organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1879-o1880

Tris[2-(2H-indazol-2-yl)eth­yl]amine

aLaboratorio de Química Industrial, CELAES, Facultad de Ciencias Químicas, UANL, Avenidad Universidad s/n, 66450 San Nicolás de los Garza, NL, Mexico, bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso s/n, Col. Treviño, 64570 Monterrey, NL, Mexico, and cFacultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 28 April 2012; accepted 15 May 2012; online 26 May 2012)

The title tertiary amine, C27H27N7, a potential tripodal ligand for coordination chemistry, crystallizes with the central N atom located on a threefold axis of a trigonal cell. The gauche conformation of the N(amime)—CH2—CH2—N(indazole) chain [torsion angle = −64.2 (2)°] places the pendant 2H-indazole heterocycles surrounding the symmetry axis, affording a claw-like shaped mol­ecule. Two symmetry-related indazole planes in the mol­ecule make an acute angle of 60.39 (4)°. The lone pair of the tertiary N atom is located inside the cavity, and should thus be inactive (as a ligand). In the crystal, neither significant ππ nor C—H⋯π inter­actions between molecules are found.

Related literature

For the pharmacological properties of indazoles, see: Cerecetto et al. (2005[Cerecetto, H., Gerpe, A., González, M., Arán, V. J. & de Ocariz, C. O. (2005). Mini Rev. Med. Chem. 5, 869-878.]); Ryu et al. (2001[Ryu, E. K., Jeon, D. J., Song, J. H., Kim, H. R., Lee, J. N., Kim, K. M. & Cho, K. Y. (2001). US Patent No. 6239076.]); Teixeira et al. (2009[Teixeira, F. C., Antunes, I. F., Curto, M. J. M., Neves, M. & Teixeira, A. P. S. (2009). ARKIVOC, xi, 69-84.]). For isomerism in indazoles, see: Teixeira et al. (2006[Teixeira, F. C., Ramos, H., Antunes, I. F., Curto, M. J. M., Duarte, M. T. & Bento, I. (2006). Molecules, 11, 867-889.]); Alkorta & Elguero (2005[Alkorta, I. & Elguero, J. (2005). J. Phys. Org. Chem. 18, 719-724.]). For structures of related bis-(2H-indazoles), see: Rodríguez de Barbarín et al. (2006[Rodríguez de Barbarín, C., Nájera, B., Elizondo, P. & Cerda, P. (2006). Acta Cryst. E62, o5423-o5424.]); Ovalle et al. (2011[Ovalle, S., Bernès, S., Pérez Rodríguez, N. & Elizondo Martínez, P. (2011). Acta Cryst. E67, o2144.]). For the structure of the precursor used in the synthesis of the title compound, see: McKee et al. (2006[McKee, V., Morgan, G. G. & Nelson, J. (2006). Acta Cryst. E62, o3747-o3749.]).

[Scheme 1]

Experimental

Crystal data
  • C27H27N7

  • Mr = 449.56

  • Trigonal, [R \overline 3]

  • a = 13.7314 (15) Å

  • c = 22.235 (3) Å

  • V = 3630.8 (8) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 130 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini diffractometer

  • Absorption correction: multi-scan [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.509, Tmax = 1.000

  • 2900 measured reflections

  • 1404 independent reflections

  • 852 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.131

  • S = 0.96

  • 1404 reflections

  • 103 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The interest in obtaining the title molecule, a new 2H-indazole derivative, is due to the potential applications for this class of compounds. Regarding pharmacological activity, these include anti-inflammatory, antitumor and antidepressants drugs (Cerecetto et al., 2005). These molecules have also been used in agriculture as selective herbicides (Ryu et al., 2001) and as precursors of other compounds to increase their biological activity and specificity (Teixeira et al., 2009). The chemistry of 2H-indazole remains less studied compared to its tautomer 1H-indazole, in part because the latter is thermodynamically more stable for the majority of derivatives (Teixeira et al., 2006). However the opposite situation also occurs in some cases (Alkorta & Elguero, 2005).

The title molecule is a tris-(2H-indazole) compound derived from a tertiary amine (Fig. 1). The molecule is placed on a threefold axis in space group R3 (Z' = 1/3). Each arm contains a gauche Namime—CH2—CH2—Nindazole chain [torsion angle: -64.2 (2)°], forming a claw-like geometry (Fig. 2). The geometry for the tertiary N atom (N3) is consistent with the presence of the lone pair inside the molecular cavity. The three symmetry-related indazole heterocycles in the molecule are arranged in such a way that no strong interactions are present. The C1—H1A group interacts weakly with the pyrazole ring of the following arm: the separation H1A···Cgi is 2.85 Å and the angle C1—H1A···Cgi is 128° (Cg is the centroid of ring N1/N2/C1/C7/C6 and i stands for symmetry code: 1 - y, 1 + x-y, z). The angle between two indazole planes in the molecule is 60.39 (4)°. Other geometric parameters compare well with those previously reported for bis-(2H-indazole) compounds (Rodríguez de Barbarín et al., 2006; Ovalle et al., 2011).

Related literature top

For the pharmacological properties of indazoles, see: Cerecetto et al. (2005); Ryu et al. (2001); Teixeira et al. (2009). For isomerism in indazoles, see: Teixeira et al. (2006); Alkorta & Elguero (2005). For structures of related bis-(2H-indazoles), see: Rodríguez de Barbarín et al. (2006); Ovalle et al. (2011). For the structure of the precursor used in the synthesis of the title compound, see: McKee et al. (2006).

Experimental top

The title molecule was obtained by a three steps reaction (Fig. 1). Condensation between tris(2-aminoethyl)amine and 2-nitrobenzaldehyde produced the corresponding tris-imine (McKee et al., 2006). Selective reduction of imine bonds with sodium borohydride in methanol gave the corresponding amine, which was isolated. Then, 0.046 g of Pd/C was added to a solution of this intermediate (0.005 mol) in ethanol. The mixture was refluxed for 4 h, with addition of hydrazine monohydrate (0.110 mol) during the first 3 h. The resulting mixture was filtered, distilled, and the organic phase was extracted. The product was purified by column chromatography with silica gel and methanol as eluent. Suitable crystals were obtained by slow evaporation of an ethanol solution at 298 K. M.p. 445 K; analysis found (calc. for C27H27N7): C 71.46 (72.14), H 5.98 (6.05), N 22.56% (21.81%); IR RTA: 3119 (CH Ar. νs), 2953 (–CH2νs), 1623 (C=N Ar. δs), 1471, 1512 (C=C Ar. νs and νas). 1H NMR (300 MHz, CDCl3): 7.65 (d, 3H, ArH), 7.29 (t, 3H, ArH), 7.05 (t, 3H, ArH), 7.00 (d, 3H, ArH), 5.58 (s, 3H, ArH), 4.00 (t, 6H, CH2), 3.09 (t, 6H, CH2) p.p.m.. 13C NMR: 150–115 (Ar), 55–50 (–CH2–).

Refinement top

All H atoms were placed in idealized positions and refined as riding to their parent C atoms, with bond lengths fixed to 0.97 (methylene CH2) or 0.93 Å (aromatic CH). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2 Ueq(carrier atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthetic route for the title compound. The X-ray structure of the precursor [P] has been reported (McKee et al., 2006).
[Figure 2] Fig. 2. ORTEP-like view of the title molecule, with displacement ellipsoids at the 30% probability level for non-H atoms. Unlabeled atoms are generated by symmetry codes: -x + y, 1 - x, z and 1 - y, 1 + x-y, z. The figure on the right is a space filling representation in the same orientation, showing the full shape of the molecule.
Tris[2-(2H-indazol-2-yl)ethyl]amine top
Crystal data top
C27H27N7Dx = 1.234 Mg m3
Mr = 449.56Melting point: 445 K
Trigonal, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3Cell parameters from 1214 reflections
a = 13.7314 (15) Åθ = 3.5–29.5°
c = 22.235 (3) ŵ = 0.08 mm1
V = 3630.8 (8) Å3T = 130 K
Z = 6Plate, orange
F(000) = 14280.40 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini
diffractometer
1404 independent reflections
Radiation source: Enhance (Mo) X-ray Source852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.4685 pixels mm-1θmax = 25.3°, θmin = 3.6°
ω scansh = 1611
Absorption correction: multi-scan
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
k = 1116
Tmin = 0.509, Tmax = 1.000l = 1826
2900 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0792P)2]
where P = (Fo2 + 2Fc2)/3
1404 reflections(Δ/σ)max < 0.001
103 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.15 e Å3
0 constraints
Crystal data top
C27H27N7Z = 6
Mr = 449.56Mo Kα radiation
Trigonal, R3µ = 0.08 mm1
a = 13.7314 (15) ÅT = 130 K
c = 22.235 (3) Å0.40 × 0.20 × 0.20 mm
V = 3630.8 (8) Å3
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini
diffractometer
1404 independent reflections
Absorption correction: multi-scan
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
852 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 1.000Rint = 0.035
2900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.96Δρmax = 0.12 e Å3
1404 reflectionsΔρmin = 0.15 e Å3
103 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06603 (12)0.53619 (12)0.91972 (8)0.0708 (5)
N20.14166 (12)0.50358 (11)0.93250 (7)0.0667 (5)
N30.33330.66671.01076 (10)0.0624 (7)
C10.19002 (14)0.48969 (15)0.88423 (10)0.0724 (6)
H1A0.24350.46710.88390.087*
C20.16242 (17)0.51736 (19)0.77209 (10)0.0881 (7)
H2A0.21290.49810.75580.106*
C30.1031 (2)0.54814 (19)0.73614 (11)0.0956 (8)
H3A0.11280.55010.69470.115*
C40.0267 (2)0.57740 (17)0.76090 (12)0.0932 (8)
H4A0.01270.59900.73530.112*
C50.00892 (17)0.57496 (15)0.82125 (12)0.0822 (6)
H5A0.04230.59380.83690.099*
C60.06970 (13)0.54348 (13)0.85902 (10)0.0625 (5)
C70.14644 (13)0.51492 (14)0.83448 (9)0.0647 (5)
C80.15877 (17)0.48420 (16)0.99499 (9)0.0802 (6)
H8A0.20210.44600.99630.096*
H8B0.08630.43511.01330.096*
C90.21862 (15)0.59058 (16)1.03092 (8)0.0771 (6)
H9A0.17610.62951.02870.093*
H9B0.22060.57141.07270.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0597 (10)0.0648 (9)0.0921 (13)0.0343 (8)0.0033 (8)0.0052 (8)
N20.0544 (9)0.0587 (9)0.0845 (12)0.0265 (7)0.0009 (8)0.0072 (7)
N30.0626 (10)0.0626 (10)0.0621 (16)0.0313 (5)0.0000.000
C10.0472 (10)0.0709 (12)0.0993 (16)0.0298 (9)0.0048 (10)0.0007 (10)
C20.0654 (13)0.0928 (16)0.0912 (17)0.0283 (11)0.0011 (11)0.0138 (12)
C30.0872 (16)0.0865 (16)0.0829 (17)0.0209 (13)0.0145 (13)0.0056 (12)
C40.0903 (16)0.0622 (13)0.110 (2)0.0255 (12)0.0399 (14)0.0024 (12)
C50.0740 (13)0.0594 (12)0.1138 (19)0.0338 (10)0.0214 (12)0.0076 (11)
C60.0464 (10)0.0429 (9)0.0907 (15)0.0168 (8)0.0048 (9)0.0011 (8)
C70.0417 (9)0.0580 (11)0.0835 (14)0.0168 (8)0.0031 (9)0.0060 (9)
C80.0712 (13)0.0675 (13)0.0906 (15)0.0262 (10)0.0005 (10)0.0155 (10)
C90.0736 (13)0.0812 (14)0.0715 (14)0.0349 (11)0.0126 (10)0.0132 (10)
Geometric parameters (Å, º) top
N1—N21.351 (2)C3—C41.410 (3)
N1—C61.353 (2)C3—H3A0.9300
N2—C11.325 (2)C4—C51.361 (3)
N2—C81.456 (2)C4—H4A0.9300
N3—C9i1.4588 (19)C5—C61.396 (3)
N3—C91.4588 (19)C5—H5A0.9300
N3—C9ii1.4588 (19)C6—C71.405 (2)
C1—C71.382 (3)C8—C91.499 (3)
C1—H1A0.9300C8—H8A0.9700
C2—C31.351 (3)C8—H8B0.9700
C2—C71.402 (3)C9—H9A0.9700
C2—H2A0.9300C9—H9B0.9700
N2—N1—C6103.18 (13)C4—C5—H5A120.9
C1—N2—N1113.64 (15)C6—C5—H5A120.9
C1—N2—C8127.49 (17)N1—C6—C5128.11 (18)
N1—N2—C8118.84 (15)N1—C6—C7111.85 (16)
C9i—N3—C9110.99 (10)C5—C6—C7120.0 (2)
C9i—N3—C9ii110.99 (11)C1—C7—C2135.71 (19)
C9—N3—C9ii110.99 (11)C1—C7—C6103.79 (18)
N2—C1—C7107.54 (17)C2—C7—C6120.51 (18)
N2—C1—H1A126.2N2—C8—C9112.99 (15)
C7—C1—H1A126.2N2—C8—H8A109.0
C3—C2—C7118.8 (2)C9—C8—H8A109.0
C3—C2—H2A120.6N2—C8—H8B109.0
C7—C2—H2A120.6C9—C8—H8B109.0
C2—C3—C4120.6 (2)H8A—C8—H8B107.8
C2—C3—H3A119.7N3—C9—C8113.80 (16)
C4—C3—H3A119.7N3—C9—H9A108.8
C5—C4—C3121.9 (2)C8—C9—H9A108.8
C5—C4—H4A119.1N3—C9—H9B108.8
C3—C4—H4A119.1C8—C9—H9B108.8
C4—C5—C6118.2 (2)H9A—C9—H9B107.7
C6—N1—N2—C10.53 (18)N2—C1—C7—C60.23 (18)
C6—N1—N2—C8178.56 (14)C3—C2—C7—C1179.5 (2)
N1—N2—C1—C70.49 (19)C3—C2—C7—C60.3 (3)
C8—N2—C1—C7178.32 (15)N1—C6—C7—C10.10 (18)
C7—C2—C3—C40.1 (3)C5—C6—C7—C1179.66 (15)
C2—C3—C4—C50.6 (3)N1—C6—C7—C2179.97 (14)
C3—C4—C5—C60.7 (3)C5—C6—C7—C20.2 (2)
N2—N1—C6—C5179.36 (16)C1—N2—C8—C9111.2 (2)
N2—N1—C6—C70.37 (18)N1—N2—C8—C971.1 (2)
C4—C5—C6—N1179.45 (17)C9i—N3—C9—C8159.04 (17)
C4—C5—C6—C70.3 (2)C9ii—N3—C9—C877.0 (3)
N2—C1—C7—C2179.62 (19)N2—C8—C9—N364.2 (2)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z.

Experimental details

Crystal data
Chemical formulaC27H27N7
Mr449.56
Crystal system, space groupTrigonal, R3
Temperature (K)130
a, c (Å)13.7314 (15), 22.235 (3)
V3)3630.8 (8)
Z6
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini
diffractometer
Absorption correctionMulti-scan
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.509, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2900, 1404, 852
Rint0.035
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 0.96
No. of reflections1404
No. of parameters103
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Authors thank the PAICyT program (Programa de Apoyo a la Investigación Científica y Tecnológica) of the Universidad Autónoma de Nuevo León for supporting this work (project No. T004–09).

References

First citationAlkorta, I. & Elguero, J. (2005). J. Phys. Org. Chem. 18, 719–724.  Web of Science CrossRef CAS Google Scholar
First citationCerecetto, H., Gerpe, A., González, M., Arán, V. J. & de Ocariz, C. O. (2005). Mini Rev. Med. Chem. 5, 869–878.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcKee, V., Morgan, G. G. & Nelson, J. (2006). Acta Cryst. E62, o3747–o3749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOvalle, S., Bernès, S., Pérez Rodríguez, N. & Elizondo Martínez, P. (2011). Acta Cryst. E67, o2144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodríguez de Barbarín, C., Nájera, B., Elizondo, P. & Cerda, P. (2006). Acta Cryst. E62, o5423–o5424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRyu, E. K., Jeon, D. J., Song, J. H., Kim, H. R., Lee, J. N., Kim, K. M. & Cho, K. Y. (2001). US Patent No. 6239076.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeixeira, F. C., Antunes, I. F., Curto, M. J. M., Neves, M. & Teixeira, A. P. S. (2009). ARKIVOC, xi, 69–84.  CrossRef Google Scholar
First citationTeixeira, F. C., Ramos, H., Antunes, I. F., Curto, M. J. M., Duarte, M. T. & Bento, I. (2006). Molecules, 11, 867–889.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1879-o1880
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds