organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1889-o1890

2-[2-(2-Bromo­phen­yl)-2-oxoeth­yl]-1λ6,2-benzo­thia­zole-1,1,3-trione

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, cDepartment of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Skudai Johor, Darul Ta'zim, Malaysia, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@hotmail.com

(Received 9 May 2012; accepted 17 May 2012; online 26 May 2012)

The asymmetric unit of the title compound, C15H10BrNO4S, contains two different conformers in which the benzisothia­zole rings are essentially planar, with r.m.s. deviations of 0.012 and 0.017 Å. The mean planes of the benzene rings form dihedral angles 70.49 (13) and 72.79 (11)° with the benzisothia­zole rings. The orientation of the Br atoms in the two conformers exhibit the most pronounced difference, with opposing orientations in the two mol­ecules. The crystal structure is stabilized by ππ inter­actions between the benzene rings of the benzisothia­zole moieties of one mol­ecule and bromo­benzene rings of the other mol­ecule, with distances between the ring centroids of 3.599 (3) and 3.620 (3) Å, respectively. The crystal packing is further consolidated by pairs of weak inter­molecular C—H⋯O hydrogen bonds, which form inversion dimers.

Related literature

For non-steroidal anti-inflammatory drugs (NSAIDs) and related compounds, see: Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & McLamore, W. (1971). J. Med. Chem. 14, 1171-1175.]); Soler (1985[Soler, J. E. (1985). US Patent No. 4 563 452.]); Carty et al. (1993[Carty, T. J., Marfat, A., Moore, P. F., Falkner, F. C., Twomey, T. M. & Weissmen, A. (1993). Agents Actions, 39, 157-165.]); Turck et al. (1995[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1995). Clin. Drug Invest. 9, 270-276.]); Blackham & Owen (1975[Blackham, A. & Owen, R. T. (1975). J. Pharm. Pharmacol. 27, 201-203.]); Singh et al. (2007[Singh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). Eur. J. Med. Chem. 42, 456-462.]); Vaccarino et al. (2007[Vaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheseli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). Bioorg. Med. Chem. 15, 2206-2215.]); Kapui et al. (2003[Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Batori, S., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 451-459.]). For related structures, see: Maliha et al. (2007[Maliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.]); Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrNO4S

  • Mr = 380.21

  • Triclinic, [P \overline 1]

  • a = 7.574 (2) Å

  • b = 13.903 (4) Å

  • c = 14.814 (4) Å

  • α = 110.574 (15)°

  • β = 96.936 (13)°

  • γ = 93.640 (14)°

  • V = 1440.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 123 K

  • 0.18 × 0.18 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.613, Tmax = 0.644

  • 12284 measured reflections

  • 6541 independent reflections

  • 5268 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.105

  • S = 1.12

  • 6541 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.95 2.40 3.305 (5) 159
C17—H17⋯O5ii 0.95 2.43 3.225 (5) 141
C27—H27⋯O7iii 0.95 2.29 3.164 (5) 153
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxicam, a class of non-steroidal anti-inflammatory drugs (NSAIDs) consists of 1,2-benzothiazine 1,1-dioxide derivatives which are found to be potent anti-inflammatory and analgesic agents, e.g., Piroxicam (Lombardino et al., 1971), Droxicam (Soler, 1985), Ampiroxicam (Carty et al., 1993), Meloxicam (Turck et al., 1995) and Sudoxicam (Blackham & Owen, 1975) are the recent members of this class currently in use in the international market. Various derivatives are known to be cyclooxygenase-2 (COX-2) inhibitors (Singh et al., 2007), analgesic (Vaccarino et al., 2007) and human leucocyte elastase (HLE) inhibitors (Kapui et al., 2003). Earlier, we have reported the synthesis and crystal structures of some of the 1,2-benzothiazine derivatives (Maliha et al., 2007; Siddiqui et al., 2007). Herein, we report the synthesis and crystal structure of the title compound that has served as a precursor for the 1,2-benzothiazine derivative.

The asymmetric unit of the title compound contains two conformers (Fig. 1). In both molecules, the benzisothiazol rings S1/N1/C1–C7 and S2/N2/C16–C22 are essentially planar with rms deviations of fitted atoms being 0.017 Å and 0.012 Å, respectively, while the mean-planes of the benzene rings C10–C15 and C25–C30 form dihedral angles 70.49 (13)° and 72.79 (11)°, respectively, with the mean-planes of the benzisothiazol rings. The orientation of the Br atoms in the two conformers exhibit the most pronounced difference, with opposing orientations in the two molecules. The crystal structure is stabilized by π-π interactions between benzene rings (C1–C6) of benzisothiazol moieties in one molecule and bromobenzene rings (C25–C30) in the other molecule with distances between the ring centroids being 3.599 (3) Å and 3.620 (3) Å, respectively. The crystal packing is further consolidated by weak intermolecular C—H···O hydrogen bonds. The molecule containing S1 forms centrosymmetric dimers via C14—H14···O1 hydrogen bonding interactions. The other molecule also forms centrosymmetric dimers via C17—H17···O5 hydrogen bonds; the dimers are further extended along the b-axis via C27—H27···O7 hydrogen bonds (Fig. 2 and Tab. 1).

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Maliha et al., 2007; Siddiqui et al., 2007).

Related literature top

For non-steroidal anti-inflammatory drugs (NSAIDs) and related compounds, see: Lombardino et al. (1971); Soler (1985); Carty et al. (1993); Turck et al. (1995); Blackham & Owen (1975); Singh et al. (2007); Vaccarino et al. (2007); Kapui et al. (2003). For related structures, see: Maliha et al. (2007); Siddiqui et al. (2007).

Experimental top

A mixture of 2-bromo-1-(2-bromophenyl)ethanone (2.0 g, 7.2 mmol) and sodium saccharin (1.76 g, 8.6 mmol) in dimethylformamide (15 ml) was stirred at 383 K for 3 h under anhydrous conditions. On completion of the reaction (as indicated by TLC), the contents of the flask were poured into crushed ice. The precipitates formed were filtered, washed with water, ice-cold ethanol and dried to give the reddish brown title product (1.94 g, 71%). Crystals were grown by slow evaporation of a solution in EtOAc and CHCl3 (1:1) at room temperature; m.p. 395–397 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.99 Å, for aryl and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted to enhance clarity.
2-[2-(2-Bromophenyl)-2-oxoethyl]-1λ6,2-benzothiazole-1,1,3-trione top
Crystal data top
C15H10BrNO4SZ = 4
Mr = 380.21F(000) = 760
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.574 (2) ÅCell parameters from 6425 reflections
b = 13.903 (4) Åθ = 1.0–27.5°
c = 14.814 (4) ŵ = 3.02 mm1
α = 110.574 (15)°T = 123 K
β = 96.936 (13)°Prism, colorless
γ = 93.640 (14)°0.18 × 0.18 × 0.16 mm
V = 1440.3 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
6541 independent reflections
Radiation source: fine-focus sealed tube5268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and ϕ scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.613, Tmax = 0.644k = 1818
12284 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.105H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + 5.440P]
where P = (Fo2 + 2Fc2)/3
6541 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
C15H10BrNO4Sγ = 93.640 (14)°
Mr = 380.21V = 1440.3 (7) Å3
Triclinic, P1Z = 4
a = 7.574 (2) ÅMo Kα radiation
b = 13.903 (4) ŵ = 3.02 mm1
c = 14.814 (4) ÅT = 123 K
α = 110.574 (15)°0.18 × 0.18 × 0.16 mm
β = 96.936 (13)°
Data collection top
Nonius KappaCCD
diffractometer
6541 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
5268 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.644Rint = 0.042
12284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.12Δρmax = 0.81 e Å3
6541 reflectionsΔρmin = 1.04 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36505 (6)0.45967 (4)0.15933 (3)0.03241 (12)
Br20.91717 (7)0.09057 (4)0.66368 (3)0.03844 (13)
S10.67803 (14)0.13040 (8)0.09125 (7)0.0234 (2)
S20.60738 (13)0.34637 (7)0.39090 (7)0.02000 (19)
O10.8217 (4)0.1917 (2)0.1062 (2)0.0349 (7)
O20.5086 (4)0.1188 (2)0.1509 (2)0.0321 (7)
O30.6920 (4)0.1327 (2)0.1629 (2)0.0283 (6)
O40.9038 (4)0.3378 (2)0.1237 (2)0.0310 (7)
O50.5563 (4)0.3780 (2)0.4859 (2)0.0283 (6)
O60.4665 (4)0.3119 (2)0.3092 (2)0.0283 (6)
O71.0338 (4)0.2269 (2)0.3508 (2)0.0260 (6)
O80.8207 (5)0.2096 (2)0.5384 (2)0.0389 (8)
N10.6521 (5)0.1750 (2)0.0257 (2)0.0215 (7)
N20.7478 (4)0.2569 (2)0.3791 (2)0.0207 (7)
C10.7402 (5)0.0120 (3)0.0868 (3)0.0209 (8)
C20.7806 (5)0.0711 (3)0.1628 (3)0.0250 (8)
H20.77500.07030.22700.030*
C30.8297 (5)0.1558 (3)0.1406 (3)0.0277 (9)
H30.85760.21480.19080.033*
C40.8388 (5)0.1557 (3)0.0463 (3)0.0261 (9)
H40.87340.21460.03320.031*
C50.7983 (5)0.0711 (3)0.0290 (3)0.0230 (8)
H50.80540.07110.09340.028*
C60.7473 (5)0.0133 (3)0.0077 (3)0.0208 (8)
C70.6977 (5)0.1109 (3)0.0771 (3)0.0198 (8)
C80.5961 (5)0.2769 (3)0.0709 (3)0.0213 (8)
H8A0.53460.27780.12640.026*
H8B0.51000.29160.02290.026*
C90.7555 (5)0.3606 (3)0.1071 (3)0.0205 (8)
C100.7307 (5)0.4707 (3)0.1184 (3)0.0215 (8)
C110.5795 (5)0.5213 (3)0.1368 (3)0.0234 (8)
C120.5781 (6)0.6246 (3)0.1462 (3)0.0305 (9)
H120.47280.65770.15830.037*
C130.7319 (7)0.6784 (4)0.1378 (4)0.0384 (11)
H130.73300.74920.14530.046*
C140.8831 (7)0.6296 (4)0.1187 (4)0.0386 (11)
H140.98780.66630.11180.046*
C150.8825 (6)0.5280 (3)0.1095 (3)0.0290 (9)
H150.98800.49530.09670.035*
C160.7715 (5)0.4356 (3)0.3809 (3)0.0181 (7)
C170.7503 (5)0.5350 (3)0.3834 (3)0.0229 (8)
H170.63940.56290.39180.028*
C180.8992 (5)0.5917 (3)0.3730 (3)0.0249 (8)
H180.89060.65970.37350.030*
C191.0615 (5)0.5497 (3)0.3619 (3)0.0232 (8)
H191.16220.59050.35640.028*
C201.0793 (5)0.4497 (3)0.3586 (3)0.0226 (8)
H201.18960.42130.35010.027*
C210.9302 (5)0.3926 (3)0.3681 (3)0.0181 (7)
C220.9183 (5)0.2841 (3)0.3645 (3)0.0197 (8)
C230.6895 (6)0.1524 (3)0.3720 (3)0.0224 (8)
H23A0.74010.10200.31860.027*
H23B0.55740.13930.35610.027*
C240.7505 (5)0.1370 (3)0.4683 (3)0.0204 (8)
C250.7189 (5)0.0296 (3)0.4674 (3)0.0196 (8)
C260.7853 (5)0.0009 (3)0.5443 (3)0.0255 (9)
C270.7537 (6)0.1035 (4)0.5369 (4)0.0343 (11)
H270.80410.12400.58830.041*
C280.6490 (7)0.1757 (4)0.4549 (4)0.0383 (12)
H280.62550.24520.45080.046*
C290.5792 (6)0.1468 (3)0.3795 (3)0.0335 (10)
H290.50640.19610.32360.040*
C300.6150 (5)0.0461 (3)0.3851 (3)0.0243 (8)
H300.56820.02750.33190.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0246 (2)0.0352 (2)0.0418 (3)0.01061 (18)0.01351 (19)0.0153 (2)
Br20.0388 (3)0.0569 (3)0.0219 (2)0.0144 (2)0.00103 (19)0.0167 (2)
S10.0299 (5)0.0228 (5)0.0171 (4)0.0017 (4)0.0034 (4)0.0071 (4)
S20.0177 (4)0.0206 (5)0.0245 (5)0.0040 (4)0.0070 (4)0.0101 (4)
O10.048 (2)0.0283 (16)0.0300 (16)0.0069 (14)0.0119 (15)0.0128 (14)
O20.0371 (18)0.0359 (17)0.0229 (15)0.0102 (14)0.0017 (13)0.0111 (13)
O30.0403 (18)0.0268 (15)0.0198 (14)0.0082 (13)0.0104 (13)0.0084 (12)
O40.0248 (16)0.0288 (16)0.0371 (17)0.0087 (13)0.0015 (13)0.0092 (14)
O50.0278 (16)0.0325 (16)0.0313 (16)0.0069 (13)0.0172 (13)0.0151 (13)
O60.0202 (14)0.0290 (16)0.0341 (16)0.0009 (12)0.0004 (12)0.0111 (13)
O70.0233 (15)0.0285 (15)0.0328 (16)0.0122 (12)0.0074 (12)0.0166 (13)
O80.059 (2)0.0251 (16)0.0254 (16)0.0119 (15)0.0055 (15)0.0068 (13)
N10.0300 (18)0.0185 (16)0.0148 (15)0.0028 (14)0.0034 (14)0.0044 (13)
N20.0239 (17)0.0175 (16)0.0249 (17)0.0046 (13)0.0076 (14)0.0110 (14)
C10.0184 (19)0.0199 (19)0.0218 (19)0.0026 (15)0.0003 (15)0.0061 (16)
C20.025 (2)0.028 (2)0.0169 (18)0.0004 (17)0.0037 (16)0.0019 (16)
C30.023 (2)0.021 (2)0.031 (2)0.0006 (16)0.0070 (17)0.0009 (17)
C40.0187 (19)0.022 (2)0.035 (2)0.0026 (16)0.0054 (17)0.0076 (18)
C50.023 (2)0.0214 (19)0.027 (2)0.0023 (16)0.0058 (16)0.0105 (17)
C60.0180 (19)0.0217 (19)0.0202 (18)0.0023 (15)0.0034 (15)0.0052 (16)
C70.0206 (19)0.0157 (18)0.0222 (19)0.0009 (14)0.0029 (15)0.0065 (15)
C80.0207 (19)0.0203 (19)0.0217 (19)0.0044 (15)0.0010 (15)0.0067 (16)
C90.024 (2)0.0204 (19)0.0158 (17)0.0051 (15)0.0028 (15)0.0039 (15)
C100.022 (2)0.024 (2)0.0174 (18)0.0013 (16)0.0015 (15)0.0072 (16)
C110.023 (2)0.027 (2)0.0204 (19)0.0049 (16)0.0032 (16)0.0079 (16)
C120.036 (2)0.026 (2)0.028 (2)0.0116 (19)0.0030 (19)0.0074 (18)
C130.046 (3)0.023 (2)0.045 (3)0.004 (2)0.001 (2)0.012 (2)
C140.036 (3)0.034 (3)0.047 (3)0.008 (2)0.003 (2)0.019 (2)
C150.023 (2)0.031 (2)0.033 (2)0.0036 (18)0.0031 (18)0.0122 (19)
C160.0201 (19)0.0215 (19)0.0129 (16)0.0022 (15)0.0024 (14)0.0064 (15)
C170.024 (2)0.023 (2)0.0229 (19)0.0068 (16)0.0046 (16)0.0084 (16)
C180.027 (2)0.022 (2)0.026 (2)0.0015 (16)0.0060 (17)0.0087 (17)
C190.022 (2)0.024 (2)0.0216 (19)0.0064 (16)0.0027 (16)0.0085 (16)
C200.0170 (19)0.029 (2)0.0229 (19)0.0040 (16)0.0035 (15)0.0101 (17)
C210.0193 (18)0.0208 (18)0.0149 (17)0.0044 (15)0.0045 (14)0.0066 (15)
C220.0201 (19)0.025 (2)0.0159 (17)0.0047 (15)0.0016 (15)0.0093 (15)
C230.029 (2)0.0188 (19)0.0212 (19)0.0011 (16)0.0027 (16)0.0097 (16)
C240.0211 (19)0.0204 (19)0.0224 (19)0.0027 (15)0.0052 (15)0.0102 (16)
C250.0195 (19)0.0214 (19)0.0191 (18)0.0043 (15)0.0069 (15)0.0070 (15)
C260.022 (2)0.035 (2)0.026 (2)0.0116 (17)0.0077 (16)0.0154 (18)
C270.038 (3)0.042 (3)0.043 (3)0.022 (2)0.021 (2)0.032 (2)
C280.047 (3)0.026 (2)0.056 (3)0.015 (2)0.033 (3)0.022 (2)
C290.037 (3)0.025 (2)0.038 (3)0.0022 (19)0.018 (2)0.007 (2)
C300.023 (2)0.022 (2)0.027 (2)0.0052 (16)0.0077 (17)0.0073 (17)
Geometric parameters (Å, º) top
Br1—C111.908 (4)C10—C151.403 (6)
Br2—C261.890 (4)C11—C121.394 (6)
S1—O11.426 (3)C12—C131.387 (7)
S1—O21.433 (3)C12—H120.9500
S1—N11.664 (3)C13—C141.377 (7)
S1—C11.762 (4)C13—H130.9500
S2—O51.429 (3)C14—C151.370 (6)
S2—O61.431 (3)C14—H140.9500
S2—N21.664 (3)C15—H150.9500
S2—C161.757 (4)C16—C211.380 (5)
O3—C71.206 (5)C16—C171.389 (5)
O4—C91.206 (5)C17—C181.390 (5)
O7—C221.207 (4)C17—H170.9500
O8—C241.200 (5)C18—C191.397 (6)
N1—C71.395 (5)C18—H180.9500
N1—C81.453 (5)C19—C201.390 (5)
N2—C221.386 (5)C19—H190.9500
N2—C231.455 (5)C20—C211.388 (5)
C1—C21.382 (5)C20—H200.9500
C1—C61.387 (5)C21—C221.487 (5)
C2—C31.390 (6)C23—C241.537 (5)
C2—H20.9500C23—H23A0.9900
C3—C41.389 (6)C23—H23B0.9900
C3—H30.9500C24—C251.493 (5)
C4—C51.389 (6)C25—C261.400 (5)
C4—H40.9500C25—C301.405 (6)
C5—C61.383 (5)C26—C271.394 (6)
C5—H50.9500C27—C281.387 (7)
C6—C71.489 (5)C27—H270.9500
C8—C91.525 (5)C28—C291.373 (7)
C8—H8A0.9900C28—H280.9500
C8—H8B0.9900C29—C301.381 (6)
C9—C101.507 (5)C29—H290.9500
C10—C111.387 (5)C30—H300.9500
O1—S1—O2116.92 (19)C14—C13—C12120.2 (4)
O1—S1—N1109.81 (18)C14—C13—H13119.9
O2—S1—N1109.41 (18)C12—C13—H13119.9
O1—S1—C1112.50 (19)C15—C14—C13119.9 (4)
O2—S1—C1112.67 (18)C15—C14—H14120.1
N1—S1—C192.85 (17)C13—C14—H14120.1
O5—S2—O6117.20 (18)C14—C15—C10122.0 (4)
O5—S2—N2109.94 (17)C14—C15—H15119.0
O6—S2—N2109.76 (18)C10—C15—H15119.0
O5—S2—C16112.41 (18)C21—C16—C17123.2 (3)
O6—S2—C16112.30 (17)C21—C16—S2110.1 (3)
N2—S2—C1692.44 (17)C17—C16—S2126.7 (3)
C7—N1—C8123.3 (3)C16—C17—C18116.7 (4)
C7—N1—S1115.4 (3)C16—C17—H17121.7
C8—N1—S1121.2 (3)C18—C17—H17121.7
C22—N2—C23121.7 (3)C17—C18—C19120.7 (4)
C22—N2—S2115.7 (3)C17—C18—H18119.7
C23—N2—S2122.2 (3)C19—C18—H18119.7
C2—C1—C6123.1 (4)C20—C19—C18121.7 (4)
C2—C1—S1127.2 (3)C20—C19—H19119.2
C6—C1—S1109.6 (3)C18—C19—H19119.2
C1—C2—C3116.5 (4)C21—C20—C19117.7 (4)
C1—C2—H2121.7C21—C20—H20121.1
C3—C2—H2121.7C19—C20—H20121.1
C4—C3—C2121.3 (4)C16—C21—C20120.1 (3)
C4—C3—H3119.4C16—C21—C22113.3 (3)
C2—C3—H3119.4C20—C21—C22126.6 (3)
C3—C4—C5121.1 (4)O7—C22—N2124.1 (4)
C3—C4—H4119.5O7—C22—C21127.4 (4)
C5—C4—H4119.5N2—C22—C21108.4 (3)
C6—C5—C4118.3 (4)N2—C23—C24110.8 (3)
C6—C5—H5120.9N2—C23—H23A109.5
C4—C5—H5120.9C24—C23—H23A109.5
C5—C6—C1119.7 (4)N2—C23—H23B109.5
C5—C6—C7126.8 (4)C24—C23—H23B109.5
C1—C6—C7113.5 (3)H23A—C23—H23B108.1
O3—C7—N1124.0 (4)O8—C24—C25124.0 (4)
O3—C7—C6127.5 (4)O8—C24—C23119.6 (3)
N1—C7—C6108.4 (3)C25—C24—C23116.4 (3)
N1—C8—C9111.4 (3)C26—C25—C30117.4 (4)
N1—C8—H8A109.4C26—C25—C24124.0 (4)
C9—C8—H8A109.4C30—C25—C24118.6 (3)
N1—C8—H8B109.4C27—C26—C25120.6 (4)
C9—C8—H8B109.4C27—C26—Br2115.6 (3)
H8A—C8—H8B108.0C25—C26—Br2123.8 (3)
O4—C9—C10119.6 (4)C28—C27—C26120.3 (4)
O4—C9—C8119.7 (3)C28—C27—H27119.9
C10—C9—C8120.6 (3)C26—C27—H27119.9
C11—C10—C15117.1 (4)C29—C28—C27120.0 (4)
C11—C10—C9128.4 (4)C29—C28—H28120.0
C15—C10—C9114.5 (4)C27—C28—H28120.0
C10—C11—C12121.6 (4)C28—C29—C30119.9 (4)
C10—C11—Br1123.4 (3)C28—C29—H29120.0
C12—C11—Br1114.8 (3)C30—C29—H29120.0
C13—C12—C11119.3 (4)C29—C30—C25121.8 (4)
C13—C12—H12120.4C29—C30—H30119.1
C11—C12—H12120.4C25—C30—H30119.1
O1—S1—N1—C7111.1 (3)Br1—C11—C12—C13175.6 (3)
O2—S1—N1—C7119.3 (3)C11—C12—C13—C141.1 (7)
C1—S1—N1—C74.1 (3)C12—C13—C14—C151.1 (7)
O1—S1—N1—C865.3 (3)C13—C14—C15—C100.4 (7)
O2—S1—N1—C864.3 (3)C11—C10—C15—C140.2 (6)
C1—S1—N1—C8179.6 (3)C9—C10—C15—C14179.4 (4)
O5—S2—N2—C22116.7 (3)O5—S2—C16—C21113.1 (3)
O6—S2—N2—C22113.0 (3)O6—S2—C16—C21112.2 (3)
C16—S2—N2—C221.8 (3)N2—S2—C16—C210.3 (3)
O5—S2—N2—C2370.9 (3)O5—S2—C16—C1767.8 (4)
O6—S2—N2—C2359.4 (3)O6—S2—C16—C1766.9 (4)
C16—S2—N2—C23174.2 (3)N2—S2—C16—C17179.4 (3)
O1—S1—C1—C269.0 (4)C21—C16—C17—C180.4 (6)
O2—S1—C1—C265.8 (4)S2—C16—C17—C18179.4 (3)
N1—S1—C1—C2178.2 (4)C16—C17—C18—C190.8 (6)
O1—S1—C1—C6109.9 (3)C17—C18—C19—C201.5 (6)
O2—S1—C1—C6115.4 (3)C18—C19—C20—C210.9 (6)
N1—S1—C1—C62.9 (3)C17—C16—C21—C201.0 (6)
C6—C1—C2—C30.1 (6)S2—C16—C21—C20179.9 (3)
S1—C1—C2—C3178.8 (3)C17—C16—C21—C22178.0 (3)
C1—C2—C3—C40.5 (6)S2—C16—C21—C221.1 (4)
C2—C3—C4—C50.3 (6)C19—C20—C21—C160.3 (5)
C3—C4—C5—C60.4 (6)C19—C20—C21—C22178.6 (4)
C4—C5—C6—C10.8 (6)C23—N2—C22—O74.5 (6)
C4—C5—C6—C7179.7 (4)S2—N2—C22—O7176.9 (3)
C2—C1—C6—C50.6 (6)C23—N2—C22—C21175.0 (3)
S1—C1—C6—C5178.3 (3)S2—N2—C22—C212.6 (4)
C2—C1—C6—C7179.9 (4)C16—C21—C22—O7177.2 (4)
S1—C1—C6—C71.3 (4)C20—C21—C22—O71.7 (6)
C8—N1—C7—O31.4 (6)C16—C21—C22—N22.3 (4)
S1—N1—C7—O3177.7 (3)C20—C21—C22—N2178.8 (4)
C8—N1—C7—C6179.8 (3)C22—N2—C23—C2483.4 (4)
S1—N1—C7—C63.9 (4)S2—N2—C23—C24104.7 (3)
C5—C6—C7—O30.7 (7)N2—C23—C24—O86.4 (5)
C1—C6—C7—O3179.8 (4)N2—C23—C24—C25172.9 (3)
C5—C6—C7—N1179.0 (4)O8—C24—C25—C267.6 (6)
C1—C6—C7—N11.5 (4)C23—C24—C25—C26171.7 (4)
C7—N1—C8—C990.7 (4)O8—C24—C25—C30171.8 (4)
S1—N1—C8—C985.4 (4)C23—C24—C25—C308.9 (5)
N1—C8—C9—O422.3 (5)C30—C25—C26—C272.2 (6)
N1—C8—C9—C10155.1 (3)C24—C25—C26—C27178.4 (4)
O4—C9—C10—C11155.3 (4)C30—C25—C26—Br2176.7 (3)
C8—C9—C10—C1127.3 (6)C24—C25—C26—Br22.7 (5)
O4—C9—C10—C1524.3 (5)C25—C26—C27—C282.9 (6)
C8—C9—C10—C15153.1 (4)Br2—C26—C27—C28176.0 (3)
C15—C10—C11—C120.2 (6)C26—C27—C28—C291.4 (6)
C9—C10—C11—C12179.4 (4)C27—C28—C29—C300.7 (6)
C15—C10—C11—Br1176.0 (3)C28—C29—C30—C251.4 (6)
C9—C10—C11—Br13.6 (6)C26—C25—C30—C290.1 (6)
C10—C11—C12—C130.5 (6)C24—C25—C30—C29179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O7i0.952.563.238 (5)129
C14—H14···O1ii0.952.403.305 (5)159
C17—H17···O5iii0.952.433.225 (5)141
C27—H27···O7iv0.952.293.164 (5)153
C30—H30···O2v0.952.513.251 (5)135
C8—H8A···Br10.992.823.165 (4)101
C23—H23A···O30.992.483.014 (5)114
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H10BrNO4S
Mr380.21
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.574 (2), 13.903 (4), 14.814 (4)
α, β, γ (°)110.574 (15), 96.936 (13), 93.640 (14)
V3)1440.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.18 × 0.18 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.613, 0.644
No. of measured, independent and
observed [I > 2σ(I)] reflections
12284, 6541, 5268
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.105, 1.12
No. of reflections6541
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 1.04

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.952.403.305 (5)158.5
C17—H17···O5ii0.952.433.225 (5)140.9
C27—H27···O7iii0.952.293.164 (5)153.2
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationBlackham, A. & Owen, R. T. (1975). J. Pharm. Pharmacol. 27, 201–203.  CrossRef CAS PubMed Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCarty, T. J., Marfat, A., Moore, P. F., Falkner, F. C., Twomey, T. M. & Weissmen, A. (1993). Agents Actions, 39, 157–165.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Batori, S., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 451–459.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & McLamore, W. (1971). J. Med. Chem. 14, 1171–1175.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMaliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSingh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). Eur. J. Med. Chem. 42, 456–462.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSoler, J. E. (1985). US Patent No. 4 563 452.  Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1995). Clin. Drug Invest. 9, 270–276.  Google Scholar
First citationVaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheseli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). Bioorg. Med. Chem. 15, 2206–2215.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1889-o1890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds