organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(3-Nitro­phen­yl)(piperidin-1-yl)methyl]piperidine

aCenter of Computers and Networks, Jilin Radio Television University, Jilin, Jilin Province 132001, People's Republic of China, and bDepartment of Chemical Engineering, Shandong Polytechnic University, Jinan 250353, People's Republic of China
*Correspondence e-mail: wangzheqin@sina.com

(Received 3 April 2012; accepted 23 May 2012; online 31 May 2012)

In the crystal structure of the title compound, C17H25N3O2, one-dimensional chains are formed via inter­molecular C—H⋯O hydrogen bonds along the a axis.

Related literature

For the activities and uses of piperidine and its derivatives, see: Kumar et al. (2010[Kumar, A., Gupta, M. K. & Kumar, M. (2010). Tetrahedron Lett. 51, 1582-1584.]); Huang et al. (2008[Huang, P. J. J., Youssef, D., Cameron, T. S. & Jha, A. (2008). Arkivoc, pp. 165-177.]); Cardellicchio et al. (2010[Cardellicchio, C., Capozzi, M. A. M. & Naso, F. (2010). Tetrahedron Asymmetry, 21, 507-517.]); Wang et al. (2010[Wang, Y. T., Tang, G. M., Li, T. D., Yu, J. C., Wei, Y. Q., Ling, J. B. & Long, X. F. (2010). Aust. J. Chem. 63, 336-342.]).

[Scheme 1]

Experimental

Crystal data
  • C17H25N3O2

  • Mr = 303.40

  • Orthorhombic, P b c a

  • a = 12.1993 (14) Å

  • b = 8.2012 (9) Å

  • c = 33.453 (4) Å

  • V = 3347.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.984

  • 24143 measured reflections

  • 3272 independent reflections

  • 2633 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.231

  • S = 1.11

  • 3272 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.43 3.332 (5) 165
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Piperidine and its derivatives extensively applied to some areas of bio-chemistry and material chemistry, which exhibit good bioactivities (Cardellicchio et al. 2010; Huang et al. 2008; Kumar et al. 2010). On the other hand, they display non-linear optic second harmonic generation response and ferroelectric properties (Wang et al., 2010).

A view of the title structure is shown in Fig. 1. In the crystal structure, one-dimensional chains are formed via intermolecular C—H···O hydrogen bonds along the a axis (Table 1, Fig. 2).

Related literature top

For the activities and uses of piperidine and its derivatives, see: Kumar et al. (2010); Huang et al. (2008); Cardellicchio et al. (2010); Wang et al. (2010).

Experimental top

1,1'-((3-nitrophenyl)methylene)dipiperidine (0.100 g) was dissolved in the mixed solvent containing ethanol (10 ml) and water (1 ml). The pale-yellow needle crystals suitable for X-ray diffraction were obtained after one week. Analysis found (%): C, 67.52; H, 8.33; N, 13.81%; calcd (%): C, 67.30; H, 8.31; N, 13.85%.

Refinement top

H atoms were calculated geometrically and refined as riding with C—H distances 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. A drawing of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. C—H···O interactions in the title compound.
1-[(3-Nitrophenyl)(piperidin-1-yl)methyl]piperidine top
Crystal data top
C17H25N3O2F(000) = 1312
Mr = 303.40Dx = 1.204 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8288 reflections
a = 12.1993 (14) Åθ = 2.5–27.3°
b = 8.2012 (9) ŵ = 0.08 mm1
c = 33.453 (4) ÅT = 296 K
V = 3347.0 (7) Å3Needle, pale-yellow
Z = 80.40 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3272 independent reflections
Radiation source: fine-focus sealed tube2633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.981, Tmax = 0.984k = 910
24143 measured reflectionsl = 4140
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1025P)2 + 3.0609P]
where P = (Fo2 + 2Fc2)/3
3272 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C17H25N3O2V = 3347.0 (7) Å3
Mr = 303.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1993 (14) ŵ = 0.08 mm1
b = 8.2012 (9) ÅT = 296 K
c = 33.453 (4) Å0.40 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3272 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2633 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.032
24143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.11Δρmax = 0.60 e Å3
3272 reflectionsΔρmin = 0.32 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4378 (2)0.0644 (3)0.59215 (7)0.0407 (6)
C20.3469 (2)0.0225 (3)0.56963 (8)0.0464 (7)
H2A0.27910.06970.57480.056*
C30.3587 (2)0.0929 (4)0.53875 (8)0.0500 (7)
C40.4570 (3)0.1650 (4)0.53052 (9)0.0555 (8)
H4A0.46250.24180.51010.067*
C50.5477 (3)0.1236 (4)0.55250 (9)0.0564 (8)
H5A0.61500.17210.54710.068*
C60.5383 (2)0.0096 (4)0.58258 (8)0.0493 (7)
H6A0.60050.01930.59700.059*
C70.4282 (2)0.1804 (3)0.62769 (7)0.0375 (6)
H7A0.36350.24930.62350.045*
C80.5060 (2)0.0124 (4)0.67719 (8)0.0465 (7)
H8A0.57420.04750.67490.056*
H8B0.50920.10510.65920.056*
C90.4918 (3)0.0723 (4)0.72010 (9)0.0549 (8)
H9A0.55220.14360.72710.066*
H9B0.49260.02000.73820.066*
C100.3842 (3)0.1638 (4)0.72440 (9)0.0545 (7)
H10A0.37300.19340.75220.065*
H10B0.38680.26320.70870.065*
C110.2898 (3)0.0577 (4)0.71015 (9)0.0566 (8)
H11A0.22250.12050.71060.068*
H11B0.28110.03410.72820.068*
C120.3100 (2)0.0049 (4)0.66804 (8)0.0472 (7)
H12A0.31150.08630.64960.057*
H12B0.25060.07670.66020.057*
C130.5397 (3)0.3828 (4)0.59340 (8)0.0496 (7)
H13A0.48150.46280.59110.060*
H13B0.53650.31190.57020.060*
C140.6505 (3)0.4692 (4)0.59470 (9)0.0549 (8)
H14A0.70870.38860.59550.066*
H14B0.65980.53370.57060.066*
C150.6591 (3)0.5790 (4)0.63100 (10)0.0592 (8)
H15A0.73330.62070.63320.071*
H15B0.60990.67100.62800.071*
C160.6299 (3)0.4858 (4)0.66823 (9)0.0581 (8)
H16A0.62560.56090.69060.070*
H16B0.68740.40760.67400.070*
C170.5214 (2)0.3963 (4)0.66416 (8)0.0489 (7)
H17A0.50700.33450.68830.059*
H17B0.46260.47470.66070.059*
N10.2630 (3)0.1308 (4)0.51498 (8)0.0670 (8)
N20.41423 (16)0.0934 (3)0.66589 (6)0.0372 (5)
N30.52421 (17)0.2863 (3)0.62994 (6)0.0389 (5)
O10.2761 (3)0.2159 (4)0.48535 (9)0.1021 (11)
O20.1737 (2)0.0787 (5)0.52516 (9)0.1015 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0456 (14)0.0432 (14)0.0334 (12)0.0001 (11)0.0022 (10)0.0005 (10)
C20.0489 (15)0.0501 (15)0.0401 (14)0.0021 (12)0.0025 (11)0.0029 (12)
C30.0551 (16)0.0565 (16)0.0383 (14)0.0136 (14)0.0095 (12)0.0089 (12)
C40.074 (2)0.0512 (17)0.0409 (15)0.0023 (15)0.0015 (14)0.0026 (13)
C50.0588 (18)0.0623 (19)0.0482 (16)0.0130 (15)0.0021 (13)0.0052 (14)
C60.0490 (15)0.0576 (17)0.0413 (14)0.0055 (13)0.0017 (12)0.0045 (12)
C70.0347 (12)0.0407 (13)0.0371 (13)0.0028 (10)0.0001 (9)0.0013 (10)
C80.0399 (14)0.0556 (16)0.0439 (15)0.0035 (12)0.0019 (11)0.0042 (12)
C90.0568 (17)0.0593 (18)0.0486 (16)0.0007 (14)0.0101 (13)0.0069 (14)
C100.0681 (19)0.0498 (16)0.0455 (15)0.0089 (14)0.0024 (13)0.0057 (12)
C110.0518 (16)0.0615 (19)0.0566 (17)0.0091 (14)0.0087 (13)0.0058 (15)
C120.0374 (14)0.0520 (16)0.0522 (16)0.0035 (12)0.0003 (11)0.0023 (13)
C130.0599 (17)0.0474 (15)0.0415 (15)0.0012 (13)0.0030 (12)0.0036 (12)
C140.0605 (18)0.0465 (15)0.0578 (18)0.0044 (14)0.0179 (14)0.0055 (13)
C150.0619 (18)0.0430 (15)0.073 (2)0.0094 (14)0.0103 (15)0.0014 (14)
C160.0659 (19)0.0538 (17)0.0547 (17)0.0154 (15)0.0014 (14)0.0110 (14)
C170.0556 (16)0.0473 (15)0.0436 (15)0.0056 (13)0.0081 (12)0.0091 (12)
N10.0709 (19)0.077 (2)0.0527 (15)0.0188 (16)0.0139 (14)0.0004 (14)
N20.0347 (11)0.0395 (11)0.0373 (11)0.0002 (9)0.0013 (8)0.0005 (9)
N30.0419 (11)0.0413 (12)0.0335 (10)0.0029 (9)0.0036 (8)0.0016 (8)
O10.105 (2)0.126 (3)0.0762 (17)0.013 (2)0.0286 (16)0.0419 (19)
O20.0589 (16)0.154 (3)0.091 (2)0.0134 (18)0.0165 (14)0.022 (2)
Geometric parameters (Å, º) top
C1—C21.384 (4)C11—C121.519 (4)
C1—C61.405 (4)C11—H11A0.9700
C1—C71.527 (3)C11—H11B0.9700
C2—C31.408 (4)C12—N21.466 (3)
C2—H2A0.9300C12—H12A0.9700
C3—C41.366 (4)C12—H12B0.9700
C3—N11.447 (4)C13—N31.469 (3)
C4—C51.371 (5)C13—C141.527 (4)
C4—H4A0.9300C13—H13A0.9700
C5—C61.378 (4)C13—H13B0.9700
C5—H5A0.9300C14—C151.515 (4)
C6—H6A0.9300C14—H14A0.9700
C7—N31.460 (3)C14—H14B0.9700
C7—N21.473 (3)C15—C161.504 (4)
C7—H7A0.9800C15—H15A0.9700
C8—N21.466 (3)C15—H15B0.9700
C8—C91.527 (4)C16—C171.520 (4)
C8—H8A0.9700C16—H16A0.9700
C8—H8B0.9700C16—H16B0.9700
C9—C101.518 (4)C17—N31.458 (3)
C9—H9A0.9700C17—H17A0.9700
C9—H9B0.9700C17—H17B0.9700
C10—C111.521 (4)N1—O21.219 (4)
C10—H10A0.9700N1—O11.223 (4)
C10—H10B0.9700
C2—C1—C6117.9 (2)H11A—C11—H11B108.0
C2—C1—C7121.1 (2)N2—C12—C11110.7 (2)
C6—C1—C7120.9 (2)N2—C12—H12A109.5
C1—C2—C3119.0 (3)C11—C12—H12A109.5
C1—C2—H2A120.5N2—C12—H12B109.5
C3—C2—H2A120.5C11—C12—H12B109.5
C4—C3—C2121.9 (3)H12A—C12—H12B108.1
C4—C3—N1120.3 (3)N3—C13—C14109.9 (2)
C2—C3—N1117.7 (3)N3—C13—H13A109.7
C3—C4—C5119.5 (3)C14—C13—H13A109.7
C3—C4—H4A120.2N3—C13—H13B109.7
C5—C4—H4A120.2C14—C13—H13B109.7
C4—C5—C6119.5 (3)H13A—C13—H13B108.2
C4—C5—H5A120.2C15—C14—C13111.1 (2)
C6—C5—H5A120.2C15—C14—H14A109.4
C5—C6—C1122.1 (3)C13—C14—H14A109.4
C5—C6—H6A118.9C15—C14—H14B109.4
C1—C6—H6A118.9C13—C14—H14B109.4
N3—C7—N2109.63 (19)H14A—C14—H14B108.0
N3—C7—C1110.41 (19)C16—C15—C14110.2 (2)
N2—C7—C1112.5 (2)C16—C15—H15A109.6
N3—C7—H7A108.1C14—C15—H15A109.6
N2—C7—H7A108.1C16—C15—H15B109.6
C1—C7—H7A108.1C14—C15—H15B109.6
N2—C8—C9110.3 (2)H15A—C15—H15B108.1
N2—C8—H8A109.6C15—C16—C17112.2 (3)
C9—C8—H8A109.6C15—C16—H16A109.2
N2—C8—H8B109.6C17—C16—H16A109.2
C9—C8—H8B109.6C15—C16—H16B109.2
H8A—C8—H8B108.1C17—C16—H16B109.2
C10—C9—C8110.3 (2)H16A—C16—H16B107.9
C10—C9—H9A109.6N3—C17—C16110.4 (2)
C8—C9—H9A109.6N3—C17—H17A109.6
C10—C9—H9B109.6C16—C17—H17A109.6
C8—C9—H9B109.6N3—C17—H17B109.6
H9A—C9—H9B108.1C16—C17—H17B109.6
C9—C10—C11110.0 (2)H17A—C17—H17B108.1
C9—C10—H10A109.7O2—N1—O1123.0 (3)
C11—C10—H10A109.7O2—N1—C3119.5 (3)
C9—C10—H10B109.7O1—N1—C3117.5 (3)
C11—C10—H10B109.7C8—N2—C12110.9 (2)
H10A—C10—H10B108.2C8—N2—C7114.97 (19)
C12—C11—C10111.2 (2)C12—N2—C7112.48 (19)
C12—C11—H11A109.4C17—N3—C7112.92 (19)
C10—C11—H11A109.4C17—N3—C13108.8 (2)
C12—C11—H11B109.4C7—N3—C13112.4 (2)
C10—C11—H11B109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.433.332 (5)165
Symmetry code: (i) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H25N3O2
Mr303.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.1993 (14), 8.2012 (9), 33.453 (4)
V3)3347.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
24143, 3272, 2633
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.231, 1.11
No. of reflections3272
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.433.332 (5)165
Symmetry code: (i) x+1/2, y1/2, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Project of Shandong Province Higher Educational Science and Technology Program (grant No. J09LB03) and Shandong Distinguished Middle-aged and Young Scientist Encouragement and Reward Foundation (grant No. BS2011CL034).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardellicchio, C., Capozzi, M. A. M. & Naso, F. (2010). Tetrahedron Asymmetry, 21, 507–517.  Web of Science CrossRef CAS Google Scholar
First citationHuang, P. J. J., Youssef, D., Cameron, T. S. & Jha, A. (2008). Arkivoc, pp. 165–177.  CrossRef Google Scholar
First citationKumar, A., Gupta, M. K. & Kumar, M. (2010). Tetrahedron Lett. 51, 1582–1584.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. T., Tang, G. M., Li, T. D., Yu, J. C., Wei, Y. Q., Ling, J. B. & Long, X. F. (2010). Aust. J. Chem. 63, 336–342.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds