organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-3,4-Dimeth­­oxy­benzyl­­idene]hydrazinecarboxamide

aUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, bDepartment of Chemistry, University of Malakand, Pakistan, and cDepartment of Chemistry, Government Post Graduate College, Gojra, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 7 May 2012; accepted 8 May 2012; online 16 May 2012)

In the title compound, C10H13N3O3, the 3,4-dimeth­oxy­benzyl­idene and hydrazinecarboxamide groups are oriented at a dihedral angle of 53.82 (6)° and an intra­molecular N—H⋯N hydrogen bond generates an S(5) ring motif. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into sheets propagating in (-201), which feature R12(5), R22(8) and R24(14) loops.

Related literature

For related structures, see: Fun et al. (2011[Fun, H.-K., Yeap, C. S., Malladi, S. & Isloor, A. M. (2011). Acta Cryst. E67, o1786.]); Liang et al. (2007[Liang, Z.-P., Li, J., Wang, H.-L. & Wang, H.-Q. (2007). Acta Cryst. E63, o2939.]); For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3O3

  • Mr = 223.23

  • Monoclinic, C 2/c

  • a = 22.2300 (7) Å

  • b = 7.6367 (3) Å

  • c = 15.6482 (6) Å

  • β = 126.234 (1)°

  • V = 2142.76 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.985

  • 7933 measured reflections

  • 2115 independent reflections

  • 1389 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.01

  • 2115 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.86 2.15 2.970 (2) 159
N3—H3A⋯O3ii 0.86 2.19 3.044 (2) 170
N3—H3B⋯N1 0.86 2.30 2.657 (2) 105
N3—H3B⋯O1iii 0.86 2.59 3.019 (2) 112
N3—H3B⋯O2iii 0.86 2.30 3.119 (2) 160
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y+1, -z; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized as a derivative.

The crystal structures of (E)-1-(4-methoxybenzylidene)semicarbazide (Liang et al., 2007) and (E)-2-(4-hydroxy-3-methoxybenzylidene) hydrazinecarboxamide (Fun et al., 2011) have been published which are related to the title compound (I).

In (I), the parts of 3,4-dimethoxybenzaldehyde and hydrazinecarboxamide A (C1—C9/O1/O2) and B (N1/N2/C10/N3/O3), are almost planar with r. m. s. deviation of 0.0770 and 0.0159 Å, respectively. The dihedral angle between A/B is 53.82 (6)°. There exist intramolecular H–bonding of N—H···N type (Table 1, Fig. 1) and form S(5) ring motif (Bernstein et al., 1995). Each molecule is interlinked with three molecules due to H-bondings of N—H···O type. There exist R12(5), R22(8) and R24(14) ring motifs (Table 1, Fig. 2). The molecules are interliked in the form of two-dimensional polymeric sheets in the plane (201) and with base vectors [100] and [102].

Related literature top

For related structures, see: Fun et al. (2011); Liang et al. (2007); For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 3,4-dimethoxybenzaldehyde and hydrazinecarboxamide were refluxed in methanol for 45 min resulting in yellow solution. The solution was kept at room temperature which affoarded yellow prisms after 48 h.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å and N—H = 0.86 Å) and refined as riding with Uiso(H) = xUeq(C. N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines indicate the intra-molecular hydrogen bond.
[Figure 2] Fig. 2. Partial packnig diagram showing molecules interlinked to form polymeric sheets with various ring motifs.
2-[(E)-3,4-Dimethoxybenzylidene]hydrazinecarboxamide top
Crystal data top
C10H13N3O3F(000) = 944
Mr = 223.23Dx = 1.384 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1389 reflections
a = 22.2300 (7) Åθ = 2.3–26.0°
b = 7.6367 (3) ŵ = 0.10 mm1
c = 15.6482 (6) ÅT = 296 K
β = 126.234 (1)°Prism, yellow
V = 2142.76 (14) Å30.25 × 0.18 × 0.15 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2115 independent reflections
Radiation source: fine-focus sealed tube1389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 2.3°
ω scansh = 2627
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.975, Tmax = 0.985l = 1919
7933 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.0283P]
where P = (Fo2 + 2Fc2)/3
2115 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H13N3O3V = 2142.76 (14) Å3
Mr = 223.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.2300 (7) ŵ = 0.10 mm1
b = 7.6367 (3) ÅT = 296 K
c = 15.6482 (6) Å0.25 × 0.18 × 0.15 mm
β = 126.234 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2115 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1389 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.040
7933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
2115 reflectionsΔρmin = 0.20 e Å3
147 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30582 (7)0.13305 (19)0.72476 (10)0.0464 (5)
O20.34785 (7)0.03543 (19)0.62646 (10)0.0454 (5)
O30.01303 (7)0.24827 (17)0.02345 (10)0.0447 (5)
N10.10093 (8)0.0967 (2)0.23838 (12)0.0404 (5)
N20.04892 (8)0.0982 (2)0.12929 (12)0.0421 (5)
N30.06302 (9)0.3952 (2)0.13090 (13)0.0445 (6)
C10.15297 (10)0.0591 (2)0.40077 (15)0.0347 (6)
C20.22548 (10)0.0085 (2)0.45703 (15)0.0356 (6)
C30.27503 (10)0.0179 (2)0.56479 (14)0.0331 (6)
C40.25221 (10)0.1097 (2)0.61917 (15)0.0345 (6)
C50.18023 (10)0.1725 (3)0.56366 (15)0.0394 (7)
C60.13153 (10)0.1495 (3)0.45538 (15)0.0397 (7)
C70.28984 (13)0.2490 (3)0.78007 (16)0.0527 (8)
C80.37782 (11)0.1099 (3)0.57544 (17)0.0490 (8)
C90.10014 (10)0.0369 (3)0.28603 (15)0.0400 (7)
C100.03155 (9)0.2502 (3)0.07501 (15)0.0347 (6)
H20.240280.071570.421520.0427*
H2A0.027640.002350.096010.0505*
H3A0.052960.494430.099220.0534*
H3B0.093510.389930.198850.0534*
H50.164420.230700.599360.0473*
H60.083590.195430.418570.0476*
H7A0.249620.202380.779790.0791*
H7B0.333320.261560.851850.0791*
H7C0.275800.361310.745910.0791*
H8A0.351950.216750.540770.0735*
H8B0.371810.028960.523970.0735*
H8C0.429870.134230.627230.0735*
H90.064720.123600.246580.0479*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0482 (8)0.0532 (9)0.0289 (8)0.0080 (7)0.0179 (7)0.0017 (7)
O20.0369 (8)0.0576 (9)0.0338 (8)0.0152 (7)0.0165 (7)0.0050 (7)
O30.0471 (8)0.0416 (9)0.0264 (7)0.0006 (6)0.0113 (7)0.0004 (6)
N10.0408 (9)0.0384 (10)0.0272 (9)0.0008 (7)0.0120 (8)0.0009 (7)
N20.0448 (10)0.0355 (9)0.0263 (9)0.0042 (8)0.0102 (8)0.0018 (7)
N30.0476 (10)0.0351 (10)0.0320 (10)0.0030 (8)0.0132 (8)0.0010 (7)
C10.0362 (10)0.0307 (10)0.0330 (11)0.0031 (8)0.0181 (9)0.0009 (8)
C20.0401 (11)0.0327 (11)0.0345 (11)0.0023 (8)0.0224 (9)0.0013 (8)
C30.0321 (10)0.0330 (10)0.0303 (11)0.0042 (8)0.0163 (9)0.0062 (8)
C40.0374 (10)0.0335 (10)0.0304 (10)0.0001 (8)0.0188 (9)0.0022 (8)
C50.0417 (11)0.0418 (12)0.0394 (12)0.0001 (9)0.0266 (10)0.0031 (9)
C60.0307 (10)0.0406 (12)0.0421 (12)0.0005 (9)0.0184 (9)0.0015 (9)
C70.0604 (14)0.0619 (16)0.0364 (12)0.0022 (11)0.0289 (11)0.0071 (11)
C80.0462 (12)0.0524 (14)0.0524 (14)0.0126 (10)0.0313 (12)0.0047 (11)
C90.0350 (11)0.0397 (12)0.0337 (11)0.0015 (9)0.0140 (10)0.0014 (9)
C100.0289 (10)0.0391 (11)0.0294 (10)0.0001 (8)0.0136 (9)0.0010 (9)
Geometric parameters (Å, º) top
O1—C41.362 (2)C2—C31.379 (3)
O1—C71.422 (3)C3—C41.408 (3)
O2—C31.368 (3)C4—C51.379 (3)
O2—C81.426 (3)C5—C61.380 (3)
O3—C101.245 (2)C2—H20.9300
N1—N21.385 (2)C5—H50.9300
N1—C91.270 (3)C6—H60.9300
N2—C101.353 (3)C7—H7A0.9600
N3—C101.326 (3)C7—H7B0.9600
N2—H2A0.8600C7—H7C0.9600
N3—H3A0.8600C8—H8A0.9600
N3—H3B0.8600C8—H8B0.9600
C1—C91.463 (3)C8—H8C0.9600
C1—C21.401 (3)C9—H90.9300
C1—C61.384 (3)
C4—O1—C7117.75 (18)N2—C10—N3117.33 (17)
C3—O2—C8118.26 (15)O3—C10—N2119.32 (19)
N2—N1—C9116.05 (17)C1—C2—H2120.00
N1—N2—C10120.10 (15)C3—C2—H2120.00
N1—N2—H2A120.00C4—C5—H5120.00
C10—N2—H2A120.00C6—C5—H5120.00
C10—N3—H3A120.00C1—C6—H6120.00
C10—N3—H3B120.00C5—C6—H6120.00
H3A—N3—H3B120.00O1—C7—H7A109.00
C2—C1—C6118.95 (18)O1—C7—H7B109.00
C2—C1—C9121.3 (2)O1—C7—H7C109.00
C6—C1—C9119.7 (2)H7A—C7—H7B109.00
C1—C2—C3120.4 (2)H7A—C7—H7C109.00
C2—C3—C4119.9 (2)H7B—C7—H7C109.00
O2—C3—C4114.88 (16)O2—C8—H8A109.00
O2—C3—C2125.2 (2)O2—C8—H8B109.00
O1—C4—C5125.2 (2)O2—C8—H8C109.00
O1—C4—C3115.4 (2)H8A—C8—H8B109.00
C3—C4—C5119.39 (18)H8A—C8—H8C109.00
C4—C5—C6120.3 (2)H8B—C8—H8C109.00
C1—C6—C5121.0 (2)N1—C9—H9119.00
N1—C9—C1122.29 (19)C1—C9—H9119.00
O3—C10—N3123.4 (2)
C7—O1—C4—C3169.75 (18)C2—C1—C9—N131.7 (3)
C7—O1—C4—C58.3 (3)C6—C1—C9—N1148.8 (2)
C8—O2—C3—C26.2 (3)C1—C2—C3—O2176.97 (18)
C8—O2—C3—C4172.38 (17)C1—C2—C3—C41.5 (3)
C9—N1—N2—C10162.2 (2)O2—C3—C4—O10.4 (2)
N2—N1—C9—C1178.4 (2)O2—C3—C4—C5178.58 (18)
N1—N2—C10—O3177.1 (2)C2—C3—C4—O1178.23 (17)
N1—N2—C10—N33.6 (3)C2—C3—C4—C50.1 (3)
C6—C1—C2—C31.3 (3)O1—C4—C5—C6176.4 (2)
C9—C1—C2—C3178.29 (19)C3—C4—C5—C61.6 (3)
C2—C1—C6—C50.4 (3)C4—C5—C6—C11.9 (3)
C9—C1—C6—C5180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.862.152.970 (2)159
N3—H3A···O3ii0.862.193.044 (2)170
N3—H3B···N10.862.302.657 (2)105
N3—H3B···O1iii0.862.593.019 (2)112
N3—H3B···O2iii0.862.303.119 (2)160
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H13N3O3
Mr223.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)22.2300 (7), 7.6367 (3), 15.6482 (6)
β (°) 126.234 (1)
V3)2142.76 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7933, 2115, 1389
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.01
No. of reflections2115
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.862.152.970 (2)159
N3—H3A···O3ii0.862.193.044 (2)170
N3—H3B···N10.862.302.657 (2)105
N3—H3B···O1iii0.862.593.019 (2)112
N3—H3B···O2iii0.862.303.119 (2)160
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Malladi, S. & Isloor, A. M. (2011). Acta Cryst. E67, o1786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P., Li, J., Wang, H.-L. & Wang, H.-Q. (2007). Acta Cryst. E63, o2939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds