Baek, S. H., Seo, J. H., Kho, Y. H., Oh, T. K. & Lee, C. H. (2004). Biotechnol. Bioeng. 87, 849–854.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, Y. M., Yun, J., Lee, C. K., Lee, H., Min, K. R. & Kim, Y. (2002). J. Biol. Chem. 277, 16340–16344.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLikhitwitayawuid, K. (2008). Curr. Sci. 94, 44–52.  CAS Google Scholar
First citationLikhitwitayawuid, K., Chaiwiriya, S., Sritularak, B. & Lipipun, V. (2006). Chem. Biodivers. 3, 1138–1143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLikhitwitayawuid, K., Sritularak, B., Benchanak, K., Lipipun, V., Mathew, J. & Schinazi, R. F. (2005). Nat. Prod. Res. 19, 177–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLipipun, V., Sasivimolphan, P., Yoshida, Y., Daikoku, T., Sritularak, B., Ritthidej, G., Likhitwitayawuid, K., Pramyothin, P., Hattori, M. & Shiraki, K. (2011). Antiviral Res. 91, 154–160.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, D., Kim, D. H., Park, J. M., Na, H. K. & Surh, Y. J. (2009). Nutr. Cancer, 61, 855–863.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMongolsuk, S., Robertson, A. & Towers, R. (1957). J. Chem. Soc. pp. 2231–2233.  CrossRef Web of Science Google Scholar
First citationPiao, S.-J., Qiu, F., Chen, L.-X., Pan, Y. & Dou, D.-Q. (2009). Helv. Chim. Acta, 92, 579–587.  CrossRef CAS Google Scholar
First citationQiu, F., Komatsu, K., Kawasaki, K., Saito, K., Yao, X. & Kano, Y. (1996). Planta Med. 62, 559–561.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSasivimolphan, P., Lipipun, V., Likhitwitayawuid, K., Takemoto, M., Pramyothin, P., Hattori, M. & Shiraki, K. (2009). Antiviral Res. 84, 95–97.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, N. H., Ryu, S. Y., Choi, E. J., Kang, S. H., Chang, I. M., Min, K. R. & Kim, Y. (1998). Biochem. Biophys. Res. Commun. 243, 801–803.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Z. P., Cheng, K. W., Zhu, Q., Wang, X. C., Lin, Z. X. & Wang, M. (2010). J. Agric. Food Chem. 58, 5368–5373.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZheng, Z. P., Zhu, Q., Fan, C. L., Tan, H. Y. & Wang, M. (2011). Food Funct. 2, 259–264.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1318-o1319
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds