organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1772-o1773

3-(Adamantan-1-yl)-4-methyl-1-[(4-phenyl­piperazin-1-yl)meth­yl]-1H-1,2,4-triazole-5(4H)-thione di­chloro­methane hemisolvate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 May 2012; accepted 11 May 2012; online 19 May 2012)

The asymmetric unit of the title dichloro­methane hemisolvate, C24H33N5S·0.5CH2Cl2, comprises an adamantan­yl/triazole derivative and half a CH2Cl2 mol­ecule of crystallization; the latter is disordered about a twofold axis of symmetry. The piperazine ring has a chair conformation and the two N-bound substituents occupy equatorial positions. The piperazine residue is almost normal to the triazole ring [N—N—C—N torsion angle = −79.9 (3)°] so that to a first approximation, the mol­ecule has an L-shape. Linear supra­molecular chains parallel to [001] are formed via C—H⋯S inter­actions. Two such chains are linked into a double chain via C—H⋯Cl inter­actions involving the disordered CH2Cl2 mol­ecules of solvation.

Related literature

For the diverse biological activities of adamantane derivatives, see: Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]); Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]). For related adamantanyl structural studies, see: El-Emam et al. (2012a[El-Emam, A. A., Al-Omar, M. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o1766-o1767.],b[El-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o657-o658.]). For the preparation of one of the precursor mol­ecules, see: El-Emam & Ibrahim (1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260-1264.]).

[Scheme 1]

Experimental

Crystal data
  • 2C24H33N5S·CH2Cl2

  • Mr = 932.17

  • Orthorhombic, F d d 2

  • a = 66.8490 (16) Å

  • b = 22.1076 (4) Å

  • c = 6.5109 (1) Å

  • V = 9622.3 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.38 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.752, Tmax = 1.000

  • 18884 measured reflections

  • 4509 independent reflections

  • 4437 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.09

  • 4509 reflections

  • 299 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −1.00 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1772 Friedel pairs

  • Flack parameter: −0.002 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯S1i 0.99 2.85 3.803 (3) 162
C16—H16A⋯Cl1 0.99 2.73 3.589 (4) 146
Symmetry code: (i) x, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, motivated by their putative biological activities (Al-Deeb et al., 2006; Al-Omar et al., 2010), and as part of on-going structural studies (El-Emam et al., 2012a,b), we synthesized the title compound (I) as a potential chemotherapeutic agent. Herein, we describe the crystal and molecular structure of (I).

The asymmetric unit of (I), Fig. 1, comprises an adamantanyl/triazole derivative and half a CH2Cl2 molecule of crystallization. In the organic molecule, the piperazinyl ring has a chair conformation and the two N-bound substituents occupy equatorial positions. The piperazinyl residue is almost normal to the triazole ring with the N2—N3—C14—N4 torsion angle being -79.9 (3)°. To a first approximation, the molecule has an L-shape, as found recently in the 2-hydroxybenzylideneamino derivative (El-Emam et al., 2012a).

In the crystal packing, linear supramolecular chains parallel to [001] are formed via C—H···S interactions, Table 1. These are linked into a double chain via C—H···Cl interactions involving the disordered CH2Cl2 molecules of solvation, Fig. 2 and Table 1.

Related literature top

For the diverse biological activities of adamantane derivatives, see: Al-Deeb et al. (2006); Al-Omar et al. (2010). For related adamantanyl structural studies, see: El-Emam et al. (2012a,b). For the preparation of one of the precursor molecules, see: El-Emam & Ibrahim (1991).

Experimental top

A mixture of 3-(1-adamantyl)-4-methyl-4H-1,2,4-triazole-5-thiol (499 mg, 2 mmol), prepared according to the literature method (El-Emam & Ibrahim, 1991), 1-phenylpiperazine (325 mg, 2 mmol) and 37% formaldehyde solution (1 ml), in ethanol (8 ml), was heated under reflux for 15 min. when a clear solution was obtained. Stirring was continued for 12 h. at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was slowly added and the mixture was stirred for 20 min. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 635 mg (75%) of the title compound as colourless crystals. M.pt: 423–425 K. Single crystals suitable for X-ray analysis were obtained by slow evaporation of its CH2Cl2:EtOH solution held at room temperature (1:1; 5 ml). 1H NMR (CDCl3, 500.13 MHz): δ 1.77–1.84 (m, 6H, adamantane-H), 2.14 (s, 6H, adamantane-H), 2.27 (s, 3H, adamantane-H), 3.05 (s, 4H, piperazine-H), 3.27 (s, 4H, piperazine-H), 3.82 (s, 3H, CH3), 5.20 (s, 2H, CH2), 6.85–6.93 (m, 3H, Ar—H), 7.25–7.33 (m, 2H, Ar—H). 13C NMR (CDCl3, 125.76 MHz): δ 27.84, 33.97, 36.31, 39.02 (adamantane-C), 31.58 (CH3), 49.34, 50.40 (piperazine-C), 69.23 (CH2), 116.27, 119.86, 129.10, 151.33 (Ar—C), 156.31 (triazole C-5), 169.53 (CS).

Refinement top

The H-atoms were placed in calculated positions [and C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. A number of reflections, i.e. (8 0 0), (18 2 0), (6 2 0), (10 2 0) and (2 2 0), were omitted from the final cycles of refinement owing to poor agreement. The maximum and minimum residual electron density peaks of 0.41 and 1.00 e Å-3, respectively, were located 0.62 Å and 0.63 Å from the Cl1 and Cl2 atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the molecules comprising (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The CH2Cl2 molecule has 50% occupancy, being disordered over a twofold axis.
[Figure 2] Fig. 2. A view of the linear supramolecular double chain in (I). The C—H···S and C—H···Cl contacts are shown as orange and blue dashed lines, respectively. The CH2Cl2 molecule is disordered over two position; both orientations are displayed.
3-(Adamantan-1-yl)-4-methyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H- 1,2,4-triazole-5(4H)-thione dichloromethane hemisolvate top
Crystal data top
2C24H33N5S·CH2Cl2F(000) = 3984
Mr = 932.17Dx = 1.287 Mg m3
Orthorhombic, Fdd2Cu Kα radiation, λ = 1.54184 Å
Hall symbol: F 2 -2dCell parameters from 10015 reflections
a = 66.8490 (16) Åθ = 2.6–76.4°
b = 22.1076 (4) ŵ = 2.38 mm1
c = 6.5109 (1) ÅT = 100 K
V = 9622.3 (3) Å3Prism, colourless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4509 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4437 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 2.6°
ω scanh = 8480
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2527
Tmin = 0.752, Tmax = 1.000l = 78
18884 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0825P)2 + 16.7617P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
4509 reflectionsΔρmax = 0.41 e Å3
299 parametersΔρmin = 1.00 e Å3
19 restraintsAbsolute structure: Flack (1983), 1772 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (17)
Crystal data top
2C24H33N5S·CH2Cl2V = 9622.3 (3) Å3
Mr = 932.17Z = 8
Orthorhombic, Fdd2Cu Kα radiation
a = 66.8490 (16) ŵ = 2.38 mm1
b = 22.1076 (4) ÅT = 100 K
c = 6.5109 (1) Å0.30 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4509 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4437 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 1.000Rint = 0.025
18884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0825P)2 + 16.7617P]
where P = (Fo2 + 2Fc2)/3
S = 1.09Δρmax = 0.41 e Å3
4509 reflectionsΔρmin = 1.00 e Å3
299 parametersAbsolute structure: Flack (1983), 1772 Friedel pairs
19 restraintsAbsolute structure parameter: 0.002 (17)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.106131 (8)0.22602 (2)0.50061 (10)0.02473 (15)
N10.09696 (3)0.34338 (8)0.4049 (3)0.0198 (4)
N20.08323 (3)0.33690 (8)0.0966 (3)0.0218 (4)
N30.08877 (3)0.28044 (8)0.1693 (3)0.0219 (4)
N40.06533 (3)0.20162 (8)0.0489 (3)0.0223 (4)
N50.02334 (3)0.19119 (9)0.1251 (3)0.0256 (4)
C10.08658 (3)0.44216 (9)0.2235 (3)0.0183 (4)
C20.07497 (4)0.45691 (10)0.0251 (4)0.0256 (5)
H2A0.08180.43830.09390.031*
H2B0.06130.43960.03370.031*
C30.07361 (4)0.52562 (10)0.0064 (5)0.0262 (5)
H30.06610.53430.13620.031*
C40.09476 (4)0.55174 (10)0.0222 (4)0.0252 (5)
H4A0.09410.59600.04500.030*
H4B0.10190.53330.14000.030*
C50.10617 (4)0.53843 (11)0.1778 (4)0.0252 (5)
H50.11990.55600.16850.030*
C60.09524 (5)0.56653 (11)0.3591 (5)0.0356 (6)
H6A0.09450.61100.34130.043*
H6B0.10260.55790.48750.043*
C70.07398 (5)0.54031 (11)0.3735 (5)0.0342 (6)
H70.06680.55910.49240.041*
C80.07510 (4)0.47116 (10)0.4044 (5)0.0282 (5)
H8A0.06140.45410.41180.034*
H8B0.08200.46200.53520.034*
C90.10775 (3)0.46982 (10)0.2081 (4)0.0220 (5)
H9A0.11530.46100.33510.026*
H9B0.11500.45160.09090.026*
C100.06261 (4)0.55420 (11)0.1747 (5)0.0345 (6)
H10A0.04890.53770.18340.041*
H10B0.06170.59850.15500.041*
C110.08839 (3)0.37444 (9)0.2426 (4)0.0199 (4)
C120.09709 (3)0.28280 (10)0.3552 (4)0.0212 (4)
C130.10506 (4)0.36501 (10)0.5994 (4)0.0245 (5)
H13A0.10790.40840.58920.037*
H13B0.11750.34320.63080.037*
H13C0.09530.35800.70910.037*
C140.08542 (3)0.22529 (9)0.0446 (4)0.0227 (5)
H14A0.08900.23440.09970.027*
H14B0.09470.19340.09350.027*
C150.05794 (4)0.18967 (13)0.2540 (5)0.0345 (6)
H15A0.05640.22830.32930.041*
H15B0.06770.16440.32920.041*
C160.03797 (4)0.15741 (15)0.2457 (6)0.0427 (8)
H16A0.03980.11680.18420.051*
H16B0.03280.15190.38700.051*
C170.03096 (4)0.20593 (11)0.0794 (4)0.0278 (5)
H17A0.02120.23210.15180.033*
H17B0.03260.16830.16020.033*
C180.05105 (4)0.23845 (11)0.0635 (4)0.0261 (5)
H18A0.05630.24680.20300.031*
H18B0.04920.27760.00780.031*
C190.00324 (4)0.17111 (11)0.1365 (4)0.0281 (5)
C200.01038 (4)0.17995 (14)0.0246 (5)0.0366 (6)
H200.00610.19850.14850.044*
C210.03030 (4)0.16163 (14)0.0037 (6)0.0426 (7)
H210.03930.16780.11470.051*
C220.03716 (4)0.13510 (14)0.1726 (6)0.0404 (7)
H220.05070.12270.18410.048*
C230.02392 (4)0.12670 (14)0.3341 (6)0.0421 (7)
H230.02850.10870.45780.051*
C240.00399 (4)0.14421 (14)0.3179 (5)0.0365 (6)
H240.00480.13800.43040.044*
Cl10.02109 (2)0.01531 (9)0.0431 (3)0.0562 (4)0.50
Cl20.0020 (2)0.0144 (4)0.3345 (6)0.143 (3)0.50
C250.00259 (15)0.0235 (4)0.0659 (17)0.073 (2)0.50
H25A0.01030.01000.00760.088*0.50
H25B0.00420.06700.03310.088*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0326 (3)0.0149 (2)0.0267 (3)0.0043 (2)0.0009 (2)0.0027 (2)
N10.0249 (9)0.0129 (8)0.0214 (10)0.0011 (6)0.0011 (7)0.0014 (7)
N20.0278 (9)0.0130 (8)0.0248 (11)0.0014 (7)0.0005 (8)0.0021 (8)
N30.0324 (10)0.0115 (8)0.0218 (10)0.0020 (7)0.0025 (8)0.0002 (7)
N40.0244 (9)0.0159 (8)0.0266 (11)0.0011 (7)0.0011 (8)0.0007 (8)
N50.0237 (9)0.0280 (9)0.0252 (11)0.0024 (8)0.0004 (8)0.0046 (9)
C10.0202 (9)0.0136 (9)0.0212 (12)0.0006 (7)0.0027 (8)0.0024 (8)
C20.0285 (11)0.0162 (10)0.0323 (14)0.0006 (8)0.0061 (10)0.0003 (10)
C30.0293 (11)0.0166 (10)0.0328 (14)0.0045 (8)0.0026 (10)0.0035 (10)
C40.0341 (12)0.0160 (9)0.0256 (13)0.0007 (8)0.0031 (10)0.0045 (9)
C50.0311 (12)0.0173 (10)0.0274 (13)0.0061 (8)0.0017 (10)0.0043 (9)
C60.0644 (18)0.0135 (10)0.0288 (15)0.0043 (10)0.0054 (13)0.0001 (10)
C70.0535 (16)0.0183 (10)0.0308 (15)0.0140 (10)0.0160 (12)0.0015 (10)
C80.0339 (12)0.0184 (10)0.0323 (15)0.0062 (9)0.0139 (10)0.0059 (10)
C90.0211 (10)0.0189 (10)0.0259 (14)0.0019 (7)0.0023 (8)0.0045 (9)
C100.0377 (13)0.0223 (11)0.0436 (16)0.0123 (10)0.0102 (12)0.0069 (11)
C110.0197 (9)0.0166 (9)0.0234 (12)0.0002 (7)0.0010 (8)0.0011 (9)
C120.0250 (10)0.0136 (9)0.0252 (12)0.0006 (8)0.0027 (9)0.0018 (9)
C130.0323 (12)0.0175 (10)0.0239 (12)0.0049 (8)0.0056 (10)0.0023 (9)
C140.0293 (11)0.0151 (9)0.0239 (13)0.0028 (8)0.0054 (9)0.0037 (9)
C150.0240 (11)0.0448 (14)0.0348 (15)0.0005 (10)0.0018 (11)0.0222 (13)
C160.0234 (11)0.0544 (17)0.0504 (19)0.0021 (11)0.0016 (12)0.0336 (16)
C170.0292 (12)0.0297 (12)0.0244 (12)0.0018 (9)0.0028 (9)0.0004 (10)
C180.0327 (12)0.0231 (10)0.0224 (12)0.0025 (9)0.0018 (9)0.0044 (9)
C190.0243 (11)0.0265 (11)0.0335 (15)0.0049 (9)0.0024 (10)0.0044 (10)
C200.0304 (12)0.0439 (14)0.0356 (17)0.0019 (11)0.0042 (11)0.0003 (13)
C210.0277 (12)0.0500 (16)0.0500 (19)0.0048 (11)0.0068 (13)0.0122 (15)
C220.0241 (12)0.0406 (15)0.057 (2)0.0005 (10)0.0028 (12)0.0154 (14)
C230.0312 (13)0.0454 (16)0.0498 (19)0.0028 (11)0.0101 (13)0.0008 (14)
C240.0279 (12)0.0425 (15)0.0391 (17)0.0006 (10)0.0028 (11)0.0028 (13)
Cl10.0308 (7)0.0813 (11)0.0563 (11)0.0133 (7)0.0006 (6)0.0114 (9)
Cl20.150 (5)0.182 (8)0.096 (2)0.015 (6)0.001 (3)0.007 (3)
C250.074 (5)0.059 (4)0.086 (6)0.008 (4)0.001 (5)0.005 (4)
Geometric parameters (Å, º) top
S1—C121.684 (2)C8—H8A0.9900
N1—C121.378 (3)C8—H8B0.9900
N1—C111.384 (3)C9—H9A0.9900
N1—C131.458 (3)C9—H9B0.9900
N2—C111.308 (3)C10—H10A0.9900
N2—N31.386 (2)C10—H10B0.9900
N3—C121.333 (3)C13—H13A0.9800
N3—C141.482 (3)C13—H13B0.9800
N4—C141.442 (3)C13—H13C0.9800
N4—C151.448 (3)C14—H14A0.9900
N4—C181.453 (3)C14—H14B0.9900
N5—C191.417 (3)C15—C161.515 (3)
N5—C161.460 (3)C15—H15A0.9900
N5—C171.462 (3)C15—H15B0.9900
C1—C111.507 (3)C16—H16A0.9900
C1—C21.542 (3)C16—H16B0.9900
C1—C91.545 (3)C17—C181.526 (3)
C1—C81.545 (3)C17—H17A0.9900
C2—C31.536 (3)C17—H17B0.9900
C2—H2A0.9900C18—H18A0.9900
C2—H2B0.9900C18—H18B0.9900
C3—C101.527 (4)C19—C201.403 (4)
C3—C41.531 (3)C19—C241.408 (4)
C3—H31.0000C20—C211.398 (4)
C4—C51.538 (4)C20—H200.9500
C4—H4A0.9900C21—C221.368 (5)
C4—H4B0.9900C21—H210.9500
C5—C61.521 (4)C22—C231.386 (5)
C5—C91.533 (3)C22—H220.9500
C5—H51.0000C23—C241.392 (4)
C6—C71.538 (4)C23—H230.9500
C6—H6A0.9900C24—H240.9500
C6—H6B0.9900Cl1—C251.664 (10)
C7—C101.532 (4)Cl2—C251.761 (12)
C7—C81.544 (3)C25—H25A0.9900
C7—H71.0000C25—H25B0.9900
C12—N1—C11107.82 (19)C3—C10—H10B109.8
C12—N1—C13121.3 (2)C7—C10—H10B109.8
C11—N1—C13130.84 (18)H10A—C10—H10B108.3
C11—N2—N3104.64 (19)N2—C11—N1110.43 (18)
C12—N3—N2112.72 (18)N2—C11—C1123.3 (2)
C12—N3—C14126.35 (19)N1—C11—C1126.1 (2)
N2—N3—C14120.92 (19)N3—C12—N1104.39 (19)
C14—N4—C15113.7 (2)N3—C12—S1129.11 (17)
C14—N4—C18113.51 (18)N1—C12—S1126.51 (19)
C15—N4—C18110.06 (19)N1—C13—H13A109.5
C19—N5—C16116.5 (2)N1—C13—H13B109.5
C19—N5—C17116.6 (2)H13A—C13—H13B109.5
C16—N5—C17111.7 (2)N1—C13—H13C109.5
C11—C1—C2108.64 (18)H13A—C13—H13C109.5
C11—C1—C9108.97 (17)H13B—C13—H13C109.5
C2—C1—C9108.83 (19)N4—C14—N3115.42 (19)
C11—C1—C8112.89 (18)N4—C14—H14A108.4
C2—C1—C8107.53 (19)N3—C14—H14A108.4
C9—C1—C8109.89 (19)N4—C14—H14B108.4
C3—C2—C1110.5 (2)N3—C14—H14B108.4
C3—C2—H2A109.5H14A—C14—H14B107.5
C1—C2—H2A109.5N4—C15—C16110.7 (2)
C3—C2—H2B109.5N4—C15—H15A109.5
C1—C2—H2B109.5C16—C15—H15A109.5
H2A—C2—H2B108.1N4—C15—H15B109.5
C10—C3—C4109.9 (2)C16—C15—H15B109.5
C10—C3—C2109.5 (2)H15A—C15—H15B108.1
C4—C3—C2109.13 (18)N5—C16—C15111.7 (2)
C10—C3—H3109.4N5—C16—H16A109.3
C4—C3—H3109.4C15—C16—H16A109.3
C2—C3—H3109.4N5—C16—H16B109.3
C3—C4—C5109.2 (2)C15—C16—H16B109.3
C3—C4—H4A109.8H16A—C16—H16B107.9
C5—C4—H4A109.8N5—C17—C18110.5 (2)
C3—C4—H4B109.8N5—C17—H17A109.6
C5—C4—H4B109.8C18—C17—H17A109.6
H4A—C4—H4B108.3N5—C17—H17B109.6
C6—C5—C9109.7 (2)C18—C17—H17B109.6
C6—C5—C4109.9 (2)H17A—C17—H17B108.1
C9—C5—C4109.4 (2)N4—C18—C17110.37 (19)
C6—C5—H5109.3N4—C18—H18A109.6
C9—C5—H5109.3C17—C18—H18A109.6
C4—C5—H5109.3N4—C18—H18B109.6
C5—C6—C7109.7 (2)C17—C18—H18B109.6
C5—C6—H6A109.7H18A—C18—H18B108.1
C7—C6—H6A109.7C20—C19—C24117.6 (2)
C5—C6—H6B109.7C20—C19—N5122.2 (3)
C7—C6—H6B109.7C24—C19—N5120.1 (2)
H6A—C6—H6B108.2C21—C20—C19120.3 (3)
C10—C7—C6109.4 (2)C21—C20—H20119.8
C10—C7—C8109.4 (2)C19—C20—H20119.8
C6—C7—C8109.7 (2)C22—C21—C20121.7 (3)
C10—C7—H7109.5C22—C21—H21119.2
C6—C7—H7109.5C20—C21—H21119.2
C8—C7—H7109.5C21—C22—C23118.7 (3)
C7—C8—C1109.6 (2)C21—C22—H22120.7
C7—C8—H8A109.8C23—C22—H22120.7
C1—C8—H8A109.8C22—C23—C24121.1 (3)
C7—C8—H8B109.8C22—C23—H23119.5
C1—C8—H8B109.8C24—C23—H23119.5
H8A—C8—H8B108.2C23—C24—C19120.6 (3)
C5—C9—C1109.71 (18)C23—C24—H24119.7
C5—C9—H9A109.7C19—C24—H24119.7
C1—C9—H9A109.7Cl1—C25—Cl2112.3 (8)
C5—C9—H9B109.7Cl1—C25—H25A109.1
C1—C9—H9B109.7Cl2—C25—H25A109.1
H9A—C9—H9B108.2Cl1—C25—H25B109.1
C3—C10—C7109.3 (2)Cl2—C25—H25B109.1
C3—C10—H10A109.8H25A—C25—H25B107.9
C7—C10—H10A109.8
C11—N2—N3—C120.2 (2)C2—C1—C11—N1176.7 (2)
C11—N2—N3—C14179.6 (2)C9—C1—C11—N164.9 (3)
C11—C1—C2—C3177.29 (19)C8—C1—C11—N157.5 (3)
C9—C1—C2—C358.8 (2)N2—N3—C12—N10.1 (2)
C8—C1—C2—C360.2 (2)N2—N3—C12—S1179.48 (17)
C1—C2—C3—C1060.5 (3)C14—N3—C12—S10.3 (3)
C1—C2—C3—C459.9 (3)C11—N1—C12—N30.0 (2)
C10—C3—C4—C559.7 (2)C13—N1—C12—N3179.56 (19)
C2—C3—C4—C560.5 (3)C11—N1—C12—S1179.40 (17)
C3—C4—C5—C659.3 (2)C13—N1—C12—S10.2 (3)
C3—C4—C5—C961.3 (2)C15—N4—C14—N354.9 (3)
C9—C5—C6—C760.9 (3)C18—N4—C14—N371.9 (3)
C4—C5—C6—C759.5 (3)C12—N3—C14—N4100.3 (3)
C5—C6—C7—C1059.8 (3)N2—N3—C14—N479.9 (3)
C5—C6—C7—C860.2 (3)C14—N4—C15—C16172.6 (2)
C10—C7—C8—C161.3 (3)C18—N4—C15—C1658.8 (3)
C6—C7—C8—C158.6 (3)C19—N5—C16—C15169.1 (3)
C11—C1—C8—C7179.8 (2)C17—N5—C16—C1553.3 (3)
C2—C1—C8—C760.4 (3)N4—C15—C16—N555.6 (3)
C9—C1—C8—C757.9 (3)C19—N5—C17—C18168.7 (2)
C6—C5—C9—C160.0 (3)C16—N5—C17—C1853.8 (3)
C4—C5—C9—C160.6 (3)C14—N4—C18—C17171.5 (2)
C11—C1—C9—C5177.2 (2)C15—N4—C18—C1759.8 (3)
C2—C1—C9—C558.9 (2)N5—C17—C18—N457.1 (3)
C8—C1—C9—C558.6 (3)C16—N5—C19—C20152.3 (3)
C4—C3—C10—C760.4 (3)C17—N5—C19—C2016.8 (3)
C2—C3—C10—C759.5 (3)C16—N5—C19—C2431.2 (4)
C6—C7—C10—C359.9 (3)C17—N5—C19—C24166.7 (2)
C8—C7—C10—C360.2 (3)C24—C19—C20—C210.9 (4)
N3—N2—C11—N10.1 (2)N5—C19—C20—C21177.4 (2)
N3—N2—C11—C1175.2 (2)C19—C20—C21—C220.4 (5)
C12—N1—C11—N20.1 (3)C20—C21—C22—C230.4 (5)
C12—N1—C11—C1175.1 (2)C21—C22—C23—C240.6 (5)
C13—N1—C11—C14.4 (4)C22—C23—C24—C190.1 (5)
C2—C1—C11—N28.7 (3)C20—C19—C24—C230.6 (4)
C9—C1—C11—N2109.8 (2)N5—C19—C24—C23177.2 (3)
C8—C1—C11—N2127.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···S1i0.992.853.803 (3)162
C16—H16A···Cl10.992.733.589 (4)146
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formula2C24H33N5S·CH2Cl2
Mr932.17
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)66.8490 (16), 22.1076 (4), 6.5109 (1)
V3)9622.3 (3)
Z8
Radiation typeCu Kα
µ (mm1)2.38
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.752, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18884, 4509, 4437
Rint0.025
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.09
No. of reflections4509
No. of parameters299
No. of restraints19
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0825P)2 + 16.7617P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.41, 1.00
Absolute structureFlack (1983), 1772 Friedel pairs
Absolute structure parameter0.002 (17)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···S1i0.992.853.803 (3)162
C16—H16A···Cl10.992.733.589 (4)146
Symmetry code: (i) x, y, z1.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Omar, M. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o1766–o1767.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o657–o658.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1772-o1773
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds