organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1837-o1838

Methyl 2-{6-[(1-meth­­oxy-1-oxopropan-2-yl)amino­carbon­yl]pyridine-2-carboxamido}­propano­ate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 6 May 2012; accepted 16 May 2012; online 23 May 2012)

In the title compound, C15H19N3O6, the amide planes are inclined at dihedral angles of 0.8 (6) and 12.1 (3)° with respect to the central pyridine ring. The mean planes of the corresponding methyl acetate groups form dihedral angles of 41.76 (13) and 86.48 (15)°, respectively with the mean plane of pyridine ring. A pair of weak intra­molecular N—H⋯N hydrogen bonds generate an S(5)S(5) ring motif in the mol­ecule. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into [001] chains. The chains are cross-linked by C—H⋯O hydrogen bonds into layers lying parallel to bc plane. The crystal packing also features a C—H⋯π inter­action.

Related literature

For the synthesis and biological activity screening of some dipicolinic acid bis-L-amino acid hydrazide derivatives and their corresponding acids, see: Abou-Ghalia & Amr (2004[Abou-Ghalia, M. H. & Amr, A. E. (2004). Amino Acids, 26, 283-289.]); Al-Salahi et al. (2010[Al-Salahi, R. A., Al-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 6588-6597.]); Al-Omar & Amr (2010[Al-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 4711-4721.]); Attia et al. (2000[Attia, A., Abdel-Salam, O. I., Amr, A. E., Stibor, I. & Budesinsky, M. (2000). Egypt. J. Chem. 43, 187-201.]). For the biological activity of 2,6-disubstituted pyridine derivatives, see: Amr (2005[Amr, A. E. (2005). Z. Naturforsch. Teil B, 60, 990-998.]); Abou-Ghalia et al. (2003[Abou-Ghalia, M. H., Amr, A. E. & Abdulla, M. M. (2003). Z. Naturforsch. Teil B, 58, 903-910.]); Amr, Sayed & Abdulla (2005[Amr, A. E., Sayed, H. H. & Abdulla, M. M. (2005). Arch. Pharm. Chem. Life Sci. 338, 433-440.]); Amr et al. (2006[Amr, A. E., Abdel-Latif, N. A. & Abdulla, M. M. (2006). Bioorg. Med. Chem. 14, 373-384.]); Hammam et al. (2003[Hammam, A. G., Fahmy, A. F. M., Amr, A. E. & Mohamed, A. M. (2003). Indian J. Chem. Sect. B, 42, 1985-1993.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19N3O6

  • Mr = 337.33

  • Monoclinic, P 21 /c

  • a = 8.9735 (3) Å

  • b = 20.7073 (8) Å

  • c = 10.4048 (5) Å

  • β = 122.901 (3)°

  • V = 1623.29 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 296 K

  • 0.74 × 0.25 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.551, Tmax = 0.947

  • 10358 measured reflections

  • 2703 independent reflections

  • 2058 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.192

  • S = 1.04

  • 2703 reflections

  • 229 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N1 0.85 (3) 2.23 (3) 2.676 (3) 113 (2)
N3—H1N3⋯O4i 0.85 (2) 2.35 (2) 3.080 (2) 145 (2)
N2—H1N2⋯N1 0.84 (3) 2.32 (3) 2.685 (3) 107 (3)
N2—H1N2⋯O4i 0.83 (3) 2.55 (3) 3.290 (3) 149 (2)
C9—H9B⋯O2ii 0.96 2.41 3.329 (3) 159
C15—H15BCg1iii 0.96 2.78 3.544 (4) 137
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In our previous work (Abou-Ghalia & Amr, 2004; Al-Salahi et al., 2010; Al-Omar & Amr, 2010), we have reported the synthesis and biological activity screening of some dipicolinic acid bis-L-amino acid hydrazide derivatives and their corresponding acids (Attia et al., 2000). In view of the significance of 2,6-disubstituted pyridine derivatives as biologically active congeners (Amr, 2005; Abou-Ghalia, Amr & Abdulla, 2003; Amr, Sayed & Abdulla, 2005; Amr et al., 2006; Hammam et al., 2003), we report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The amide planes (O1/N2/C6 & O4/N3/C11) are inclined at dihedral angles of 0.8 (6) and 12.1 (3)°, respectively, with respect to the central pyridine ring (N1/C1–C5). The mean planes of the methyl acetate groups (O2/O3/C7–C9 with maximum deviation = 0.007 (2) Å at atom O3 & O5/O6/C12–C14 with maximum deviation = 0.011 (2) Å at atom O6) form dihedral angles of 41.76 (13) and 86.48 (15)°, respectively with the mean plane of pyridine ring. Weak intramolecular N2—H1N2···N1 and N3—H1N3···N1 hydrogen bonds (Table 1) generate an S(5)S(5) ring motif (Bernstein et al., 1995) in the molecule.

In the crystal (Fig. 2), molecules are linked by intermolecular N3—H1N3···O4, N2—H1N2···O4 and C9—H9B···O2 hydrogen bonds (Table 1) into two-dimensional networks parallel to bc plane. The crystal packing is further stabilized by C—H···π interaction (Table 1), involving Cg1 which is the centroid of N1/C1–C5 ring.

Related literature top

For the synthesis and biological activity screening of some dipicolinic acid bis-L-amino acid hydrazide derivatives and their corresponding acids, see: Abou-Ghalia & Amr (2004); Al-Salahi et al. (2010); Al-Omar & Amr (2010); Attia et al. (2000). For the biological activity of 2,6-disubstituted pyridine derivatives, see: Amr (2005); Abou-Ghalia et al. (2003); Amr, Sayed & Abdulla (2005); Amr et al. (2006); Hammam et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a cold mixture (-15 °C) of 2,6-pyridine dicarboxylic acid (0.167 g, 1 mmol) in cold dry tetrahydrofuran (100 ml) and ethyl chloroformate (0.216 g, 2 mmol), triethylamine (0.202 g, 2 mmol) was added with stirring. After 10 min, D-alanyl methyl ester (0.206 g, 2 mmol) was then added. The reaction mixture was stirred for 3 h at -15 °C and then 12 h at r.t. The triethylamine hydrochloride formed was filtered off and the solvent was evaporated under reduced pressure. The residue obtained was dissolved in 150 ml dichloromethane, washed with water, 1 N hydrochloric acid, 1 N sodium bicarbonate and finally with water and dried over anhydrous calcium chloride. The solvent was evaporated under reduced pressure to dryness and the obtained solid was crystallized from dichloromethane to give colourless plates of the title compound.

Refinement top

The atoms H1N2 and H1N3 were located in a difference fourier map and refined freely [N—H = 0.83 (3) and 0.85 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93, 0.96 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. The dashed lines represent the weak intramolecular N—H···N hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
Methyl 2-{6-[(1-methoxy-1-oxopropan-2-yl)aminocarbonyl]pyridine-2- carboxamido}propanoate top
Crystal data top
C15H19N3O6F(000) = 712
Mr = 337.33Dx = 1.380 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1828 reflections
a = 8.9735 (3) Åθ = 5.5–70.4°
b = 20.7073 (8) ŵ = 0.91 mm1
c = 10.4048 (5) ÅT = 296 K
β = 122.901 (3)°Plate, colourless
V = 1623.29 (11) Å30.74 × 0.25 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2703 independent reflections
Radiation source: fine-focus sealed tube2058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 65.0°, θmin = 5.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.551, Tmax = 0.947k = 2424
10358 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1344P)2]
where P = (Fo2 + 2Fc2)/3
2703 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H19N3O6V = 1623.29 (11) Å3
Mr = 337.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.9735 (3) ŵ = 0.91 mm1
b = 20.7073 (8) ÅT = 296 K
c = 10.4048 (5) Å0.74 × 0.25 × 0.06 mm
β = 122.901 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2703 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2058 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.947Rint = 0.046
10358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
2703 reflectionsΔρmin = 0.28 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1466 (3)0.53103 (10)0.8205 (2)0.0711 (6)
O20.4090 (3)0.56823 (9)0.89076 (19)0.0641 (5)
O30.2864 (3)0.49181 (10)0.7100 (2)0.0710 (6)
O40.2803 (2)0.77285 (8)1.37663 (16)0.0578 (5)
O50.6292 (4)0.83396 (18)1.1329 (3)0.1239 (11)
O60.3640 (4)0.87058 (11)1.0701 (2)0.0823 (7)
N10.0899 (2)0.66141 (9)1.07033 (18)0.0438 (5)
N20.0839 (3)0.58945 (11)0.8529 (2)0.0602 (6)
N30.3295 (3)0.75674 (9)1.1876 (2)0.0497 (5)
C10.0965 (3)0.69752 (10)1.1805 (2)0.0449 (5)
C20.0180 (4)0.68863 (13)1.2288 (3)0.0584 (7)
H2A0.01010.71451.30540.070*
C30.1448 (4)0.64055 (14)1.1610 (3)0.0638 (7)
H3A0.22410.63371.19100.077*
C40.1521 (4)0.60292 (13)1.0484 (3)0.0572 (6)
H4A0.23580.57011.00160.069*
C50.0334 (3)0.61483 (11)1.0065 (2)0.0471 (5)
C60.0374 (3)0.57458 (12)0.8840 (2)0.0530 (6)
C70.0902 (4)0.55753 (13)0.7325 (3)0.0607 (7)
H7A0.02290.51720.70740.073*
C80.2796 (4)0.54102 (12)0.7893 (3)0.0550 (6)
C90.4596 (4)0.46969 (16)0.7517 (3)0.0766 (8)
H9A0.44680.43530.68450.115*
H9B0.52360.45430.85530.115*
H9C0.52360.50470.74300.115*
C100.0058 (4)0.59893 (17)0.5880 (3)0.0788 (9)
H10A0.11410.60920.55550.118*
H10B0.00580.57550.50830.118*
H10C0.07260.63810.60930.118*
C110.2444 (3)0.74632 (10)1.2579 (2)0.0439 (5)
C120.4982 (3)0.79021 (13)1.2598 (3)0.0566 (6)
H12A0.50710.81791.34010.068*
C130.5066 (5)0.83318 (16)1.1474 (3)0.0723 (9)
C140.3623 (7)0.91492 (19)0.9625 (4)0.1168 (16)
H14A0.25840.94160.91870.175*
H14B0.36100.89110.88280.175*
H14C0.46650.94161.01440.175*
C150.6504 (4)0.74250 (17)1.3363 (4)0.0899 (10)
H15A0.65150.72151.41910.135*
H15B0.76050.76501.37530.135*
H15C0.63560.71071.26300.135*
H1N30.289 (3)0.7353 (11)1.105 (3)0.044 (6)*
H1N20.151 (4)0.6210 (14)0.896 (3)0.063 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0754 (13)0.0729 (12)0.0837 (11)0.0269 (10)0.0553 (11)0.0275 (9)
O20.0620 (12)0.0660 (11)0.0641 (9)0.0096 (9)0.0342 (9)0.0117 (8)
O30.0754 (14)0.0750 (12)0.0845 (12)0.0149 (10)0.0576 (11)0.0296 (9)
O40.0738 (12)0.0660 (10)0.0528 (8)0.0078 (9)0.0469 (9)0.0110 (7)
O50.115 (2)0.176 (3)0.136 (2)0.051 (2)0.1048 (19)0.031 (2)
O60.1178 (18)0.0758 (13)0.0865 (12)0.0121 (13)0.0770 (13)0.0060 (10)
N10.0479 (11)0.0482 (10)0.0445 (9)0.0006 (8)0.0310 (9)0.0015 (7)
N20.0646 (14)0.0696 (14)0.0651 (11)0.0223 (12)0.0473 (11)0.0253 (10)
N30.0573 (13)0.0580 (11)0.0470 (9)0.0132 (9)0.0369 (10)0.0131 (8)
C10.0506 (13)0.0491 (12)0.0440 (9)0.0040 (10)0.0315 (10)0.0047 (8)
C20.0720 (17)0.0656 (15)0.0631 (12)0.0023 (13)0.0533 (13)0.0044 (10)
C30.0662 (16)0.0735 (17)0.0811 (15)0.0105 (14)0.0591 (14)0.0040 (12)
C40.0602 (16)0.0566 (14)0.0705 (14)0.0088 (12)0.0457 (13)0.0010 (10)
C50.0490 (13)0.0486 (12)0.0503 (10)0.0000 (10)0.0312 (11)0.0019 (9)
C60.0542 (15)0.0541 (13)0.0569 (11)0.0060 (11)0.0343 (12)0.0062 (10)
C70.0639 (16)0.0681 (16)0.0653 (13)0.0184 (13)0.0450 (13)0.0261 (11)
C80.0679 (17)0.0549 (13)0.0589 (12)0.0104 (13)0.0452 (13)0.0090 (10)
C90.085 (2)0.083 (2)0.0836 (17)0.0065 (17)0.0600 (17)0.0092 (14)
C100.072 (2)0.105 (2)0.0569 (13)0.0048 (18)0.0335 (15)0.0183 (14)
C110.0519 (13)0.0489 (12)0.0430 (10)0.0039 (10)0.0337 (10)0.0022 (8)
C120.0583 (15)0.0647 (15)0.0617 (12)0.0148 (12)0.0422 (12)0.0206 (10)
C130.086 (2)0.084 (2)0.0764 (16)0.0386 (18)0.0634 (17)0.0317 (15)
C140.197 (5)0.094 (2)0.095 (2)0.044 (3)0.103 (3)0.0047 (18)
C150.0597 (19)0.085 (2)0.122 (2)0.0032 (16)0.0471 (18)0.0272 (19)
Geometric parameters (Å, º) top
O1—C61.227 (3)C4—C51.375 (3)
O2—C81.204 (3)C4—H4A0.9300
O3—C81.334 (3)C5—C61.507 (3)
O3—C91.442 (4)C7—C81.504 (4)
O4—C111.225 (2)C7—C101.527 (4)
O5—C131.189 (4)C7—H7A0.9800
O6—C131.329 (4)C9—H9A0.9600
O6—C141.441 (3)C9—H9B0.9600
N1—C51.340 (3)C9—H9C0.9600
N1—C11.343 (3)C10—H10A0.9600
N2—C61.329 (3)C10—H10B0.9600
N2—C71.445 (3)C10—H10C0.9600
N2—H1N20.83 (3)C12—C131.504 (4)
N3—C111.331 (3)C12—C151.514 (4)
N3—C121.449 (3)C12—H12A0.9800
N3—H1N30.85 (2)C14—H14A0.9600
C1—C21.379 (3)C14—H14B0.9600
C1—C111.507 (3)C14—H14C0.9600
C2—C31.383 (4)C15—H15A0.9600
C2—H2A0.9300C15—H15B0.9600
C3—C41.378 (3)C15—H15C0.9600
C3—H3A0.9300
C8—O3—C9117.4 (2)O3—C9—H9A109.5
C13—O6—C14116.2 (3)O3—C9—H9B109.5
C5—N1—C1117.75 (19)H9A—C9—H9B109.5
C6—N2—C7121.9 (2)O3—C9—H9C109.5
C6—N2—H1N2119 (2)H9A—C9—H9C109.5
C7—N2—H1N2118 (2)H9B—C9—H9C109.5
C11—N3—C12122.81 (17)C7—C10—H10A109.5
C11—N3—H1N3114.2 (17)C7—C10—H10B109.5
C12—N3—H1N3121.7 (17)H10A—C10—H10B109.5
N1—C1—C2122.7 (2)C7—C10—H10C109.5
N1—C1—C11116.56 (19)H10A—C10—H10C109.5
C2—C1—C11120.61 (19)H10B—C10—H10C109.5
C1—C2—C3118.7 (2)O4—C11—N3124.5 (2)
C1—C2—H2A120.7O4—C11—C1120.8 (2)
C3—C2—H2A120.7N3—C11—C1114.65 (17)
C4—C3—C2119.1 (2)N3—C12—C13111.0 (2)
C4—C3—H3A120.4N3—C12—C15110.5 (2)
C2—C3—H3A120.4C13—C12—C15112.5 (3)
C5—C4—C3118.7 (2)N3—C12—H12A107.5
C5—C4—H4A120.6C13—C12—H12A107.5
C3—C4—H4A120.6C15—C12—H12A107.5
N1—C5—C4123.0 (2)O5—C13—O6124.6 (3)
N1—C5—C6116.8 (2)O5—C13—C12123.2 (4)
C4—C5—C6120.1 (2)O6—C13—C12112.2 (2)
O1—C6—N2124.0 (2)O6—C14—H14A109.5
O1—C6—C5120.5 (2)O6—C14—H14B109.5
N2—C6—C5115.5 (2)H14A—C14—H14B109.5
N2—C7—C8109.3 (2)O6—C14—H14C109.5
N2—C7—C10111.4 (2)H14A—C14—H14C109.5
C8—C7—C10111.4 (2)H14B—C14—H14C109.5
N2—C7—H7A108.2C12—C15—H15A109.5
C8—C7—H7A108.2C12—C15—H15B109.5
C10—C7—H7A108.2H15A—C15—H15B109.5
O2—C8—O3123.6 (2)C12—C15—H15C109.5
O2—C8—C7125.8 (2)H15A—C15—H15C109.5
O3—C8—C7110.6 (2)H15B—C15—H15C109.5
C5—N1—C1—C20.4 (3)C9—O3—C8—C7179.5 (2)
C5—N1—C1—C11175.80 (18)N2—C7—C8—O225.0 (4)
N1—C1—C2—C30.0 (4)C10—C7—C8—O298.6 (3)
C11—C1—C2—C3176.0 (2)N2—C7—C8—O3156.0 (2)
C1—C2—C3—C40.4 (4)C10—C7—C8—O380.5 (3)
C2—C3—C4—C50.4 (4)C12—N3—C11—O413.6 (4)
C1—N1—C5—C40.3 (3)C12—N3—C11—C1165.8 (2)
C1—N1—C5—C6179.55 (19)N1—C1—C11—O4166.69 (19)
C3—C4—C5—N10.1 (4)C2—C1—C11—O49.5 (3)
C3—C4—C5—C6179.9 (2)N1—C1—C11—N312.8 (3)
C7—N2—C6—O14.1 (4)C2—C1—C11—N3171.0 (2)
C7—N2—C6—C5176.5 (2)C11—N3—C12—C13141.6 (2)
N1—C5—C6—O1180.0 (2)C11—N3—C12—C1592.8 (3)
C4—C5—C6—O10.1 (4)C14—O6—C13—O50.3 (4)
N1—C5—C6—N20.5 (3)C14—O6—C13—C12178.2 (2)
C4—C5—C6—N2179.3 (2)N3—C12—C13—O5131.9 (3)
C6—N2—C7—C8136.0 (3)C15—C12—C13—O57.5 (4)
C6—N2—C7—C10100.4 (3)N3—C12—C13—O649.5 (3)
C9—O3—C8—O21.4 (4)C15—C12—C13—O6173.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N10.85 (3)2.23 (3)2.676 (3)113 (2)
N3—H1N3···O4i0.85 (2)2.35 (2)3.080 (2)145 (2)
N2—H1N2···N10.84 (3)2.32 (3)2.685 (3)107 (3)
N2—H1N2···O4i0.83 (3)2.55 (3)3.290 (3)149 (2)
C9—H9B···O2ii0.962.413.329 (3)159
C15—H15B···Cg1iii0.962.783.544 (4)137
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H19N3O6
Mr337.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.9735 (3), 20.7073 (8), 10.4048 (5)
β (°) 122.901 (3)
V3)1623.29 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.91
Crystal size (mm)0.74 × 0.25 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.551, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
10358, 2703, 2058
Rint0.046
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.192, 1.04
No. of reflections2703
No. of parameters229
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N10.85 (3)2.23 (3)2.676 (3)113 (2)
N3—H1N3···O4i0.85 (2)2.35 (2)3.080 (2)145 (2)
N2—H1N2···N10.84 (3)2.32 (3)2.685 (3)107 (3)
N2—H1N2···O4i0.83 (3)2.55 (3)3.290 (3)149 (2)
C9—H9B···O2ii0.962.413.329 (3)159
C15—H15B···Cg1iii0.962.783.544 (4)137
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MAO, AEA and HAG thank the Deanship of Scientific Research at King Saud University for funding through the research group project No. RGP-VPP-099. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAbou-Ghalia, M. H. & Amr, A. E. (2004). Amino Acids, 26, 283–289.  Web of Science PubMed Google Scholar
First citationAbou-Ghalia, M. H., Amr, A. E. & Abdulla, M. M. (2003). Z. Naturforsch. Teil B, 58, 903–910.  Google Scholar
First citationAl-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 4711–4721.  Web of Science CAS PubMed Google Scholar
First citationAl-Salahi, R. A., Al-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 6588–6597.  Web of Science CAS PubMed Google Scholar
First citationAmr, A. E. (2005). Z. Naturforsch. Teil B, 60, 990–998.  CAS Google Scholar
First citationAmr, A. E., Abdel-Latif, N. A. & Abdulla, M. M. (2006). Bioorg. Med. Chem. 14, 373–384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAmr, A. E., Sayed, H. H. & Abdulla, M. M. (2005). Arch. Pharm. Chem. Life Sci. 338, 433–440.  Web of Science CrossRef CAS Google Scholar
First citationAttia, A., Abdel-Salam, O. I., Amr, A. E., Stibor, I. & Budesinsky, M. (2000). Egypt. J. Chem. 43, 187–201.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHammam, A. G., Fahmy, A. F. M., Amr, A. E. & Mohamed, A. M. (2003). Indian J. Chem. Sect. B, 42, 1985–1993.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1837-o1838
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds