metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-acetato-κ4O:O-bis­­({2-[(piperidin-2-ylmeth­yl)imino­meth­yl]phenolato-κ3N,N′,O}copper(II)) monohydrate

aDepartment of Medicinal Chemistry and Pharm-analysis, Guangdong Medical College, Dong guan, People's Republic of China
*Correspondence e-mail: 1545@gdmc.edu.cn

(Received 3 March 2012; accepted 20 May 2012; online 26 May 2012)

In the binuclear centrosymmetric title compound, [Cu2(C13H17N2O)2(C2H3O2)2]·H2O, the CuII atom is coordin­ated by two N atoms and one O atom from the Schiff base ligand and an acetate O atom in a distorted suare-planar geometry. The water O atom is invoved in three different hydrogen-bonding interactions, as donor to the acetate O atom and to the the ligand O atom and as acceptor to a ligand N atom.

Related literature

The ligand was prepared according to a literature method, see: Greatti et al. (2008[Greatti, A., Scarpellini, M., Peralta, R. A., Bortoluzi, A. J., Xavier, F. R., Szoganicz, B., Tomkowicz, Z., Rams, M., Haase, W. & Neves, A. (2008). Inorg. Chem. 47, 1107-1119.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H17N2O)2(C2H3O2)2]·H2O

  • Mr = 715.79

  • Triclinic, [P \overline 1]

  • a = 8.7725 (18) Å

  • b = 8.8259 (18) Å

  • c = 11.894 (2) Å

  • α = 101.98 (3)°

  • β = 101.04 (3)°

  • γ = 110.13 (3)°

  • V = 810.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 292 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.772, Tmax = 0.876

  • 7559 measured reflections

  • 3542 independent reflections

  • 2473 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.136

  • S = 1.24

  • 3542 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W2⋯O2i 0.79 (6) 2.06 (6) 2.845 (5) 173 (6)
O1W—H1W1⋯O3ii 0.81 (8) 2.24 (9) 2.970 (6) 151 (8)
N2—H1N⋯O1Wiii 1.00 (5) 2.09 (5) 3.047 (5) 159 (4)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, J. L. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.].

Supporting information


Comment top

There are no crystal structure studies of metal complexes of the new tridentate Schiff ligand. In the title compound, the binuclear molecule is centrosymmetric and the copper atom adopts a distorted square geometry, coordinated by N1, N2, O3 from the ligand and O1 from acetate. There are three kinds of hydrogen bonging in O1w of the lattice water with O2 from acetate, O3 and N2 from ligand. Related hydrogen bonding distances are listed in Table 1.

Related literature top

The ligand was prepared according to a literature method, see: Greatti et al. (2008).

Experimental top

0.12 g (1 mmol) of salicylaldehyde and 0.12 g (1 mmol) of 2-(aminomethyl)piperidine were dissolved in 10 ml of methanol. The solution was stirred at room temperature for 1 h and 0.20 g (1 mmol) monohydrate copper(II) acetate was added. The reaction was stirred at room temperature for 30 minutes. The crude product was collected by filtration and then washed with methanol. Blue block shaped crystals suitable for single-crystal X-ray study were obtained by recrystallization from 2:1 MeCN-MeOH solution (5 ml) with the yield of 66%.CH&N elemental analysis. Found (calcd): C, 50.59 (50.29); H, 6.18 (6.15); N, 8.02 (7.82).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was freely refined.

The final difference Fourier map had a peak in the vicinity of Zn1 but was otherwise featureless.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Cu2(C13H17N2O)2(C2H3O2)2](H2O), at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Di-µ-acetato-κ4O:O-bis({2-[(piperidin-2- ylmethyl)iminomethyl]phenolato-κ3N,N',O}copper(II)) monohydrate top
Crystal data top
[Cu2(C13H17N2O)2(C2H3O2)2]·H2OZ = 1
Mr = 715.79F(000) = 374
Triclinic, P1Dx = 1.467 Mg m3
a = 8.7725 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8259 (18) ÅCell parameters from 7559 reflections
c = 11.894 (2) Åθ = 3.4–27.5°
α = 101.98 (3)°µ = 1.37 mm1
β = 101.04 (3)°T = 292 K
γ = 110.13 (3)°Block, blue
V = 810.4 (3) Å30.20 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII
diffractometer
3542 independent reflections
Radiation source: fine-focus sealed tube2473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.772, Tmax = 0.876k = 1011
7559 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.24 w = 1/[σ2(Fo2) + (0.0652P)2]
where P = (Fo2 + 2Fc2)/3
3542 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Cu2(C13H17N2O)2(C2H3O2)2]·H2Oγ = 110.13 (3)°
Mr = 715.79V = 810.4 (3) Å3
Triclinic, P1Z = 1
a = 8.7725 (18) ÅMo Kα radiation
b = 8.8259 (18) ŵ = 1.37 mm1
c = 11.894 (2) ÅT = 292 K
α = 101.98 (3)°0.20 × 0.10 × 0.10 mm
β = 101.04 (3)°
Data collection top
Bruker APEXII
diffractometer
3542 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2473 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.876Rint = 0.034
7559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.24Δρmax = 0.55 e Å3
3542 reflectionsΔρmin = 0.84 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.49939 (5)0.30738 (5)1.01386 (3)0.03597 (17)
O10.6331 (3)0.4839 (3)0.9559 (2)0.0377 (5)
O20.7691 (4)0.3218 (3)0.9094 (3)0.0531 (7)
O30.6639 (3)0.4046 (3)1.1697 (2)0.0440 (6)
N10.3578 (4)0.1242 (4)1.0631 (2)0.0376 (6)
N20.3251 (4)0.1769 (4)0.8508 (2)0.0401 (7)
C10.7429 (5)0.4504 (4)0.9107 (3)0.0381 (7)
C20.8387 (6)0.5763 (5)0.8546 (4)0.0541 (10)
H2A0.91690.53890.82310.081*
H2B0.90000.68440.91410.081*
H2C0.76040.58580.79080.081*
C30.6383 (5)0.3757 (4)1.2699 (3)0.0411 (8)
C40.7613 (6)0.4822 (5)1.3792 (3)0.0554 (10)
H4A0.85850.56801.37810.066*
C50.7393 (7)0.4609 (6)1.4868 (4)0.0724 (14)
H5A0.82070.53441.55770.087*
C60.5978 (7)0.3316 (7)1.4920 (4)0.0782 (15)
H6A0.58330.31921.56550.094*
C70.4810 (7)0.2237 (6)1.3877 (3)0.0645 (12)
H7A0.38790.13481.39070.077*
C80.4966 (5)0.2425 (5)1.2753 (3)0.0457 (9)
C90.3696 (5)0.1199 (4)1.1711 (3)0.0407 (8)
H9A0.28820.02871.18270.049*
C100.2178 (5)0.0093 (5)0.9659 (3)0.0476 (9)
H10A0.11340.00570.96620.057*
H10B0.20410.11850.97700.057*
C110.2541 (5)0.0029 (4)0.8480 (3)0.0444 (8)
H11A0.34300.04530.84310.053*
C120.1037 (6)0.1121 (5)0.7406 (3)0.0539 (10)
H12A0.00940.08060.74680.065*
H12B0.07000.22940.73940.065*
C130.1453 (6)0.0928 (5)0.6245 (3)0.0600 (11)
H13A0.22600.14210.61140.072*
H13B0.04310.15310.55780.072*
C140.2180 (6)0.0888 (5)0.6292 (3)0.0543 (10)
H14A0.13030.13220.62850.065*
H14B0.25470.09780.55800.065*
C150.3660 (5)0.1960 (5)0.7388 (3)0.0473 (9)
H15A0.46050.16450.73320.057*
H15B0.40070.31360.74090.057*
O1W0.9643 (5)0.7056 (5)0.1856 (4)0.0694 (10)
H1N0.230 (7)0.211 (6)0.859 (4)0.085 (16)*
H1W10.908 (11)0.625 (10)0.203 (7)0.16 (4)*
H1W21.033 (8)0.696 (8)0.153 (5)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0363 (3)0.0324 (2)0.0375 (2)0.00788 (19)0.01277 (17)0.01509 (17)
O10.0356 (14)0.0359 (12)0.0444 (13)0.0106 (11)0.0183 (11)0.0178 (10)
O20.0530 (18)0.0478 (15)0.0771 (19)0.0241 (15)0.0353 (15)0.0341 (14)
O30.0374 (15)0.0459 (14)0.0419 (13)0.0051 (12)0.0094 (11)0.0211 (11)
N10.0361 (17)0.0389 (15)0.0404 (15)0.0120 (14)0.0135 (12)0.0195 (12)
N20.0419 (19)0.0388 (16)0.0378 (14)0.0091 (15)0.0149 (13)0.0163 (13)
C10.032 (2)0.0364 (18)0.0431 (17)0.0094 (16)0.0105 (15)0.0143 (15)
C20.059 (3)0.050 (2)0.069 (2)0.021 (2)0.039 (2)0.032 (2)
C30.049 (2)0.0379 (18)0.0377 (17)0.0190 (18)0.0101 (16)0.0129 (15)
C40.064 (3)0.043 (2)0.049 (2)0.013 (2)0.010 (2)0.0138 (18)
C50.092 (4)0.068 (3)0.037 (2)0.021 (3)0.007 (2)0.005 (2)
C60.093 (4)0.089 (4)0.038 (2)0.016 (3)0.023 (2)0.021 (2)
C70.072 (3)0.073 (3)0.045 (2)0.018 (3)0.026 (2)0.023 (2)
C80.050 (2)0.051 (2)0.0424 (18)0.023 (2)0.0174 (17)0.0175 (17)
C90.039 (2)0.0374 (18)0.0494 (19)0.0115 (17)0.0174 (16)0.0215 (16)
C100.039 (2)0.0402 (19)0.050 (2)0.0002 (17)0.0073 (16)0.0192 (16)
C110.043 (2)0.0354 (18)0.0478 (19)0.0063 (17)0.0102 (16)0.0166 (15)
C120.050 (3)0.043 (2)0.052 (2)0.0030 (19)0.0039 (18)0.0180 (18)
C130.062 (3)0.054 (2)0.048 (2)0.011 (2)0.006 (2)0.0130 (19)
C140.063 (3)0.053 (2)0.0387 (18)0.014 (2)0.0096 (18)0.0171 (17)
C150.053 (3)0.047 (2)0.0376 (17)0.0107 (19)0.0141 (17)0.0188 (16)
O1W0.061 (2)0.064 (2)0.091 (3)0.032 (2)0.030 (2)0.0183 (19)
Geometric parameters (Å, º) top
Cu1—O31.928 (3)C6—H6A0.9300
Cu1—O11.944 (2)C7—C81.408 (5)
Cu1—N11.946 (3)C7—H7A0.9300
Cu1—N22.037 (3)C8—C91.426 (5)
O1—C11.277 (4)C9—H9A0.9300
O2—C11.230 (4)C10—C111.504 (5)
O3—C31.313 (4)C10—H10A0.9700
N1—C91.278 (4)C10—H10B0.9700
N1—C101.459 (5)C11—C121.506 (5)
N2—C151.472 (4)C11—H11A0.9800
N2—C111.482 (4)C12—C131.522 (6)
N2—H1N1.00 (5)C12—H12A0.9700
C1—C21.505 (5)C12—H12B0.9700
C2—H2A0.9600C13—C141.491 (6)
C2—H2B0.9600C13—H13A0.9700
C2—H2C0.9600C13—H13B0.9700
C3—C81.410 (6)C14—C151.508 (5)
C3—C41.412 (5)C14—H14A0.9700
C4—C51.372 (6)C14—H14B0.9700
C4—H4A0.9300C15—H15A0.9700
C5—C61.390 (7)C15—H15B0.9700
C5—H5A0.9300O1W—H1W10.81 (8)
C6—C71.359 (6)O1W—H1W20.79 (6)
O3—Cu1—O191.10 (11)C7—C8—C9117.6 (4)
O3—Cu1—N191.94 (12)C3—C8—C9123.0 (3)
O1—Cu1—N1176.92 (10)N1—C9—C8125.7 (4)
O3—Cu1—N2173.00 (11)N1—C9—H9A117.1
O1—Cu1—N293.92 (11)C8—C9—H9A117.1
N1—Cu1—N283.01 (12)N1—C10—C11109.4 (3)
C1—O1—Cu1114.3 (2)N1—C10—H10A109.8
C3—O3—Cu1126.2 (2)C11—C10—H10A109.8
C9—N1—C10119.3 (3)N1—C10—H10B109.8
C9—N1—Cu1125.8 (3)C11—C10—H10B109.8
C10—N1—Cu1114.6 (2)H10A—C10—H10B108.2
C15—N2—C11111.7 (3)N2—C11—C10107.8 (3)
C15—N2—Cu1121.4 (3)N2—C11—C12113.2 (3)
C11—N2—Cu1106.9 (2)C10—C11—C12113.6 (3)
C15—N2—H1N110 (3)N2—C11—H11A107.3
C11—N2—H1N102 (3)C10—C11—H11A107.3
Cu1—N2—H1N102 (3)C12—C11—H11A107.3
O2—C1—O1123.3 (3)C11—C12—C13111.1 (4)
O2—C1—C2120.4 (3)C11—C12—H12A109.4
O1—C1—C2116.2 (3)C13—C12—H12A109.4
C1—C2—H2A109.5C11—C12—H12B109.4
C1—C2—H2B109.5C13—C12—H12B109.4
H2A—C2—H2B109.5H12A—C12—H12B108.0
C1—C2—H2C109.5C14—C13—C12111.0 (3)
H2A—C2—H2C109.5C14—C13—H13A109.4
H2B—C2—H2C109.5C12—C13—H13A109.4
O3—C3—C8124.0 (3)C14—C13—H13B109.4
O3—C3—C4118.4 (4)C12—C13—H13B109.4
C8—C3—C4117.6 (3)H13A—C13—H13B108.0
C5—C4—C3121.0 (4)C13—C14—C15112.9 (3)
C5—C4—H4A119.5C13—C14—H14A109.0
C3—C4—H4A119.5C15—C14—H14A109.0
C4—C5—C6121.3 (4)C13—C14—H14B109.0
C4—C5—H5A119.4C15—C14—H14B109.0
C6—C5—H5A119.4H14A—C14—H14B107.8
C7—C6—C5118.7 (4)N2—C15—C14112.4 (3)
C7—C6—H6A120.6N2—C15—H15A109.1
C5—C6—H6A120.6C14—C15—H15A109.1
C6—C7—C8122.0 (5)N2—C15—H15B109.1
C6—C7—H7A119.0C14—C15—H15B109.1
C8—C7—H7A119.0H15A—C15—H15B107.9
C7—C8—C3119.4 (4)H1W1—O1W—H1W2118 (6)
O3—Cu1—O1—C189.0 (2)C4—C3—C8—C71.6 (5)
N2—Cu1—O1—C186.1 (2)O3—C3—C8—C93.1 (6)
O1—Cu1—O3—C3161.2 (3)C4—C3—C8—C9175.8 (3)
N1—Cu1—O3—C319.3 (3)C10—N1—C9—C8178.6 (3)
O3—Cu1—N1—C915.0 (3)Cu1—N1—C9—C85.0 (5)
N2—Cu1—N1—C9169.8 (3)C7—C8—C9—N1174.9 (4)
O3—Cu1—N1—C10171.1 (3)C3—C8—C9—N17.7 (6)
N2—Cu1—N1—C104.1 (2)C9—N1—C10—C11165.7 (3)
O1—Cu1—N2—C1522.8 (3)Cu1—N1—C10—C1120.0 (4)
N1—Cu1—N2—C15157.0 (3)C15—N2—C11—C10179.6 (3)
N1—Cu1—N2—C1127.3 (2)Cu1—N2—C11—C1044.6 (3)
Cu1—O1—C1—O23.8 (4)C15—N2—C11—C1254.0 (5)
Cu1—O1—C1—C2174.7 (3)Cu1—N2—C11—C12171.0 (3)
Cu1—O3—C3—C813.7 (5)N1—C10—C11—N242.4 (4)
Cu1—O3—C3—C4167.5 (3)N1—C10—C11—C12168.6 (3)
O3—C3—C4—C5178.3 (4)N2—C11—C12—C1353.5 (5)
C8—C3—C4—C52.8 (6)C10—C11—C12—C13176.8 (3)
C3—C4—C5—C61.6 (8)C11—C12—C13—C1452.1 (5)
C4—C5—C6—C70.9 (8)C12—C13—C14—C1552.5 (5)
C5—C6—C7—C82.1 (8)C11—N2—C15—C1452.9 (4)
C6—C7—C8—C30.8 (7)Cu1—N2—C15—C14179.5 (2)
C6—C7—C8—C9178.3 (4)C13—C14—C15—N253.4 (5)
O3—C3—C8—C7179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W2···O2i0.79 (6)2.06 (6)2.845 (5)173 (6)
O1W—H1W1···O3ii0.81 (8)2.24 (9)2.970 (6)151 (8)
N2—H1N···O1Wiii1.00 (5)2.09 (5)3.047 (5)159 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C13H17N2O)2(C2H3O2)2]·H2O
Mr715.79
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.7725 (18), 8.8259 (18), 11.894 (2)
α, β, γ (°)101.98 (3), 101.04 (3), 110.13 (3)
V3)810.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.772, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
7559, 3542, 2473
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.136, 1.24
No. of reflections3542
No. of parameters211
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.84

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W2···O2i0.79 (6)2.06 (6)2.845 (5)173 (6)
O1W—H1W1···O3ii0.81 (8)2.24 (9)2.970 (6)151 (8)
N2—H1N···O1Wiii1.00 (5)2.09 (5)3.047 (5)159 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The author thanks Guangdong Medical college for supporting this study

References

First citationBarbour, J. L. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGreatti, A., Scarpellini, M., Peralta, R. A., Bortoluzi, A. J., Xavier, F. R., Szoganicz, B., Tomkowicz, Z., Rams, M., Haase, W. & Neves, A. (2008). Inorg. Chem. 47, 1107–1119.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds