organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Azido-1-(4-methyl­phen­yl)ethanone

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 13 April 2012; accepted 25 April 2012; online 5 May 2012)

In the mol­ecule of the title compound, C9H9N3O, the angle formed by the least-squares line through the azide group with the normal to the plane of the benzene plane ring is 46.62 (16)°. The crystal structure features C—H⋯O hydrogen bonds, which link the mol­ecules into zigzag chains running parallel to [010].

Related literature

For a related structure, see: Yousuf et al. (2012[Yousuf, S., Arshad, M., Butt, H. M., Saeed, S. & Basha, F. Z. (2012). Acta Cryst. E68, o1268.]). For the biological activity of triazoles, see: Genin et al. (2000[Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenco, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953-970.]); Parmee et al. (2000[Parmee, L., Ok, E. R., Candelore, H. O., Cascieri, M. R., Colwell, M. A., Deng, L. F., Feeney, L., Forrest, W. P. M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111-2114.]); Koble et al. (1995[Koble, C. S., Davis, R. G., McLean, E. W., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 4131-4134.]); Moltzen et al. (1994[Moltzen, E. K., Pedersen, H., Boegesoe, K. P., Meier, E., Frederiksen, K., Sanchez, C. & Lemboel, H. L. (1994). J. Med. Chem. 37, 4085-4099.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O

  • Mr = 175.19

  • Monoclinic, P 21 /c

  • a = 7.696 (3) Å

  • b = 9.025 (3) Å

  • c = 14.248 (4) Å

  • β = 118.726 (15)°

  • V = 867.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.30 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.985

  • 4915 measured reflections

  • 1595 independent reflections

  • 1464 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.07

  • 1595 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.40 3.2404 (19) 145
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triazoles are considered an important class of compounds due to their therapeutic potential (Genin et al., 2000; Parmee et al., 2000; Koble et al., 1995; Moltzen et al., 1994). The title compound was obtained as an intermediate during our attempt to synthesize biologically active triazoles.

The structure of the title compound (Fig. 1) is similar to that of our recently published compound 2-azido-1-(4-fluorophenyl)ethanone (Yousuf et al., 2012) with the difference that the fluorophenyl ring is replaced by a toluene ring. The bond lengths and angles are similar to those found in the previously reported compound. The azide group is not linear (N3–N2–N1 = 170.84 (11)°) and the least-square line through it forms with the normal to the plane of benzene ring an angle of 46.62 (16)°. The crystal structure is stabilized by C—H···O intermolecular hydrogen bonds (Table 1) forming zig-zag chains parallel to the b axis (Fig. 2).

Related literature top

For a related structure, see: Yousuf et al. (2012). For the biological activity of triazoles, see: Genin et al. (2000); Parmee et al. (2000); Koble et al. (1995); Moltzen et al. (1994).

Experimental top

1-p-Tolylethanone (8.32 mmol, 1.0 equiv.) was dissolved in acetonitrile (20 ml) in a round bottom flask. To the stirred mixture, p-toluene sulphonic acid (12.5 mmol, 1.5 equiv.) and N-bromosuccinimide (11.6 mmol, 1.4 equiv.) were added, and the mixtyre refluxed for 1 to 1.5 h until TLC analysis showed no starting material present. The reaction mixture was cooled to room temperature, sodium azide (24.9 mmol, 3.0 equiv.) was added and the mixture further stirred for 2 to 3 hrs followed by the addition of ice cooled water to quench the reaction. The reaction mixture was extracted with ethylacetate (25 ml × 2) and the combined organic layer were dried over anhydrous Na2SO4, filtered and concentrated in vacuum to get the crude product. The crude product was purified by flash silica gel chromatography (EtOAc/hexane, 1/9–3/7 v/v) to afford the crystalline title compound in 70% yield. The crystals were found to be suitable for single-crystal X-ray studies. All chemicals were purchased from Sigma-Aldrich.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title cmpound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. Hydrogen atoms not involved in hydrogen bonds (dashed lines) are omitted for clearity.
2-Azido-1-(4-methylphenyl)ethanone top
Crystal data top
C9H9N3OF(000) = 368
Mr = 175.19Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3299 reflections
a = 7.696 (3) Åθ = 2.8–25.5°
b = 9.025 (3) ŵ = 0.09 mm1
c = 14.248 (4) ÅT = 273 K
β = 118.726 (15)°Block, colourless
V = 867.8 (5) Å30.30 × 0.21 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1595 independent reflections
Radiation source: fine-focus sealed tube1464 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.973, Tmax = 0.985k = 1010
4915 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.1892P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1595 reflectionsΔρmax = 0.24 e Å3
120 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (4)
Crystal data top
C9H9N3OV = 867.8 (5) Å3
Mr = 175.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.696 (3) ŵ = 0.09 mm1
b = 9.025 (3) ÅT = 273 K
c = 14.248 (4) Å0.30 × 0.21 × 0.17 mm
β = 118.726 (15)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1595 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1464 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.985Rint = 0.019
4915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
1595 reflectionsΔρmin = 0.28 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37626 (11)0.32286 (8)0.67821 (6)0.0259 (2)
N10.30617 (13)0.53889 (11)0.79105 (8)0.0250 (3)
N20.46826 (13)0.49335 (10)0.86119 (7)0.0220 (2)
N30.60533 (15)0.45093 (11)0.93395 (8)0.0285 (3)
C10.27074 (15)0.33313 (12)0.45933 (9)0.0225 (3)
H1B0.30540.24130.49290.027*
C20.22351 (15)0.34548 (12)0.35311 (9)0.0234 (3)
H2A0.22570.26150.31590.028*
C30.17253 (15)0.48218 (12)0.30073 (9)0.0217 (3)
C40.17304 (15)0.60668 (12)0.35936 (9)0.0238 (3)
H4B0.14250.69910.32640.029*
C50.21797 (15)0.59490 (12)0.46497 (9)0.0226 (3)
H5A0.21570.67890.50220.027*
C60.26701 (14)0.45736 (11)0.51680 (9)0.0198 (3)
C70.31704 (14)0.43963 (11)0.63045 (9)0.0201 (3)
C80.29227 (16)0.57461 (12)0.68730 (9)0.0224 (3)
H8A0.39350.64680.69810.027*
H8B0.16430.61950.64180.027*
C90.11424 (17)0.49495 (13)0.18444 (9)0.0275 (3)
H9A0.16460.58610.17230.041*
H9B0.02760.49390.14260.041*
H9C0.16840.41300.16400.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (4)0.0219 (4)0.0239 (4)0.0038 (3)0.0125 (4)0.0038 (3)
N10.0204 (5)0.0313 (5)0.0230 (5)0.0014 (4)0.0103 (4)0.0017 (4)
N20.0254 (5)0.0220 (5)0.0229 (5)0.0032 (4)0.0151 (5)0.0038 (4)
N30.0296 (5)0.0333 (6)0.0225 (5)0.0008 (4)0.0125 (5)0.0017 (4)
C10.0214 (5)0.0199 (5)0.0245 (6)0.0039 (4)0.0097 (4)0.0022 (4)
C20.0226 (5)0.0233 (6)0.0239 (6)0.0029 (4)0.0109 (4)0.0020 (4)
C30.0155 (5)0.0282 (6)0.0222 (6)0.0008 (4)0.0096 (4)0.0014 (4)
C40.0234 (5)0.0198 (5)0.0261 (6)0.0005 (4)0.0104 (5)0.0045 (4)
C50.0227 (5)0.0187 (5)0.0246 (6)0.0018 (4)0.0100 (5)0.0016 (4)
C60.0152 (5)0.0204 (5)0.0222 (6)0.0010 (4)0.0076 (4)0.0001 (4)
C70.0152 (5)0.0212 (5)0.0219 (6)0.0014 (4)0.0074 (4)0.0001 (4)
C80.0215 (5)0.0224 (5)0.0209 (6)0.0002 (4)0.0083 (4)0.0014 (4)
C90.0270 (6)0.0333 (6)0.0254 (6)0.0025 (5)0.0151 (5)0.0041 (5)
Geometric parameters (Å, º) top
O1—C71.2180 (13)C4—C51.3765 (17)
N1—N21.2350 (14)C4—H4B0.9300
N1—C81.4659 (15)C5—C61.4003 (16)
N2—N31.1327 (14)C5—H5A0.9300
C1—C21.3806 (16)C6—C71.4821 (16)
C1—C61.3968 (16)C7—C81.5247 (15)
C1—H1B0.9300C8—H8A0.9700
C2—C31.3970 (16)C8—H8B0.9700
C2—H2A0.9300C9—H9A0.9600
C3—C41.3991 (16)C9—H9B0.9600
C3—C91.4984 (17)C9—H9C0.9600
N2—N1—C8116.42 (9)C1—C6—C7119.08 (10)
N3—N2—N1170.84 (11)C5—C6—C7122.31 (10)
C2—C1—C6120.60 (10)O1—C7—C6122.33 (10)
C2—C1—H1B119.7O1—C7—C8120.22 (10)
C6—C1—H1B119.7C6—C7—C8117.45 (9)
C1—C2—C3121.02 (10)N1—C8—C7113.13 (9)
C1—C2—H2A119.5N1—C8—H8A109.0
C3—C2—H2A119.5C7—C8—H8A109.0
C2—C3—C4118.09 (10)N1—C8—H8B109.0
C2—C3—C9121.11 (10)C7—C8—H8B109.0
C4—C3—C9120.79 (10)H8A—C8—H8B107.8
C5—C4—C3121.19 (10)C3—C9—H9A109.5
C5—C4—H4B119.4C3—C9—H9B109.5
C3—C4—H4B119.4H9A—C9—H9B109.5
C4—C5—C6120.49 (10)C3—C9—H9C109.5
C4—C5—H5A119.8H9A—C9—H9C109.5
C6—C5—H5A119.8H9B—C9—H9C109.5
C1—C6—C5118.60 (11)
C6—C1—C2—C30.53 (16)C4—C5—C6—C7179.79 (9)
C1—C2—C3—C40.77 (16)C1—C6—C7—O15.82 (15)
C1—C2—C3—C9177.81 (9)C5—C6—C7—O1173.48 (10)
C2—C3—C4—C51.46 (16)C1—C6—C7—C8174.32 (9)
C9—C3—C4—C5177.13 (10)C5—C6—C7—C86.38 (14)
C3—C4—C5—C60.84 (16)N2—N1—C8—C765.13 (12)
C2—C1—C6—C51.16 (15)O1—C7—C8—N111.81 (14)
C2—C1—C6—C7179.51 (9)C6—C7—C8—N1168.33 (8)
C4—C5—C6—C10.48 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.403.2404 (19)145
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H9N3O
Mr175.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)7.696 (3), 9.025 (3), 14.248 (4)
β (°) 118.726 (15)
V3)867.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.973, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
4915, 1595, 1464
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.07
No. of reflections1595
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.403.2404 (19)145
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: bashafz@gmail.com.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGenin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenco, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953–970.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoble, C. S., Davis, R. G., McLean, E. W., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 4131–4134.  PubMed Web of Science Google Scholar
First citationMoltzen, E. K., Pedersen, H., Boegesoe, K. P., Meier, E., Frederiksen, K., Sanchez, C. & Lemboel, H. L. (1994). J. Med. Chem. 37, 4085–4099.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationParmee, L., Ok, E. R., Candelore, H. O., Cascieri, M. R., Colwell, M. A., Deng, L. F., Feeney, L., Forrest, W. P. M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111–2114.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousuf, S., Arshad, M., Butt, H. M., Saeed, S. & Basha, F. Z. (2012). Acta Cryst. E68, o1268.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds