organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1763-o1764

3,3,3′,3′-Tetra­methyl-6,6′-bis­­[(pyridin-4-yl)meth­­oxy]-1,1′-spiro­biindane ­monohydrate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: dyh@mail.cnu.edu.cn

(Received 3 May 2012; accepted 10 May 2012; online 16 May 2012)

The asymmetric unit in the title compound, C33H34N2O2·H2O, consists of a V-shaped mol­ecule and a water mol­ecule to which it is hydrogen bonded. The angle between the mean planes of the two spiro-connected indane groups is 77.06 (5)°. The two five-membered rings of the indane groups have envelope conformations with the methyl­ene atoms adjacent to the spiro C atom forming the flaps. They have deviations from the mean plane of the other four atoms in the rings of 0.374 (4) and 0.362 (4) Å. In the crystal, molecules are linked to form inversion dimers via O—H⋯N hydrogen bonds involving the pyridine N atoms and the solvent water mol­ecule. The dimers are linked into a chain along the b axis by ππ stacking inter­actions between a pyridine ring and its centrosymmetrically related ring in an adjacent dimer. The centroid–centroid distance between the planes is 3.7756 (17) Å, the perpendicular distance is 3.4478 (11) Å and the offset is 1.539 Å.

Related literature

For the use of spirane derivatives in ligand design, see: Chan et al. (1997[Chan, A. S. C., Hu, W., Pai, C.-C. & Lau, C.-P. (1997). J. Am. Chem. Soc. 119, 9570-9571.]); Cottam & Steel (2009[Cottam, J. R. A. & Steel, P. J. (2009). Tetrahedron, 65, 7948-7953.]); Ding et al. (2009[Ding, K., Han, Z. & Wang, Z. (2009). Chem. Asian J. 4, 32-41.]); Srivastava et al. (1992[Srivastava, N., Mital, A. & Kumar, A. (1992). J. Chem. Soc. Chem. Commun. pp. 493-494.]). For 1,1′-spiro­biindane and its analogues, see: Cottam & Steel (2009[Cottam, J. R. A. & Steel, P. J. (2009). Tetrahedron, 65, 7948-7953.]); Birman et al. (1999[Birman, V. B., Rheingold, A. L. & Lamb, K. (1999). Tetrahedron Asymmetry, 10, 125-131.]); Brewster & Prudence (1973[Brewster, J. H. & Prudence, R. T. (1973). J. Am. Chem. Soc. 95, 1217-1229.]). For the experimental procedure, see: Cottam & Steel (2009[Cottam, J. R. A. & Steel, P. J. (2009). Tetrahedron, 65, 7948-7953.]); Kendhale et al. (2008[Kendhale, A. M., Gonnade, R., Rajamohanan, P. R., Hofmann, H. & Sanjayan, G. J. (2008). Chem. Commun. 22, 2541-2543.]); Yao et al. (2010[Yao, M., Ding, Y., Wang, Z. & Deng, Y. (2010). Acta Cryst. E66, o3191.]).

[Scheme 1]

Experimental

Crystal data
  • C33H34N2O2·H2O

  • Mr = 508.64

  • Triclinic, [P \overline 1]

  • a = 6.0101 (12) Å

  • b = 10.724 (2) Å

  • c = 22.156 (4) Å

  • α = 81.92 (3)°

  • β = 87.17 (3)°

  • γ = 77.22 (3)°

  • V = 1378.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.49 × 0.25 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.984

  • 10554 measured reflections

  • 4988 independent reflections

  • 4253 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.137

  • S = 1.16

  • 4988 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2 0.89 2.00 2.888 (3) 173
O3—H3B⋯N1i 0.89 2.05 2.940 (3) 173
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: APEX2 and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Spirane derivatives, which are typical molecules with axial chirality, have been mainly employed in ligand design and asymmetric synthesis (Srivastava et al., 1992; Chan et al., 1997; Ding et al., 2009; Cottam & Steel, 2009). Among them, 1,1'-spirobiindane and its analogs have also attracted much attention for their featuring C2-symmetric chiral property (Birman et al., 1999; Brewster & Prudence, 1973; Cottam & Steel, 2009). Following our previous work(Yao et al., 2010), we report the structure of a bidentate flexible nitrogen ligand by coupling 1,1,-spirobiindane with nitrogen-containing heterocycles.

The molecule of C33H34N2O2.H2O, is V-shaped, Figure 1. The angle between the mean planes of the two spiro connected indane groups is 77.06 (5)°.

The two five membered rings of the indane groups have an envelope pucker with the methylene atoms, C9 and C17, adjacent to the spiro carbon atom forming the flaps. They have deviations from mean plane of other 4 atoms in the rings of 0.374 (4) Å and 0.362 (4) Å, respectively.

Two molecules are linked to form a centrosymmetric dimer via hydrogen bonds between the pyridinyl nitrogen atoms and the solvent water, O3—H3A···N2 (within the asymmetric unit) and O3—H3B···N1 (1 - x,1 - y,1 - z), Table 1 and Figure 2.

The dimers are linked to form a one-dimensional chain structure by ππ stacking interactions between the pyridinyl ring (C29—C30—N1—C31—C32—C33) and its centrosymmetrically related ring at (3 - x,-y,1 - z+). The centroid-centroid distance between the planes is 3.7756 (17) Å, the perpendicular distance is 3.4478 (11) Å and the offset is 1.539 Å, Figure 2.

Related literature top

For the ligand design of spirane derivatives, see: Chan et al. (1997); Cottam & Steel (2009); Ding et al. (2009); Srivastava et al. (1992). For 1,1'-spirobiindane and its analogues, see: Cottam & Steel (2009); Birman et al. (1999); Brewster & Prudence (1973). For the experimental procedure, see: Cottam & Steel (2009); Kendhale et al. (2008); Yao et al. (2010).

Experimental top

The starting material compound, 6,6'-dihydroxy-3,3,3',3'-tetramethyl- 1,1'-spirobiindane, was synthesized by the literature method (Kendhale et al., 2008). The title compound was prepared following the literature procedure (Cottam & Steel, 2009). A mixture of 6,6'-dihydroxy-3,3,3',3'- tetramethyl-1,1'-spirobiindane, 4-chloromethylpyridine and sodium hydroxide (mole ratio: 1:2:4) was refluxed in dry acetone solvent for 3 days under an N2 atmosphere. The solid crude product was obtained by removal of the solvent and further purified by column chromatography on silica gel (hexane/EtOAc = 8:2 v.v), yield 50%. Colourless crystals were obtained by slow evaporation from a solution of hexane.

Refinement top

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant atoms, with C—H = 0.93 and 0.97 Å for aryl and methylene H atoms, respectively, Uiso(H)=1.2Ueq(C), O—H = 0.89 Å with Uiso(H)=1.2Ueq(O). The positions of the methyl and water H atoms were checked on a final difference Fourier.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: APEX2 and SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of title compound with the atom-numbering scheme, showing 30% probability displacement ellipsoids. (All labels of the H atoms are omitted for clarity, the dotted line represents as hydrogen bond).
[Figure 2] Fig. 2. The chain structure constructed by the dimers by the ππ stacking forces shown as dotted lines.
3,3,3',3'-Tetramethyl-6,6'-bis[(pyridin-4-yl)methoxy]-1,1'-spirobiindane monohydrate top
Crystal data top
C33H34N2O2·H2OZ = 2
Mr = 508.64F(000) = 544
Triclinic, P1Dx = 1.225 Mg m3
a = 6.0101 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.724 (2) ÅCell parameters from 3702 reflections
c = 22.156 (4) Åθ = 1.9–25.3°
α = 81.92 (3)°µ = 0.08 mm1
β = 87.17 (3)°T = 173 K
γ = 77.22 (3)°Block, colourless
V = 1378.6 (5) Å30.49 × 0.25 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
4988 independent reflections
Radiation source: fine-focus sealed tube4253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 77
Tmin = 0.963, Tmax = 0.984k = 1212
10554 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.035P)2 + 0.7601P]
where P = (Fo2 + 2Fc2)/3
4988 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C33H34N2O2·H2Oγ = 77.22 (3)°
Mr = 508.64V = 1378.6 (5) Å3
Triclinic, P1Z = 2
a = 6.0101 (12) ÅMo Kα radiation
b = 10.724 (2) ŵ = 0.08 mm1
c = 22.156 (4) ÅT = 173 K
α = 81.92 (3)°0.49 × 0.25 × 0.21 mm
β = 87.17 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4988 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4253 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.984Rint = 0.034
10554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.16Δρmax = 0.24 e Å3
4988 reflectionsΔρmin = 0.17 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1312 (3)0.04027 (16)0.33047 (7)0.0397 (4)
O20.1540 (3)0.43323 (16)0.23137 (8)0.0427 (4)
N11.5601 (4)0.2248 (2)0.46452 (11)0.0507 (6)
N20.4528 (4)0.5560 (2)0.38411 (11)0.0528 (6)
C10.6971 (4)0.0684 (2)0.14537 (10)0.0306 (5)
C20.5655 (4)0.2053 (2)0.14847 (10)0.0292 (5)
C30.4135 (4)0.2482 (2)0.19451 (10)0.0314 (5)
H30.38350.19000.22880.038*
C40.3069 (4)0.3778 (2)0.18911 (11)0.0336 (5)
C50.3525 (4)0.4625 (2)0.13868 (11)0.0395 (6)
H50.27800.55110.13530.047*
C60.5050 (4)0.4188 (2)0.09374 (11)0.0381 (6)
H60.53610.47710.05960.046*
C70.6129 (4)0.2894 (2)0.09859 (10)0.0313 (5)
C80.7834 (4)0.2204 (2)0.05474 (11)0.0351 (6)
C90.8772 (4)0.0906 (2)0.09442 (11)0.0386 (6)
H9A1.02290.09280.11280.046*
H9B0.90590.01940.06910.046*
C100.8030 (4)0.0020 (2)0.20557 (10)0.0286 (5)
C110.9276 (4)0.0530 (2)0.24253 (10)0.0313 (5)
H110.95550.13700.23120.038*
C121.0119 (4)0.0205 (2)0.29660 (10)0.0318 (5)
C130.9705 (4)0.1428 (2)0.31379 (10)0.0345 (6)
H131.02650.19190.35120.041*
C140.8451 (4)0.1929 (2)0.27528 (11)0.0350 (5)
H140.81700.27700.28640.042*
C150.7615 (4)0.1208 (2)0.22100 (10)0.0291 (5)
C160.6323 (4)0.1574 (2)0.17100 (11)0.0315 (5)
C170.5423 (4)0.0241 (2)0.13356 (11)0.0373 (6)
H17A0.38280.01100.14600.045*
H17B0.54550.03270.08960.045*
C180.6609 (4)0.2012 (3)0.00128 (11)0.0429 (6)
H18A0.53970.15500.01190.064*
H18B0.77050.15100.02770.064*
H18C0.59410.28550.02390.064*
C190.9733 (4)0.2922 (3)0.03409 (13)0.0521 (7)
H19A0.90850.37390.00910.078*
H19B1.08810.23900.01000.078*
H19C1.04490.30950.06990.078*
C200.4349 (4)0.2201 (3)0.19443 (13)0.0433 (6)
H20A0.49500.30510.21720.065*
H20B0.34730.22970.15990.065*
H20C0.33540.16560.22130.065*
C210.7993 (4)0.2496 (2)0.13409 (12)0.0405 (6)
H21A0.92380.20870.11760.061*
H21B0.71860.26950.10050.061*
H21C0.86190.32950.16070.061*
C220.1231 (4)0.3548 (2)0.28763 (12)0.0405 (6)
H22A0.26270.33660.31220.049*
H22B0.09260.27170.27960.049*
C230.0741 (4)0.4264 (2)0.32137 (11)0.0361 (6)
C240.0538 (5)0.4563 (2)0.37921 (12)0.0445 (6)
H240.08980.43340.39860.053*
C250.2440 (5)0.5196 (3)0.40854 (13)0.0533 (8)
H250.22680.53880.44840.064*
C260.4693 (5)0.5269 (3)0.32831 (13)0.0479 (7)
H260.61440.55200.30980.057*
C270.2893 (4)0.4629 (2)0.29563 (12)0.0410 (6)
H270.31190.44390.25610.049*
C281.2225 (4)0.0277 (2)0.38685 (11)0.0400 (6)
H28A1.33430.10760.38000.048*
H28B1.09930.05130.41440.048*
C291.3368 (4)0.0620 (2)0.41402 (10)0.0336 (5)
C301.2521 (4)0.1158 (2)0.46561 (11)0.0388 (6)
H301.11500.09870.48470.047*
C311.3682 (5)0.1949 (3)0.48926 (12)0.0473 (7)
H311.30820.23000.52520.057*
C321.6353 (4)0.1750 (3)0.41367 (13)0.0463 (7)
H321.76910.19650.39440.056*
C331.5327 (4)0.0949 (3)0.38721 (11)0.0404 (6)
H331.59510.06230.35090.048*
O30.8355 (3)0.67390 (19)0.45596 (8)0.0520 (5)
H3A0.72530.63470.43240.078*
H3B0.76060.70350.48260.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0548 (11)0.0366 (10)0.0309 (9)0.0167 (8)0.0149 (8)0.0001 (7)
O20.0518 (11)0.0325 (10)0.0368 (10)0.0030 (8)0.0097 (8)0.0040 (8)
N10.0622 (15)0.0435 (14)0.0499 (15)0.0175 (11)0.0158 (12)0.0026 (11)
N20.0571 (15)0.0490 (15)0.0481 (15)0.0058 (12)0.0146 (12)0.0065 (11)
C10.0310 (12)0.0293 (12)0.0299 (12)0.0006 (9)0.0058 (10)0.0058 (10)
C20.0268 (11)0.0292 (12)0.0311 (12)0.0030 (9)0.0053 (9)0.0060 (10)
C30.0330 (12)0.0294 (12)0.0307 (13)0.0053 (10)0.0019 (10)0.0024 (10)
C40.0308 (12)0.0335 (13)0.0355 (13)0.0022 (10)0.0014 (10)0.0092 (10)
C50.0460 (15)0.0266 (13)0.0422 (15)0.0014 (11)0.0023 (12)0.0015 (11)
C60.0452 (14)0.0313 (13)0.0353 (14)0.0066 (11)0.0014 (11)0.0003 (11)
C70.0313 (12)0.0330 (13)0.0286 (12)0.0037 (10)0.0051 (10)0.0042 (10)
C80.0330 (13)0.0406 (14)0.0286 (13)0.0023 (10)0.0023 (10)0.0022 (10)
C90.0325 (13)0.0450 (15)0.0321 (13)0.0044 (11)0.0018 (10)0.0046 (11)
C100.0261 (11)0.0300 (12)0.0269 (12)0.0005 (9)0.0015 (9)0.0042 (9)
C110.0332 (12)0.0293 (12)0.0315 (13)0.0060 (10)0.0040 (10)0.0044 (10)
C120.0343 (12)0.0332 (13)0.0294 (13)0.0078 (10)0.0020 (10)0.0085 (10)
C130.0404 (14)0.0376 (14)0.0238 (12)0.0065 (11)0.0035 (10)0.0004 (10)
C140.0386 (13)0.0309 (13)0.0359 (14)0.0091 (10)0.0003 (11)0.0035 (10)
C150.0252 (11)0.0293 (12)0.0316 (12)0.0009 (9)0.0002 (9)0.0080 (10)
C160.0304 (12)0.0293 (13)0.0350 (13)0.0027 (10)0.0040 (10)0.0092 (10)
C170.0380 (13)0.0334 (14)0.0405 (14)0.0015 (10)0.0132 (11)0.0109 (11)
C180.0453 (15)0.0482 (16)0.0295 (13)0.0035 (12)0.0064 (11)0.0058 (11)
C190.0449 (16)0.065 (2)0.0454 (17)0.0152 (14)0.0060 (13)0.0031 (14)
C200.0371 (14)0.0431 (16)0.0535 (17)0.0118 (11)0.0017 (12)0.0139 (13)
C210.0406 (14)0.0403 (15)0.0397 (15)0.0005 (11)0.0045 (11)0.0136 (12)
C220.0463 (15)0.0314 (14)0.0422 (15)0.0057 (11)0.0005 (12)0.0039 (11)
C230.0449 (14)0.0287 (13)0.0369 (14)0.0123 (11)0.0015 (11)0.0054 (10)
C240.0543 (16)0.0398 (15)0.0398 (15)0.0104 (12)0.0047 (12)0.0053 (12)
C250.078 (2)0.0466 (17)0.0330 (15)0.0080 (15)0.0076 (14)0.0106 (13)
C260.0449 (15)0.0467 (16)0.0514 (17)0.0113 (13)0.0031 (13)0.0035 (13)
C270.0460 (15)0.0413 (15)0.0387 (15)0.0145 (12)0.0022 (12)0.0087 (12)
C280.0528 (16)0.0402 (15)0.0281 (13)0.0147 (12)0.0095 (11)0.0019 (11)
C290.0383 (13)0.0319 (13)0.0292 (13)0.0058 (10)0.0085 (10)0.0011 (10)
C300.0358 (13)0.0449 (15)0.0344 (14)0.0066 (11)0.0011 (11)0.0041 (11)
C310.0596 (18)0.0447 (16)0.0379 (15)0.0071 (13)0.0071 (13)0.0114 (12)
C320.0420 (15)0.0523 (17)0.0459 (16)0.0182 (13)0.0060 (12)0.0042 (13)
C330.0430 (14)0.0449 (15)0.0329 (14)0.0086 (12)0.0000 (11)0.0055 (11)
O30.0498 (11)0.0609 (13)0.0485 (12)0.0123 (9)0.0020 (9)0.0167 (10)
Geometric parameters (Å, º) top
O1—C121.378 (3)C16—C171.547 (3)
O1—C281.424 (3)C17—H17A0.9900
O2—C41.380 (3)C17—H17B0.9900
O2—C221.431 (3)C18—H18A0.9800
N1—C321.331 (3)C18—H18B0.9800
N1—C311.336 (4)C18—H18C0.9800
N2—C261.330 (4)C19—H19A0.9800
N2—C251.345 (4)C19—H19B0.9800
C1—C21.515 (3)C19—H19C0.9800
C1—C101.519 (3)C20—H20A0.9800
C1—C91.556 (3)C20—H20B0.9800
C1—C171.556 (3)C20—H20C0.9800
C2—C71.385 (3)C21—H21A0.9800
C2—C31.393 (3)C21—H21B0.9800
C3—C41.387 (3)C21—H21C0.9800
C3—H30.9500C22—C231.491 (3)
C4—C51.394 (3)C22—H22A0.9900
C5—C61.379 (3)C22—H22B0.9900
C5—H50.9500C23—C241.381 (3)
C6—C71.388 (3)C23—C271.392 (4)
C6—H60.9500C24—C251.378 (4)
C7—C81.520 (3)C24—H240.9500
C8—C191.531 (3)C25—H250.9500
C8—C181.534 (3)C26—C271.378 (4)
C8—C91.545 (3)C26—H260.9500
C9—H9A0.9900C27—H270.9500
C9—H9B0.9900C28—C291.502 (3)
C10—C111.378 (3)C28—H28A0.9900
C10—C151.387 (3)C28—H28B0.9900
C11—C121.389 (3)C29—C301.377 (3)
C11—H110.9500C29—C331.386 (3)
C12—C131.387 (3)C30—C311.379 (4)
C13—C141.399 (3)C30—H300.9500
C13—H130.9500C31—H310.9500
C14—C151.387 (3)C32—C331.368 (4)
C14—H140.9500C32—H320.9500
C15—C161.525 (3)C33—H330.9500
C16—C201.524 (3)O3—H3A0.8906
C16—C211.536 (3)O3—H3B0.8904
C12—O1—C28118.01 (18)H17A—C17—H17B108.4
C4—O2—C22117.53 (18)C8—C18—H18A109.5
C32—N1—C31115.9 (2)C8—C18—H18B109.5
C26—N2—C25116.0 (2)H18A—C18—H18B109.5
C2—C1—C10113.22 (19)C8—C18—H18C109.5
C2—C1—C9101.17 (19)H18A—C18—H18C109.5
C10—C1—C9113.16 (18)H18B—C18—H18C109.5
C2—C1—C17113.07 (18)C8—C19—H19A109.5
C10—C1—C17101.16 (19)C8—C19—H19B109.5
C9—C1—C17115.6 (2)H19A—C19—H19B109.5
C7—C2—C3121.4 (2)C8—C19—H19C109.5
C7—C2—C1111.9 (2)H19A—C19—H19C109.5
C3—C2—C1126.7 (2)H19B—C19—H19C109.5
C4—C3—C2118.5 (2)C16—C20—H20A109.5
C4—C3—H3120.8C16—C20—H20B109.5
C2—C3—H3120.8H20A—C20—H20B109.5
O2—C4—C3124.5 (2)C16—C20—H20C109.5
O2—C4—C5115.1 (2)H20A—C20—H20C109.5
C3—C4—C5120.4 (2)H20B—C20—H20C109.5
C6—C5—C4120.5 (2)C16—C21—H21A109.5
C6—C5—H5119.8C16—C21—H21B109.5
C4—C5—H5119.8H21A—C21—H21B109.5
C5—C6—C7119.7 (2)C16—C21—H21C109.5
C5—C6—H6120.1H21A—C21—H21C109.5
C7—C6—H6120.1H21B—C21—H21C109.5
C2—C7—C6119.6 (2)O2—C22—C23108.06 (19)
C2—C7—C8111.7 (2)O2—C22—H22A110.1
C6—C7—C8128.7 (2)C23—C22—H22A110.1
C7—C8—C19112.7 (2)O2—C22—H22B110.1
C7—C8—C18110.23 (19)C23—C22—H22B110.1
C19—C8—C18109.5 (2)H22A—C22—H22B108.4
C7—C8—C9101.34 (18)C24—C23—C27117.4 (2)
C19—C8—C9111.4 (2)C24—C23—C22122.2 (2)
C18—C8—C9111.5 (2)C27—C23—C22120.4 (2)
C8—C9—C1108.22 (18)C25—C24—C23119.3 (3)
C8—C9—H9A110.1C25—C24—H24120.3
C1—C9—H9A110.1C23—C24—H24120.3
C8—C9—H9B110.1N2—C25—C24123.9 (3)
C1—C9—H9B110.1N2—C25—H25118.0
H9A—C9—H9B108.4C24—C25—H25118.0
C11—C10—C15121.5 (2)N2—C26—C27124.2 (3)
C11—C10—C1126.1 (2)N2—C26—H26117.9
C15—C10—C1112.4 (2)C27—C26—H26117.9
C10—C11—C12118.9 (2)C26—C27—C23119.1 (3)
C10—C11—H11120.5C26—C27—H27120.4
C12—C11—H11120.5C23—C27—H27120.4
O1—C12—C13124.8 (2)O1—C28—C29106.27 (19)
O1—C12—C11114.2 (2)O1—C28—H28A110.5
C13—C12—C11121.0 (2)C29—C28—H28A110.5
C12—C13—C14119.0 (2)O1—C28—H28B110.5
C12—C13—H13120.5C29—C28—H28B110.5
C14—C13—H13120.5H28A—C28—H28B108.7
C15—C14—C13120.5 (2)C30—C29—C33117.3 (2)
C15—C14—H14119.7C30—C29—C28122.1 (2)
C13—C14—H14119.7C33—C29—C28120.6 (2)
C14—C15—C10119.0 (2)C29—C30—C31119.4 (2)
C14—C15—C16129.7 (2)C29—C30—H30120.3
C10—C15—C16111.2 (2)C31—C30—H30120.3
C20—C16—C15114.1 (2)N1—C31—C30123.8 (3)
C20—C16—C21109.0 (2)N1—C31—H31118.1
C15—C16—C21109.26 (18)C30—C31—H31118.1
C20—C16—C17110.53 (19)N1—C32—C33124.4 (3)
C15—C16—C17101.35 (18)N1—C32—H32117.8
C21—C16—C17112.5 (2)C33—C32—H32117.8
C16—C17—C1108.51 (18)C32—C33—C29119.2 (2)
C16—C17—H17A110.0C32—C33—H33120.4
C1—C17—H17A110.0C29—C33—H33120.4
C16—C17—H17B110.0H3A—O3—H3B103.8
C1—C17—H17B110.0
C10—C1—C2—C7135.5 (2)C10—C11—C12—C130.6 (3)
C9—C1—C2—C714.1 (2)O1—C12—C13—C14179.5 (2)
C17—C1—C2—C7110.2 (2)C11—C12—C13—C141.1 (3)
C10—C1—C2—C344.3 (3)C12—C13—C14—C150.6 (3)
C9—C1—C2—C3165.7 (2)C13—C14—C15—C100.3 (3)
C17—C1—C2—C370.0 (3)C13—C14—C15—C16176.7 (2)
C7—C2—C3—C40.8 (3)C11—C10—C15—C140.9 (3)
C1—C2—C3—C4179.4 (2)C1—C10—C15—C14179.16 (19)
C22—O2—C4—C37.4 (3)C11—C10—C15—C16176.65 (19)
C22—O2—C4—C5172.1 (2)C1—C10—C15—C163.3 (3)
C2—C3—C4—O2179.6 (2)C14—C15—C16—C2047.7 (3)
C2—C3—C4—C50.2 (3)C10—C15—C16—C20135.1 (2)
O2—C4—C5—C6179.1 (2)C14—C15—C16—C2174.5 (3)
C3—C4—C5—C60.4 (4)C10—C15—C16—C21102.7 (2)
C4—C5—C6—C70.4 (4)C14—C15—C16—C17166.5 (2)
C3—C2—C7—C60.8 (3)C10—C15—C16—C1716.3 (2)
C1—C2—C7—C6179.4 (2)C20—C16—C17—C1144.4 (2)
C3—C2—C7—C8179.9 (2)C15—C16—C17—C123.1 (2)
C1—C2—C7—C80.1 (3)C21—C16—C17—C193.5 (2)
C5—C6—C7—C20.2 (4)C2—C1—C17—C16142.7 (2)
C5—C6—C7—C8179.4 (2)C10—C1—C17—C1621.3 (2)
C2—C7—C8—C19133.6 (2)C9—C1—C17—C16101.4 (2)
C6—C7—C8—C1947.2 (3)C4—O2—C22—C23170.9 (2)
C2—C7—C8—C18103.8 (2)O2—C22—C23—C24122.1 (3)
C6—C7—C8—C1875.4 (3)O2—C22—C23—C2759.6 (3)
C2—C7—C8—C914.3 (3)C27—C23—C24—C250.1 (4)
C6—C7—C8—C9166.5 (2)C22—C23—C24—C25178.3 (2)
C7—C8—C9—C122.9 (2)C26—N2—C25—C240.1 (4)
C19—C8—C9—C1143.0 (2)C23—C24—C25—N20.4 (4)
C18—C8—C9—C194.3 (2)C25—N2—C26—C270.5 (4)
C2—C1—C9—C822.9 (2)N2—C26—C27—C230.8 (4)
C10—C1—C9—C8144.3 (2)C24—C23—C27—C260.5 (4)
C17—C1—C9—C899.6 (2)C22—C23—C27—C26178.9 (2)
C2—C1—C10—C1147.6 (3)C12—O1—C28—C29178.67 (19)
C9—C1—C10—C1166.8 (3)O1—C28—C29—C30111.0 (2)
C17—C1—C10—C11168.9 (2)O1—C28—C29—C3368.3 (3)
C2—C1—C10—C15132.4 (2)C33—C29—C30—C312.3 (3)
C9—C1—C10—C15113.2 (2)C28—C29—C30—C31178.3 (2)
C17—C1—C10—C1511.2 (2)C32—N1—C31—C301.1 (4)
C15—C10—C11—C120.4 (3)C29—C30—C31—N10.9 (4)
C1—C10—C11—C12179.6 (2)C31—N1—C32—C331.7 (4)
C28—O1—C12—C131.1 (3)N1—C32—C33—C290.2 (4)
C28—O1—C12—C11179.6 (2)C30—C29—C33—C321.8 (4)
C10—C11—C12—O1179.12 (19)C28—C29—C33—C32178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.892.002.888 (3)173
O3—H3B···N1i0.892.052.940 (3)173
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC33H34N2O2·H2O
Mr508.64
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.0101 (12), 10.724 (2), 22.156 (4)
α, β, γ (°)81.92 (3), 87.17 (3), 77.22 (3)
V3)1378.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.49 × 0.25 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.963, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10554, 4988, 4253
Rint0.034
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.137, 1.16
No. of reflections4988
No. of parameters347
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.892.002.888 (3)173
O3—H3B···N1i0.892.052.940 (3)173
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20971091), the Beijing Municipal Natural Science Foundation (grant No. 2102011) and the Scientific Research Common Program of Beijing Municipal Commission of Education (grant No. KM201010028008).

References

First citationBirman, V. B., Rheingold, A. L. & Lamb, K. (1999). Tetrahedron Asymmetry, 10, 125–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrewster, J. H. & Prudence, R. T. (1973). J. Am. Chem. Soc. 95, 1217–1229.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, A. S. C., Hu, W., Pai, C.-C. & Lau, C.-P. (1997). J. Am. Chem. Soc. 119, 9570–9571.  CrossRef CAS Web of Science Google Scholar
First citationCottam, J. R. A. & Steel, P. J. (2009). Tetrahedron, 65, 7948–7953.  Web of Science CSD CrossRef CAS Google Scholar
First citationDing, K., Han, Z. & Wang, Z. (2009). Chem. Asian J. 4, 32–41.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKendhale, A. M., Gonnade, R., Rajamohanan, P. R., Hofmann, H. & Sanjayan, G. J. (2008). Chem. Commun. 22, 2541–2543.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, N., Mital, A. & Kumar, A. (1992). J. Chem. Soc. Chem. Commun. pp. 493–494.  CrossRef Web of Science Google Scholar
First citationYao, M., Ding, Y., Wang, Z. & Deng, Y. (2010). Acta Cryst. E66, o3191.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1763-o1764
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds