metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m593-m594

Poly[[bis­­[3-(1H-tetra­zol-1-yl)propanoic acid-κN4]cadmium]-di-μ-thio­cyanato-κ2N:S;κ2S:N]

aState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohot 047100, People's Republic of China
*Correspondence e-mail: liuxiang@lzu.edu.cn

(Received 23 March 2012; accepted 4 April 2012; online 13 April 2012)

In the title compound, [Cd(NCS)2(C4H6N4O2)2]n, the CdII cation is located on an inversion center and is coordinated by two N and two S atoms from four SCN anions and two N atoms from two 3-(1H-tetra­zol-1-yl)propanoic acid (Htzp) ligands in a distorted octa­hedral geometry. The SCN anions bridge the CdII cations into a layer structure parallel to (100). A weak intra­molecular C—H⋯N inter­action occurs. The layers are further assembled into a three-dimensional supra­molecular structure via classical O—H⋯O hydrogen bonds.

Related literature

For general background to carboxyl­ate-tetra­zole complexes, see: Yang et al. (2009[Yang, H.-Y., Li, L.-K., Wu, J., Hou, H.-W., Xiao, B. & Fan, Y.-T. (2009). Chem. Eur. J. 15, 4049-4056.]); He et al. (2005[He, F., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2005). Inorg. Chem. 44, 559-565.]); Yu et al. (2008[Yu, Q., Zhang, X.-Q., Bian, H.-D., Liang, H., Zhao, B., Yan, S.-P. & Liao, D.-Z. (2008). Cryst. Growth Des. 8, 1140-1146.]); Dong et al. (2008[Dong, W.-W., Zhao, J. & Xu, L. (2008). Cryst. Growth Des. 8, 2882-2886.]); Zhang et al. (2009[Zhang, X.-Q., Yu, Q., Bian, H.-D., Bao, X.-G. & Liang, H. (2009). J. Coord. Chem. 62, 2108-2117.]); Li et al. (2008[Li, Q.-Y., Yang, G.-W., Yuan, R.-X., Wang, J.-P. & Cui, P.-F. (2008). Acta Cryst. C64, m26-m29.], 2010[Li, Q.-Y., Yang, G.-W., Tang, X.-Y., Ma, Y.-S., Yao, W., Zhou, F., Chen, J. & Zhou, H. (2010). Cryst. Growth Des. 10, 165-170.]); Xie et al. (2010[Xie, Y.-F., Yu, Y., Fan, Z.-J., Ma, L., Mi, N. & Tang, L.-F. (2010). Appl. Organomet. Chem. 24, 1-7.]); Bai et al. (2008[Bai, Y.-L., Tao, J., Huang, R.-B., Zheng, L.-S., Zheng, S.-L., Oshida, K. & Einaga, Y. (2008). Chem. Commun. pp. 1753-1755.]); Voitekhovich et al. (2010[Voitekhovich, S. V., Serebryanskaya, T. V., Gaponik, P. N., Ivashkevich, L. S., Lyakhov, A. S. & Ivashkevich, O. A. (2010). Inorg. Chem. Commun. 13, 949-951.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C4H6N4O2)2]

  • Mr = 512.81

  • Monoclinic, P 21 /c

  • a = 12.7402 (19) Å

  • b = 6.9555 (11) Å

  • c = 10.7549 (16) Å

  • β = 106.809 (1)°

  • V = 912.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsi, USA.]) Tmin = 0.729, Tmax = 0.758

  • 5775 measured reflections

  • 1695 independent reflections

  • 1505 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.052

  • S = 1.07

  • 1695 reflections

  • 128 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O⋯O1i 0.94 (4) 1.70 (4) 2.631 (3) 170 (4)
C1—H1⋯N5ii 0.93 2.62 3.404 (3) 142
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsi, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsi, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the design and synthesis of carboxylate-tetrazole coordination compounds have been of an attractive area of research due to their intriguing topological structures as well as their novel physical properties such as anion exchange, photoluminescence, magnetism behavior and biological activities etc. (Yang et al., 2009; Yu et al., 2008; Li et al., 2010; He et al., 2005; Li et al., 2008; Dong et al., 2008; Xie et al., 2010; Bai et al., 2008; Voitekhovich et al., 2010). Herein, we report the structure of the title coordination polymer based on a flexible ligand tetrazole-1-propanoic acid (Htzp).

The title coordination polymer crystallizes in the monoclinic space group P21/c and the asymmetric unit contains half of the [Cd(Htzp)2(SCN)2] molecule (Fig. 1). Each Cd2+ ion lies on the inversion center of an octahedral environment and is coordinated by two N atoms from two Htzp, two N and two O atoms from four different SCN- ions. Each Cd2+ center is linked to four adjacent Cd2+centers by four SCN- ions, resulting in a two-dimensional layer structure with Cd···Cd distance of 6.404 Å (Fig. 2). The adjacent two-dimensional layers are further linked through intermolecular hydrogen-bonding interaction between two not coordinated carboxylate group (O2—H1···O1 = 2.631 Å) to afford a three-dimensional supramolecular structure (Fig. 3). In addition, weak intramolecular hydrogen bonds (C1—H1···N5 = 3.404 Å) are present in the crystal structure.

Related literature top

For general background to carboxylate-tetrazole complexes, see: Yang et al. (2009); He et al. (2005); Yu et al. (2008); Dong et al. (2008); Zhang et al. (2009); Li et al. (2008, 2010); Xie et al. (2010); Bai et al. (2008); Voitekhovich et al. (2010).

Experimental top

The Htzp (0.0284 g, 0.2 mmol) and NH4SCN (0.0152 g, 0.2 mmol) were mixed in distilled water (5 ml) and ethanol (3 ml). Then, CdCl2 (0.0367 g, 0.2 mmol) dissolved in distilled water (5 ml) was added slowly to the mixture. The mixture was allowed to slowly concentrate by evaporation at room temperature. Several days later, colorless block crystals suitable for X-ray diffraction were obtained with yield 63% on the basis of Htzp.

Refinement top

Carboxyl H atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and treated in a riding-model approximation, with C—H = 0.93 Å (aromatic) and 0.97 Å (CH2) and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. coordination environments of cadmium atoms in the title coordination polymer. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The two-dimensional layer structure of the title coordination polymer along the bc plane. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The three-dimensional supramolecular structure of the title coordination polymer. Hydrogen bonds are shown as dashed lines.
Poly[[bis[3-(1H-tetrazol-1-yl)propanoic acid-κN4]cadmium]- di-µ-thiocyanato-κ2N:S;κ2S:N] top
Crystal data top
[Cd(NCS)2(C4H6N4O2)2]F(000) = 508
Mr = 512.81Dx = 1.863 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4116 reflections
a = 12.7402 (19) Åθ = 3.3–28.3°
b = 6.9555 (11) ŵ = 1.47 mm1
c = 10.7549 (16) ÅT = 296 K
β = 106.809 (1)°Block, blue
V = 912.3 (2) Å30.23 × 0.22 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1695 independent reflections
Radiation source: fine-focus sealed tube1505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.729, Tmax = 0.758k = 88
5775 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.480P]
where P = (Fo2 + 2Fc2)/3
1695 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cd(NCS)2(C4H6N4O2)2]V = 912.3 (2) Å3
Mr = 512.81Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.7402 (19) ŵ = 1.47 mm1
b = 6.9555 (11) ÅT = 296 K
c = 10.7549 (16) Å0.23 × 0.22 × 0.20 mm
β = 106.809 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1695 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1505 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.758Rint = 0.021
5775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.59 e Å3
1695 reflectionsΔρmin = 0.51 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30765 (19)0.2887 (4)0.3041 (2)0.0348 (5)
H10.34470.29290.24120.042*
C20.1466 (2)0.4991 (3)0.1939 (2)0.0370 (6)
H2A0.07080.45820.17370.044*
H2B0.16980.48530.11600.044*
C30.1555 (2)0.7069 (3)0.2350 (2)0.0342 (5)
H3A0.12980.72130.31100.041*
H3B0.23180.74630.25840.041*
C40.08935 (19)0.8341 (3)0.1283 (2)0.0314 (5)
C50.42494 (19)0.3428 (4)0.6880 (2)0.0337 (5)
Cd10.50000.00000.50000.02720 (9)
N10.33986 (16)0.1944 (3)0.41393 (17)0.0345 (5)
N20.26241 (18)0.2267 (3)0.4749 (2)0.0426 (5)
N30.18639 (17)0.3363 (3)0.4049 (2)0.0419 (5)
N40.21474 (15)0.3766 (3)0.29673 (17)0.0289 (4)
N50.46640 (18)0.3889 (3)0.79258 (19)0.0447 (6)
O10.04537 (15)0.7745 (3)0.01892 (15)0.0402 (4)
O20.08335 (18)1.0111 (3)0.16420 (19)0.0493 (5)
S10.36445 (7)0.27644 (12)0.53866 (6)0.0594 (2)
H1O0.042 (3)1.083 (6)0.093 (4)0.080 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0356 (13)0.0419 (15)0.0290 (11)0.0104 (11)0.0129 (10)0.0079 (10)
C20.0396 (13)0.0343 (14)0.0302 (12)0.0123 (11)0.0007 (10)0.0047 (10)
C30.0360 (13)0.0327 (14)0.0299 (11)0.0036 (11)0.0032 (10)0.0038 (10)
C40.0322 (12)0.0298 (14)0.0303 (11)0.0015 (10)0.0061 (10)0.0033 (10)
C50.0348 (12)0.0343 (14)0.0324 (13)0.0070 (11)0.0101 (10)0.0043 (10)
Cd10.03311 (14)0.02849 (15)0.01786 (12)0.00767 (10)0.00396 (9)0.00081 (9)
N10.0377 (11)0.0369 (12)0.0300 (9)0.0113 (9)0.0113 (8)0.0079 (9)
N20.0506 (13)0.0425 (13)0.0407 (11)0.0153 (11)0.0227 (10)0.0164 (10)
N30.0435 (12)0.0452 (14)0.0424 (12)0.0132 (10)0.0209 (10)0.0129 (10)
N40.0304 (10)0.0281 (11)0.0271 (9)0.0063 (8)0.0064 (8)0.0041 (8)
N50.0533 (13)0.0522 (15)0.0279 (11)0.0044 (11)0.0105 (10)0.0109 (10)
O10.0462 (10)0.0340 (10)0.0322 (8)0.0089 (8)0.0018 (7)0.0016 (7)
O20.0655 (13)0.0303 (11)0.0379 (10)0.0106 (9)0.0076 (9)0.0006 (8)
S10.0620 (5)0.0644 (5)0.0352 (3)0.0248 (4)0.0121 (3)0.0207 (3)
Geometric parameters (Å, º) top
C1—N11.310 (3)C5—S11.634 (2)
C1—N41.314 (3)Cd1—N5i2.281 (2)
C1—H10.9300Cd1—N5ii2.281 (2)
C2—N41.466 (3)Cd1—N1iii2.3989 (19)
C2—C31.506 (3)Cd1—N12.3990 (19)
C2—H2A0.9700Cd1—S1iii2.6958 (8)
C2—H2B0.9700Cd1—S12.6958 (8)
C3—C41.500 (3)N1—N21.352 (3)
C3—H3A0.9700N2—N31.290 (3)
C3—H3B0.9700N3—N41.343 (3)
C4—O11.220 (3)N5—Cd1iv2.281 (2)
C4—O21.299 (3)O2—H1O0.94 (4)
C5—N51.142 (3)
N1—C1—N4109.2 (2)N5ii—Cd1—N194.85 (7)
N1—C1—H1125.4N1iii—Cd1—N1180.0
N4—C1—H1125.4N5i—Cd1—S1iii92.19 (6)
N4—C2—C3111.01 (19)N5ii—Cd1—S1iii87.81 (6)
N4—C2—H2A109.4N1iii—Cd1—S1iii87.15 (5)
C3—C2—H2A109.4N1—Cd1—S1iii92.85 (5)
N4—C2—H2B109.4N5i—Cd1—S187.81 (6)
C3—C2—H2B109.4N5ii—Cd1—S192.19 (6)
H2A—C2—H2B108.0N1iii—Cd1—S192.85 (5)
C4—C3—C2111.32 (19)N1—Cd1—S187.15 (5)
C4—C3—H3A109.4S1iii—Cd1—S1180.0
C2—C3—H3A109.4C1—N1—N2105.79 (19)
C4—C3—H3B109.4C1—N1—Cd1129.80 (16)
C2—C3—H3B109.4N2—N1—Cd1124.41 (14)
H3A—C3—H3B108.0N3—N2—N1110.18 (18)
O1—C4—O2123.9 (2)N2—N3—N4106.52 (18)
O1—C4—C3122.5 (2)C1—N4—N3108.31 (18)
O2—C4—C3113.6 (2)C1—N4—C2130.0 (2)
N5—C5—S1179.4 (2)N3—N4—C2121.74 (19)
N5i—Cd1—N5ii180.0C5—N5—Cd1iv164.0 (2)
N5i—Cd1—N1iii94.85 (7)C4—O2—H1O109 (2)
N5ii—Cd1—N1iii85.15 (7)C5—S1—Cd1102.24 (9)
N5i—Cd1—N185.15 (7)
N4—C2—C3—C4177.9 (2)Cd1—N1—N2—N3179.93 (16)
C2—C3—C4—O17.7 (3)N1—N2—N3—N40.2 (3)
C2—C3—C4—O2171.9 (2)N1—C1—N4—N30.4 (3)
N4—C1—N1—N20.2 (3)N1—C1—N4—C2180.0 (2)
N4—C1—N1—Cd1179.88 (15)N2—N3—N4—C10.3 (3)
N5i—Cd1—N1—C140.8 (2)N2—N3—N4—C2180.0 (2)
N5ii—Cd1—N1—C1139.2 (2)C3—C2—N4—C1106.9 (3)
N1iii—Cd1—N1—C119 (32)C3—C2—N4—N373.4 (3)
S1iii—Cd1—N1—C151.2 (2)S1—C5—N5—Cd1iv23 (27)
S1—Cd1—N1—C1128.8 (2)N5—C5—S1—Cd1128 (26)
N5i—Cd1—N1—N2139.1 (2)N5i—Cd1—S1—C5142.55 (11)
N5ii—Cd1—N1—N240.9 (2)N5ii—Cd1—S1—C537.45 (11)
N1iii—Cd1—N1—N2161 (32)N1iii—Cd1—S1—C547.80 (11)
S1iii—Cd1—N1—N2128.94 (19)N1—Cd1—S1—C5132.20 (11)
S1—Cd1—N1—N251.05 (19)S1iii—Cd1—S1—C557 (10)
C1—N1—N2—N30.0 (3)
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O···O1v0.94 (4)1.70 (4)2.631 (3)170 (4)
C1—H1···N5iii0.932.623.404 (3)142
Symmetry codes: (iii) x+1, y, z+1; (v) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C4H6N4O2)2]
Mr512.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.7402 (19), 6.9555 (11), 10.7549 (16)
β (°) 106.809 (1)
V3)912.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.23 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.729, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
5775, 1695, 1505
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.052, 1.07
No. of reflections1695
No. of parameters128
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O···O1i0.94 (4)1.70 (4)2.631 (3)170 (4)
C1—H1···N5ii0.932.623.404 (3)142
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of China (grant 2010–43).

References

First citationBai, Y.-L., Tao, J., Huang, R.-B., Zheng, L.-S., Zheng, S.-L., Oshida, K. & Einaga, Y. (2008). Chem. Commun. pp. 1753–1755.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsi, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsi, USA.  Google Scholar
First citationDong, W.-W., Zhao, J. & Xu, L. (2008). Cryst. Growth Des. 8, 2882–2886.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, F., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2005). Inorg. Chem. 44, 559–565.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Q.-Y., Yang, G.-W., Tang, X.-Y., Ma, Y.-S., Yao, W., Zhou, F., Chen, J. & Zhou, H. (2010). Cryst. Growth Des. 10, 165–170.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Q.-Y., Yang, G.-W., Yuan, R.-X., Wang, J.-P. & Cui, P.-F. (2008). Acta Cryst. C64, m26–m29.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVoitekhovich, S. V., Serebryanskaya, T. V., Gaponik, P. N., Ivashkevich, L. S., Lyakhov, A. S. & Ivashkevich, O. A. (2010). Inorg. Chem. Commun. 13, 949–951.  Web of Science CrossRef CAS Google Scholar
First citationXie, Y.-F., Yu, Y., Fan, Z.-J., Ma, L., Mi, N. & Tang, L.-F. (2010). Appl. Organomet. Chem. 24, 1–7.  CAS Google Scholar
First citationYang, H.-Y., Li, L.-K., Wu, J., Hou, H.-W., Xiao, B. & Fan, Y.-T. (2009). Chem. Eur. J. 15, 4049–4056.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, Q., Zhang, X.-Q., Bian, H.-D., Liang, H., Zhao, B., Yan, S.-P. & Liao, D.-Z. (2008). Cryst. Growth Des. 8, 1140–1146.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X.-Q., Yu, Q., Bian, H.-D., Bao, X.-G. & Liang, H. (2009). J. Coord. Chem. 62, 2108–2117.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m593-m594
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds