metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m741-m742

[Bis(pyridin-2-ylmeth­yl)amine-κ3N,N′,N′′]tri­carbonyl­rhenium(I) bromide hemihydrate

aDepartment of Chemistry, PO Box 339, University of the Free State, Bloemfontein 9330, South Africa
*Correspondence e-mail: schuttem@ufs.ac.za

(Received 26 April 2012; accepted 2 May 2012; online 5 May 2012)

The title compound, fac-[Re(C12H12N3)(CO)3]Br·0.5H2O, crystallizes with a cationic rhenium(I) unit, a bromide ion and half a water mol­ecule, situated on a twofold rotation axis, in the asymmetric unit. The ReI atom is facially surrounded by three carbonyl ligands and a tridentate bis­(pyridin-2-ylmeth­yl)amine ligand in a distorted octahedral environment. N—H⋯Br, O—H⋯Br, C—H⋯O and C—H⋯Br hydrogen bonds are present in the crystal structure and ππ stacking is also observed [centroid–centroid distances = 3.669 (1) Å and 4.054 (1) Å], giving rise to a three-dimentional network. The mol­ecules pack in a head-to-head fashion along the ac plane.

Related literature

For the synthesis of the fac-ReI-tricarbonyl synthon, see: Alberto et al. (1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1089.]). For a similar structure, see: Banerjee et al. (2002[Banerjee, S. R., Murali, K. L., Lazarova, N., Wei, L., Valliant, J. F., Stephenson, K. A., Babich, J. W., Maresca, K. P. & Zubieta, J. (2002). Inorg. Chem. 41, 6417-6425.]). For related structures, see: Raszeja et al. (2011[Raszeja, L., Maghnouj, A., Hahn, S. & Metzler-Nolte, N. (2011). ChemBioChem, 12, 371-376.]); Banerjee & Zubieta (2005[Banerjee, S. R. & Zubieta, J. (2005). Acta Cryst. C61, m275-m277.]); Banerjee et al. (2004[Banerjee, S. R., Babich, J. W. & Zubieta, J. (2004). Inorg. Chem. Commun. 7, 481-484.], 2006[Banerjee, S. R., Babich, J. W. & Zubieta, J. (2006). Inorg. Chim. Acta, 359, 1603-1612.]); Kunz et al. (2007[Kunz, P. C., Bruckmann, N. E. & Spingler, B. (2007). Eur. J. Inorg. Chem. 3, 394-399.]); Wei et al. (2006[Wei, L., Babich, J. W., Ouellette, W. & Zubieta, J. (2006). Inorg. Chem. 45, 3057-3066.]); Moore et al. (2010[Moore, A. L., Bucar, A.-K., MacGillivray, L. R. & Benny, P. D. (2010). Dalton Trans. 39, 1926-1928.]).

[Scheme 1]

Experimental

Crystal data
  • [Re(C12H12N3)(CO)3]Br·0.5H2O

  • Mr = 558.4

  • Monoclinic, C 2/c

  • a = 21.542 (5) Å

  • b = 11.684 (5) Å

  • c = 15.126 (5) Å

  • β = 118.172 (5)°

  • V = 3356 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.64 mm−1

  • T = 100 K

  • 0.34 × 0.12 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.265, Tmax = 0.432

  • 28139 measured reflections

  • 4032 independent reflections

  • 3688 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.031

  • S = 1.05

  • 4032 reflections

  • 220 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Re1—C1 1.918 (2)
Re1—C2 1.921 (2)
Re1—C3 1.928 (2)
Re1—N1 2.1819 (19)
Re1—N2 2.1906 (18)
Re1—N3 2.2104 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Br1 0.85 (2) 2.50 (2) 3.340 (2) 170 (3)
O4—H4A⋯Br1 0.94 (2) 2.31 (2) 3.2429 (18) 171 (3)
C11—H11⋯O2i 0.93 2.57 3.023 (3) 111
C12—H12⋯O1ii 0.93 2.57 3.285 (3) 134
C21—H21⋯O2i 0.93 2.56 3.193 (3) 125
C26—H26A⋯Br1iii 0.97 2.88 3.767 (3) 153
C26—H26B⋯O4 0.97 2.31 3.221 (3) 156
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N,N-Bis(2-pyridylmethyl)2aminetricarbonylrhenium(I)bromidehydrate crystallized in the monoclinc spacegroup with the cationic fac- [Re(CO)3({2-pyridyl-CH2}2NH)], bromide anion and half a water molecule in the assymetric unit. The tridentate ligand, N,N-(2-pyridylmethyl)2amine, coordinate facially to the ReI core and the other three positions are occupied by carbonyl ligands. The oxygen atom in the water molecule occupies a special position on a mirror plane (Wyckoff position 4e, site symmetry 2). Seven hydrogen bonds (N—H···Br, O—H···Br, C—H···O, C—H···Br) are observed in the crystal structure. Some weak ππ stacking, with a centroid-to-centroid distance of 3.669 (1) Å and 4.054 (1) Å, is also observed between the different pyridine rings of the ligand system. These interactions complete a three dimensional polymericnetwork formed between the ReI units. Overall, the bond distances and angles compare well with the similar structure reported by Banerjee et al. (2002), N,N-bis(2-pyridylmethyl)2aminetricarbonylrhenium(I)bromide, that crystallized in the tetragonal P41 spacegroup. The three Rhenium to carbonyl distances ranging from 1.918 (2) Å to 1.928 (2) Å compare well to similar structures (Raszeja et al. (2011), Banerjee et al. (2004), Kunz et al. (2007), Wei et al. (2006), Banerjee et al. (2005), Banerjee et al. (2006), Moore et al. (2010)) and also to the N,N-Bis(2-pyridylmethyl)2aminetricarbonylrhenium(I)bromide structure reported by Banerjee et al. (2002) of 1.901 (6) Å to 1.926 (7) Å. The Re-amine distance of 2.210 (2) Å and the Re-pyridine distances of 2.182 (2) Å and 2.191 (2) Å are slightly longer than the Re-Amine distance of 2.187 (4) Å and the Re-pyridine distances of 2.177 (5) Å and 2.183 (5) Å reported by Banerjee et al. (2002).

Related literature top

For the synthesis of the fac-ReI-tricarbonyl synthon, see: Alberto et al. (1996). For a similar structure, see: Banerjee et al. (2002). For related structures, see: Raszeja et al. (2011); Banerjee & Zubieta (2005); Banerjee et al. (2004, 2006); Kunz et al. (2007); Wei et al. (2006); Moore et al. (2010).

Experimental top

[NEt4]2[Re(CO)3Br3] (75 mg, 0.097 mmol), as prepared by Alberto et al. (1996), was dissolved in 20 ml of water, acidified with HNO3 to pH 2.2. Silver nitrate (50 mg, 0.291 mmol) was added to the solution and stirred for 24 h at room temperature. The grey silver bromide precipitate was filtered off, N,N-bis(2-pyridylmethyl)amine (19.4 mg, 0.100 mmol) was added to the filtrate and stirred overnight at room temperature. The colourless crystals were grown from the filtrate by slow evaporation.

Refinement top

Aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent) of the parent atom with a C—H distance of 0.93. The methene H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.2Ueq(C) and at a distance of 0.97 Å. The N– bound H atom was placed from the electron density map.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND(Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).
[Figure 2] Fig. 2. Packing of the title compound in the unit cell and the observed π-π stacking in the crystal structure, indicated by dashed lines (hydrogen atoms omitted for clarity).
[Bis(pyridin-2-ylmethyl)amine- κ3N,N',N'']tricarbonylrhenium(I) bromide monohydrate top
Crystal data top
[Re(C12H12N3)(CO)3]Br·0.5H2OF(000) = 2104
Mr = 558.4Dx = 2.21 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.542 (5) ÅCell parameters from 9928 reflections
b = 11.684 (5) Åθ = 2.8–28.3°
c = 15.126 (5) ŵ = 9.64 mm1
β = 118.172 (5)°T = 100 K
V = 3356 (2) Å3Needle, colourless
Z = 80.34 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2828
Tmin = 0.265, Tmax = 0.432k = 1515
28139 measured reflectionsl = 1917
4032 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.031H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0112P)2 + 4.244P]
where P = (Fo2 + 2Fc2)/3
4032 reflections(Δ/σ)max = 0.004
220 parametersΔρmax = 1.14 e Å3
2 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Re(C12H12N3)(CO)3]Br·0.5H2OV = 3356 (2) Å3
Mr = 558.4Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.542 (5) ŵ = 9.64 mm1
b = 11.684 (5) ÅT = 100 K
c = 15.126 (5) Å0.34 × 0.12 × 0.09 mm
β = 118.172 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
4032 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3688 reflections with I > 2σ(I)
Tmin = 0.265, Tmax = 0.432Rint = 0.031
28139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0142 restraints
wR(F2) = 0.031H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.14 e Å3
4032 reflectionsΔρmin = 0.60 e Å3
220 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.832406 (4)0.266160 (7)0.262052 (6)0.01016 (3)
N10.82258 (9)0.22093 (15)0.39486 (13)0.0105 (4)
C30.84911 (12)0.3216 (2)0.15505 (17)0.0181 (5)
N30.91084 (10)0.37861 (16)0.37892 (14)0.0130 (4)
C20.74889 (12)0.35874 (19)0.21078 (16)0.0144 (5)
N20.92780 (9)0.16093 (16)0.33122 (13)0.0124 (4)
C250.98776 (12)0.21485 (19)0.39603 (16)0.0134 (4)
C210.92998 (12)0.04661 (19)0.31905 (16)0.0152 (5)
H210.88880.00930.27460.018*
C220.99066 (12)0.0171 (2)0.36981 (18)0.0204 (5)
H220.99080.09540.35860.024*
C241.05014 (12)0.1556 (2)0.45125 (17)0.0185 (5)
H241.09060.1940.49660.022*
C231.05138 (12)0.0382 (2)0.43790 (18)0.0210 (5)
H231.09270.00290.47440.025*
C150.86452 (11)0.27820 (18)0.48059 (16)0.0125 (4)
C110.78009 (11)0.13816 (19)0.39807 (16)0.0139 (4)
H110.74960.10130.33880.017*
C120.78005 (12)0.1058 (2)0.48615 (17)0.0164 (5)
H120.75040.0480.4860.02*
C160.90207 (12)0.3815 (2)0.47098 (16)0.0157 (5)
H16A0.87580.44960.46950.019*
H16B0.94810.38650.52940.019*
O20.69748 (8)0.41059 (14)0.17770 (13)0.0210 (4)
O10.74405 (8)0.07008 (14)0.12519 (12)0.0212 (4)
O30.85788 (9)0.35753 (17)0.09110 (13)0.0306 (4)
C10.77537 (11)0.1458 (2)0.17563 (16)0.0147 (5)
C260.98272 (11)0.34246 (19)0.39980 (17)0.0151 (5)
H26A1.01680.36970.46560.018*
H26B0.9940.37670.35070.018*
C140.86774 (13)0.2485 (2)0.57138 (17)0.0171 (5)
H140.89830.28680.62980.02*
C130.82505 (12)0.1613 (2)0.57449 (17)0.0185 (5)
H130.82660.14040.63480.022*
Br10.899690 (12)0.65619 (2)0.320564 (16)0.01760 (5)
O410.5200 (3)0.250.0578 (10)
H30.9062 (16)0.4465 (17)0.356 (2)0.053 (7)*
H4A0.9723 (15)0.567 (2)0.268 (2)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.00954 (5)0.01156 (5)0.00819 (4)0.00126 (3)0.00319 (3)0.00068 (3)
N10.0101 (9)0.0109 (9)0.0103 (8)0.0031 (7)0.0046 (7)0.0003 (7)
C30.0121 (11)0.0238 (13)0.0156 (11)0.0040 (9)0.0042 (9)0.0025 (10)
N30.0124 (9)0.0106 (9)0.0138 (9)0.0001 (8)0.0045 (8)0.0004 (7)
C20.0195 (12)0.0123 (11)0.0133 (11)0.0026 (9)0.0093 (9)0.0000 (9)
N20.0114 (9)0.0143 (10)0.0125 (9)0.0016 (7)0.0063 (7)0.0016 (7)
C250.0133 (11)0.0162 (12)0.0126 (10)0.0005 (9)0.0077 (9)0.0004 (8)
C210.0143 (11)0.0174 (12)0.0154 (11)0.0015 (9)0.0082 (9)0.0008 (9)
C220.0226 (13)0.0181 (13)0.0221 (12)0.0049 (10)0.0119 (11)0.0009 (10)
C240.0133 (11)0.0246 (13)0.0163 (11)0.0016 (10)0.0060 (9)0.0001 (10)
C230.0161 (12)0.0261 (14)0.0196 (12)0.0105 (10)0.0073 (10)0.0037 (10)
C150.0100 (10)0.0127 (11)0.0137 (10)0.0038 (8)0.0049 (9)0.0008 (8)
C110.0134 (11)0.0112 (11)0.0161 (11)0.0040 (9)0.0061 (9)0.0009 (9)
C120.0176 (12)0.0145 (12)0.0216 (12)0.0044 (9)0.0129 (10)0.0052 (9)
C160.0150 (11)0.0167 (12)0.0129 (10)0.0014 (9)0.0044 (9)0.0046 (9)
O20.0154 (9)0.0152 (9)0.0295 (9)0.0036 (7)0.0081 (7)0.0045 (7)
O10.0191 (9)0.0223 (9)0.0174 (8)0.0003 (7)0.0047 (7)0.0083 (7)
O30.0287 (10)0.0461 (12)0.0224 (9)0.0075 (9)0.0166 (8)0.0134 (9)
C10.0124 (11)0.0191 (12)0.0120 (10)0.0050 (9)0.0053 (9)0.0023 (9)
C260.0100 (11)0.0169 (12)0.0171 (11)0.0013 (9)0.0053 (9)0.0004 (9)
C140.0182 (12)0.0196 (13)0.0121 (11)0.0068 (9)0.0061 (10)0.0014 (9)
C130.0197 (12)0.0205 (13)0.0179 (12)0.0096 (10)0.0110 (10)0.0071 (9)
Br10.01889 (12)0.01679 (12)0.01454 (11)0.00078 (9)0.00578 (9)0.00349 (8)
O40.091 (3)0.0332 (19)0.090 (3)00.076 (2)0
Geometric parameters (Å, º) top
Re1—C11.918 (2)C22—H220.93
Re1—C21.921 (2)C24—C231.388 (3)
Re1—C31.928 (2)C24—H240.93
Re1—N12.1819 (19)C23—H230.93
Re1—N22.1906 (18)C15—C141.386 (3)
Re1—N32.2104 (19)C15—C161.498 (3)
N1—C111.348 (3)C11—C121.385 (3)
N1—C151.356 (3)C11—H110.93
C3—O31.149 (3)C12—C131.386 (3)
N3—C261.488 (3)C12—H120.93
N3—C161.491 (3)C16—H16A0.97
N3—H30.850 (18)C16—H16B0.97
C2—O21.149 (3)O1—C11.155 (3)
N2—C211.352 (3)C26—H26A0.97
N2—C251.353 (3)C26—H26B0.97
C25—C241.387 (3)C14—C131.389 (3)
C25—C261.498 (3)C14—H140.93
C21—C221.380 (3)C13—H130.93
C21—H210.93O4—H4A0.939 (17)
C22—C231.385 (3)
C1—Re1—C287.77 (10)C21—C22—H22120.8
C1—Re1—C389.29 (10)C23—C22—H22120.8
C2—Re1—C388.99 (9)C25—C24—C23119.0 (2)
C1—Re1—N198.08 (8)C25—C24—H24120.5
C2—Re1—N191.64 (8)C23—C24—H24120.5
C3—Re1—N1172.62 (8)C22—C23—C24119.6 (2)
C1—Re1—N293.94 (8)C22—C23—H23120.2
C2—Re1—N2175.80 (8)C24—C23—H23120.2
C3—Re1—N294.86 (8)N1—C15—C14121.6 (2)
N1—Re1—N284.33 (7)N1—C15—C16116.82 (19)
C1—Re1—N3169.31 (8)C14—C15—C16121.4 (2)
C2—Re1—N3101.82 (9)N1—C11—C12122.6 (2)
C3—Re1—N395.54 (9)N1—C11—H11118.7
N1—Re1—N377.14 (7)C12—C11—H11118.7
N2—Re1—N376.18 (7)C11—C12—C13118.8 (2)
C11—N1—C15118.46 (19)C11—C12—H12120.6
C11—N1—Re1124.72 (14)C13—C12—H12120.6
C15—N1—Re1116.78 (14)N3—C16—C15112.61 (18)
O3—C3—Re1177.9 (2)N3—C16—H16A109.1
C26—N3—C16112.72 (17)C15—C16—H16A109.1
C26—N3—Re1109.09 (13)N3—C16—H16B109.1
C16—N3—Re1111.98 (13)C15—C16—H16B109.1
C26—N3—H3105 (2)H16A—C16—H16B107.8
C16—N3—H3108 (2)O1—C1—Re1176.56 (19)
Re1—N3—H3109 (2)N3—C26—C25111.18 (18)
O2—C2—Re1177.3 (2)N3—C26—H26A109.4
C21—N2—C25118.42 (19)C25—C26—H26A109.4
C21—N2—Re1125.07 (15)N3—C26—H26B109.4
C25—N2—Re1116.37 (15)C25—C26—H26B109.4
N2—C25—C24121.8 (2)H26A—C26—H26B108
N2—C25—C26115.44 (19)C15—C14—C13119.5 (2)
C24—C25—C26122.7 (2)C15—C14—H14120.2
N2—C21—C22122.8 (2)C13—C14—H14120.2
N2—C21—H21118.6C12—C13—C14118.9 (2)
C22—C21—H21118.6C12—C13—H13120.5
C21—C22—C23118.4 (2)C14—C13—H13120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br10.85 (2)2.50 (2)3.340 (2)170 (3)
O4—H4A···Br10.94 (2)2.31 (2)3.2429 (18)171 (3)
C11—H11···O2i0.932.573.023 (3)111
C12—H12···O1ii0.932.573.285 (3)134
C21—H21···O2i0.932.563.193 (3)125
C26—H26A···Br1iii0.972.883.767 (3)153
C26—H26B···O40.972.313.221 (3)156
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y, z+1/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Re(C12H12N3)(CO)3]Br·0.5H2O
Mr558.4
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.542 (5), 11.684 (5), 15.126 (5)
β (°) 118.172 (5)
V3)3356 (2)
Z8
Radiation typeMo Kα
µ (mm1)9.64
Crystal size (mm)0.34 × 0.12 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.265, 0.432
No. of measured, independent and
observed [I > 2σ(I)] reflections
28139, 4032, 3688
Rint0.031
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.031, 1.05
No. of reflections4032
No. of parameters220
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.14, 0.60

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND(Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Re1—C11.918 (2)Re1—N12.1819 (19)
Re1—C21.921 (2)Re1—N22.1906 (18)
Re1—C31.928 (2)Re1—N32.2104 (19)
C1—Re1—N198.08 (8)N1—Re1—N284.33 (7)
C2—Re1—N191.64 (8)C1—Re1—N3169.31 (8)
C3—Re1—N1172.62 (8)C2—Re1—N3101.82 (9)
C1—Re1—N293.94 (8)C3—Re1—N395.54 (9)
C2—Re1—N2175.80 (8)N1—Re1—N377.14 (7)
C3—Re1—N294.86 (8)N2—Re1—N376.18 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br10.850 (18)2.499 (18)3.340 (2)170 (3)
O4—H4A···Br10.939 (17)2.313 (18)3.2429 (18)171 (3)
C11—H11···O2i0.932.573.023 (3)110.6
C12—H12···O1ii0.932.573.285 (3)133.6
C21—H21···O2i0.932.563.193 (3)125.2
C26—H26A···Br1iii0.972.883.767 (3)152.5
C26—H26B···O40.972.313.221 (3)156.4
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y, z+1/2; (iii) x+2, y+1, z+1.
 

Acknowledgements

We would like to thank the University of the Free State, the Chemistry Department, the NRF and Sasol Ltd for financial support.

References

First citationAlberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089.  CSD CrossRef CAS Web of Science Google Scholar
First citationBanerjee, S. R., Babich, J. W. & Zubieta, J. (2004). Inorg. Chem. Commun. 7, 481–484.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanerjee, S. R., Babich, J. W. & Zubieta, J. (2006). Inorg. Chim. Acta, 359, 1603–1612.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanerjee, S. R., Murali, K. L., Lazarova, N., Wei, L., Valliant, J. F., Stephenson, K. A., Babich, J. W., Maresca, K. P. & Zubieta, J. (2002). Inorg. Chem. 41, 6417–6425.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBanerjee, S. R. & Zubieta, J. (2005). Acta Cryst. C61, m275–m277.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKunz, P. C., Bruckmann, N. E. & Spingler, B. (2007). Eur. J. Inorg. Chem. 3, 394–399.  Web of Science CSD CrossRef Google Scholar
First citationMoore, A. L., Bucar, A.-K., MacGillivray, L. R. & Benny, P. D. (2010). Dalton Trans. 39, 1926–1928.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRaszeja, L., Maghnouj, A., Hahn, S. & Metzler-Nolte, N. (2011). ChemBioChem, 12, 371–376.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, L., Babich, J. W., Ouellette, W. & Zubieta, J. (2006). Inorg. Chem. 45, 3057–3066.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m741-m742
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds