metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)zinc

aDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran, and bDepartment of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
*Correspondence e-mail: m-pouramini@sbu.ac.ir

(Received 12 May 2012; accepted 18 May 2012; online 26 May 2012)

The reaction of equimolar amounts of zinc bromide and 2,9-dimethyl-1,10-phenanthroline in dry methanol provided the title compound, [ZnBr2(C14H12N2)], in good yield. The ZnII ion is coordinated in a distorted tetra­hedral environment by two N atoms from the chelating 2,9-dimethyl-1,10-phenanthroline ligand and two bromide ions. There is inter­molecular ππ stacking between adjacent phenanthroline units, with centroid–centroid distances of 3.594 (3) and 3.652 (3) Å.

Related literature

For similiar structures, see: Seebacher et al. (2004[Seebacher, J., Mian, J. & Vahrenkamp, H. (2004). Eur. J. Inorg. Chem. pp. 409-417.]); Harvey et al. (1999[Harvey, M., Baggio, S., Baggio, R. & Mombrú, A. W. (1999). Acta Cryst. C55, 308-310.]); Jordan et al. (1991[Jordan, K. J., Wacholtz, W. F. & Crosby, G. A. (1991). Inorg. Chem. 30, 4588-4593.]); Pallenberg et al. (1997[Pallenberg, A. J., Marschner, T. M. & Barnhart, D. M. (1997). Polyhedron, 16, 2711-2719.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C14H12N2)]

  • Mr = 433.45

  • Monoclinic, P 21 /c

  • a = 9.4113 (19) Å

  • b = 18.424 (4) Å

  • c = 9.3362 (19) Å

  • β = 112.59 (3)°

  • V = 1494.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.98 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.17 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-RED32; Stoe & Cie, (2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.274, Tmax = 0.383

  • 11850 measured reflections

  • 4014 independent reflections

  • 2304 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.100

  • S = 0.95

  • 4014 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,10-phenanthroline is a good bidentate chelating ligand, we present the crystal structure of the title complex based on 2,9-dimethyl-1,10-phenanthroline.

In the molecule of the title compound, (Fig. 1), the two N atoms of one phen ligand and two Br atoms are coordinated to ZnII atom in a distorted tetrahedral arrangement. The Zn—N bonds [average 2.062 Å] are somewhat shorter than the Zn—Br distances [average 2.328 Å] and they are closed to such bond lengths found in other discrete 1,10-phenanthroline derivatives of zinc complexes (Seebacher et al., (2004); Harvey et al.,(1999)). The two N atoms bite angle of phen ligand, N(2)—Zn(1)—N(1), significantly is smaller than N(2)—Zn(1)—Br(1)and N(1)—Zn(1)—Br(2). The bite angle in title complex is also similar to that of found in other zinc complexes of 1,10-phenanthroline, regardless of geometry of complex (Jordan et al.,(1991); Pallenberg et al.,(1997)).

In the crystal structure, There are intermolecular ππ stacking between adjacent phenanthroline, with a centroid–centroid distances of 3.594 (3) and 3.652 (3) Å (Fig. 2). These π-π stacking interactions lead to the stabilization of the crystal structure.

Related literature top

For similiar structures, see: Seebacher et al. (2004); Harvey et al. (1999); Jordan et al. (1991); Pallenberg et al. (1997).

Experimental top

ZnBr2.2H2O (0.22 g, 1 mmol) and 2,9-dimethyl-1,10-phenanthroline (0.21, 1 mmol) were loaded in a convection tube; the tube was filled with methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days(m.p. > 543 K).

Refinement top

The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H groups, C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound showing ππ stacking between adjacent 2,9-dimethyl-1,10-phenanthroline ligands.
Dibromido(2,9-dimethyl-1,10-phenanthroline-κ2N,N')zinc top
Crystal data top
[ZnBr2(C14H12N2)]F(000) = 840
Mr = 433.45Dx = 1.926 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4014 reflections
a = 9.4113 (19) Åθ = 2.2–29.2°
b = 18.424 (4) ŵ = 6.98 mm1
c = 9.3362 (19) ÅT = 298 K
β = 112.59 (3)°Block, colorless
V = 1494.6 (6) Å30.25 × 0.20 × 0.17 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
4014 independent reflections
Radiation source: fine-focus sealed tube2304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.2°
rotation method scansh = 1212
Absorption correction: numerical
[shape of crystal determined optically (X-RED32; Stoe & Cie, (2005)]
k = 2325
Tmin = 0.274, Tmax = 0.383l = 1212
11850 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0423P)2]
where P = (Fo2 + 2Fc2)/3
4014 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[ZnBr2(C14H12N2)]V = 1494.6 (6) Å3
Mr = 433.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4113 (19) ŵ = 6.98 mm1
b = 18.424 (4) ÅT = 298 K
c = 9.3362 (19) Å0.25 × 0.20 × 0.17 mm
β = 112.59 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
4014 independent reflections
Absorption correction: numerical
[shape of crystal determined optically (X-RED32; Stoe & Cie, (2005)]
2304 reflections with I > 2σ(I)
Tmin = 0.274, Tmax = 0.383Rint = 0.076
11850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.95Δρmax = 0.40 e Å3
4014 reflectionsΔρmin = 0.67 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.66996 (6)0.13233 (3)0.75289 (6)0.03618 (15)
Br10.79790 (8)0.24221 (4)0.77098 (8)0.0667 (2)
Br20.74325 (7)0.03299 (3)0.63755 (6)0.05122 (17)
N10.6409 (4)0.1030 (2)0.9541 (4)0.0317 (8)
N20.4348 (4)0.1459 (2)0.6749 (4)0.0349 (9)
C10.9118 (6)0.0852 (3)1.1082 (6)0.0514 (14)
H1A0.92260.05901.02400.077*
H1B0.97400.06271.20470.077*
H1C0.94470.13451.10740.077*
C20.7466 (5)0.0842 (3)1.0900 (5)0.0359 (10)
C30.7030 (6)0.0634 (3)1.2131 (5)0.0429 (12)
H30.77750.04921.30770.051*
C40.5507 (6)0.0641 (3)1.1932 (6)0.0434 (12)
H40.52170.04921.27330.052*
C50.4398 (6)0.0872 (3)1.0528 (5)0.0376 (11)
C60.4904 (5)0.1057 (2)0.9352 (5)0.0318 (10)
C70.2784 (7)0.0920 (3)1.0226 (7)0.0479 (13)
H70.24370.07871.09960.058*
C80.1774 (6)0.1151 (3)0.8858 (7)0.0561 (15)
H80.07400.11880.87060.067*
C90.2244 (6)0.1343 (3)0.7625 (6)0.0442 (12)
C100.3796 (5)0.1290 (3)0.7864 (5)0.0346 (10)
C110.1239 (6)0.1607 (3)0.6167 (7)0.0557 (14)
H110.01950.16600.59560.067*
C120.1803 (6)0.1781 (3)0.5082 (6)0.0549 (14)
H120.11400.19560.41240.066*
C130.3386 (6)0.1702 (3)0.5378 (6)0.0442 (12)
C140.4045 (7)0.1888 (3)0.4201 (6)0.0588 (15)
H14A0.46860.23100.45350.088*
H14B0.32240.19850.32220.088*
H14C0.46480.14880.40890.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0290 (3)0.0397 (3)0.0402 (3)0.0015 (3)0.0137 (2)0.0058 (2)
Br10.0542 (4)0.0502 (4)0.0879 (5)0.0154 (3)0.0186 (3)0.0098 (3)
Br20.0539 (4)0.0554 (4)0.0464 (3)0.0142 (3)0.0216 (3)0.0027 (3)
N10.028 (2)0.032 (2)0.035 (2)0.0023 (17)0.0115 (17)0.0016 (16)
N20.032 (2)0.035 (2)0.0329 (19)0.0022 (18)0.0073 (16)0.0006 (17)
C10.037 (3)0.062 (4)0.050 (3)0.005 (3)0.011 (3)0.003 (3)
C20.033 (3)0.034 (3)0.035 (2)0.001 (2)0.007 (2)0.0042 (19)
C30.049 (3)0.041 (3)0.033 (2)0.002 (3)0.008 (2)0.000 (2)
C40.056 (3)0.041 (3)0.039 (3)0.002 (3)0.024 (3)0.000 (2)
C50.039 (3)0.032 (3)0.047 (3)0.005 (2)0.023 (2)0.005 (2)
C60.025 (2)0.027 (2)0.042 (2)0.0005 (19)0.012 (2)0.0028 (19)
C70.046 (3)0.046 (3)0.064 (3)0.000 (3)0.034 (3)0.004 (3)
C80.030 (3)0.061 (4)0.080 (4)0.004 (3)0.024 (3)0.002 (3)
C90.028 (2)0.045 (3)0.056 (3)0.001 (2)0.011 (2)0.002 (3)
C100.024 (2)0.031 (3)0.044 (2)0.000 (2)0.0077 (19)0.001 (2)
C110.025 (3)0.065 (4)0.066 (4)0.011 (3)0.004 (2)0.002 (3)
C120.039 (3)0.058 (4)0.047 (3)0.012 (3)0.006 (2)0.007 (3)
C130.043 (3)0.037 (3)0.044 (3)0.010 (2)0.007 (2)0.001 (2)
C140.066 (4)0.061 (4)0.039 (3)0.013 (3)0.010 (3)0.013 (3)
Geometric parameters (Å, º) top
Zn1—N22.062 (4)C5—C61.396 (6)
Zn1—N12.071 (3)C5—C71.437 (7)
Zn1—Br12.3281 (9)C6—C101.445 (7)
Zn1—Br22.3572 (8)C7—C81.336 (8)
N1—C21.322 (6)C7—H70.9300
N1—C61.360 (6)C8—C91.427 (7)
N2—C131.329 (6)C8—H80.9300
N2—C101.366 (5)C9—C101.394 (7)
C1—C21.498 (7)C9—C111.412 (8)
C1—H1A0.9600C11—C121.351 (7)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C12—C131.414 (7)
C2—C31.414 (6)C12—H120.9300
C3—C41.372 (7)C13—C141.494 (7)
C3—H30.9300C14—H14A0.9600
C4—C51.392 (7)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
N2—Zn1—N181.63 (14)N1—C6—C5122.8 (4)
N2—Zn1—Br1112.03 (11)N1—C6—C10117.8 (4)
N1—Zn1—Br1113.94 (11)C5—C6—C10119.4 (4)
N2—Zn1—Br2113.29 (11)C8—C7—C5121.2 (4)
N1—Zn1—Br2112.05 (11)C8—C7—H7119.4
Br1—Zn1—Br2118.32 (3)C5—C7—H7119.4
C2—N1—C6119.7 (4)C7—C8—C9121.5 (5)
C2—N1—Zn1128.7 (3)C7—C8—H8119.2
C6—N1—Zn1111.5 (3)C9—C8—H8119.2
C13—N2—C10119.5 (4)C10—C9—C11116.8 (4)
C13—N2—Zn1128.5 (3)C10—C9—C8118.9 (5)
C10—N2—Zn1112.0 (3)C11—C9—C8124.2 (5)
C2—C1—H1A109.5N2—C10—C9123.0 (4)
C2—C1—H1B109.5N2—C10—C6117.1 (4)
H1A—C1—H1B109.5C9—C10—C6119.9 (4)
C2—C1—H1C109.5C12—C11—C9119.6 (5)
H1A—C1—H1C109.5C12—C11—H11120.2
H1B—C1—H1C109.5C9—C11—H11120.2
N1—C2—C3120.3 (4)C11—C12—C13121.1 (5)
N1—C2—C1118.1 (4)C11—C12—H12119.5
C3—C2—C1121.6 (4)C13—C12—H12119.5
C4—C3—C2120.1 (5)N2—C13—C12120.0 (5)
C4—C3—H3120.0N2—C13—C14117.6 (5)
C2—C3—H3120.0C12—C13—C14122.4 (5)
C3—C4—C5119.8 (4)C13—C14—H14A109.5
C3—C4—H4120.1C13—C14—H14B109.5
C5—C4—H4120.1H14A—C14—H14B109.5
C4—C5—C6117.1 (4)C13—C14—H14C109.5
C4—C5—C7123.9 (4)H14A—C14—H14C109.5
C6—C5—C7119.0 (5)H14B—C14—H14C109.5
N2—Zn1—N1—C2177.9 (4)C7—C5—C6—C100.1 (7)
Br1—Zn1—N1—C267.4 (4)C4—C5—C7—C8179.4 (5)
Br2—Zn1—N1—C270.3 (4)C6—C5—C7—C81.5 (8)
N2—Zn1—N1—C61.1 (3)C5—C7—C8—C91.7 (9)
Br1—Zn1—N1—C6111.6 (3)C7—C8—C9—C100.3 (9)
Br2—Zn1—N1—C6110.7 (3)C7—C8—C9—C11178.5 (6)
N1—Zn1—N2—C13176.8 (4)C13—N2—C10—C91.5 (7)
Br1—Zn1—N2—C1364.3 (4)Zn1—N2—C10—C9179.4 (4)
Br2—Zn1—N2—C1372.7 (4)C13—N2—C10—C6177.5 (4)
N1—Zn1—N2—C100.8 (3)Zn1—N2—C10—C60.4 (5)
Br1—Zn1—N2—C10113.3 (3)C11—C9—C10—N21.9 (8)
Br2—Zn1—N2—C10109.7 (3)C8—C9—C10—N2179.8 (5)
C6—N1—C2—C33.3 (7)C11—C9—C10—C6177.1 (5)
Zn1—N1—C2—C3177.8 (3)C8—C9—C10—C61.3 (8)
C6—N1—C2—C1177.3 (4)N1—C6—C10—N20.6 (6)
Zn1—N1—C2—C11.7 (7)C5—C6—C10—N2179.5 (4)
N1—C2—C3—C41.5 (7)N1—C6—C10—C9178.4 (4)
C1—C2—C3—C4179.1 (5)C5—C6—C10—C91.4 (7)
C2—C3—C4—C51.7 (8)C10—C9—C11—C121.0 (8)
C3—C4—C5—C62.8 (7)C8—C9—C11—C12179.2 (6)
C3—C4—C5—C7178.0 (5)C9—C11—C12—C130.2 (9)
C2—N1—C6—C52.0 (7)C10—N2—C13—C120.2 (7)
Zn1—N1—C6—C5178.9 (4)Zn1—N2—C13—C12177.7 (4)
C2—N1—C6—C10177.8 (4)C10—N2—C13—C14179.4 (4)
Zn1—N1—C6—C101.3 (5)Zn1—N2—C13—C141.9 (7)
C4—C5—C6—N11.1 (7)C11—C12—C13—N20.7 (9)
C7—C5—C6—N1179.8 (5)C11—C12—C13—C14179.8 (6)
C4—C5—C6—C10179.1 (4)

Experimental details

Crystal data
Chemical formula[ZnBr2(C14H12N2)]
Mr433.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.4113 (19), 18.424 (4), 9.3362 (19)
β (°) 112.59 (3)
V3)1494.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)6.98
Crystal size (mm)0.25 × 0.20 × 0.17
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionNumerical
[shape of crystal determined optically (X-RED32; Stoe & Cie, (2005)]
Tmin, Tmax0.274, 0.383
No. of measured, independent and
observed [I > 2σ(I)] reflections
11850, 4014, 2304
Rint0.076
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.100, 0.95
No. of reflections4014
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.67

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We thank Shahid Beheshti University and the Iran University of Science and Technology for supporting this study.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarvey, M., Baggio, S., Baggio, R. & Mombrú, A. W. (1999). Acta Cryst. C55, 308–310.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJordan, K. J., Wacholtz, W. F. & Crosby, G. A. (1991). Inorg. Chem. 30, 4588–4593.  CSD CrossRef CAS Web of Science Google Scholar
First citationPallenberg, A. J., Marschner, T. M. & Barnhart, D. M. (1997). Polyhedron, 16, 2711–2719.  CSD CrossRef CAS Web of Science Google Scholar
First citationSeebacher, J., Mian, J. & Vahrenkamp, H. (2004). Eur. J. Inorg. Chem. pp. 409–417.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds