metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­(N,N-di­methyl­formamide-κO)zinc(II) bis­­[(2-{3-[2-(carboxyl­ato­meth­­oxy-κ2O,O′)phen­yl]pyrazol-1-yl-κN2}acetato-κO)chloridozincate(II)]

aDepartment of Chemistry & Materials Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, Jiangsu, People's Republic of China
*Correspondence e-mail: ygwsx@126.com

(Received 28 March 2012; accepted 20 May 2012; online 26 May 2012)

The asymmetric unit of the title compound, [Zn(C3H7NO)2(H2O)4][Zn(C13H10N2O5)Cl]2, is composed of a single anion and half a cation. The ZnII atom in the monoanion has a distorted triganol–pyramidal geometry, being coordinated by three O atoms and one N atom from one 2-{3-[2-(carboxyl­ato­meth­oxy)phen­yl]pyrazol-1-yl}acetate ligand and one Cl atom. In the dication, the ZnII atom is located on an inversion center and is coordinated by six O atoms in a slightly distorted octa­hedral geometry. In the crystal, the ions are linked by O—H⋯O hydrogen bonds, forming a two-dimensional network lying parallel to the ab plane. There are also C—H⋯O and C—H⋯Cl inter­actions present, which lead to the formation of a three-dimensional structure.

Related literature

For potential applications of pyrazole derivatives in advanced materials, see: Su et al. (2000[Su, W. P., Hong, M. C., Weng, J. B., Cao, R. & Lu, S. F. (2000). Angew. Chem. Int. Ed. 39, 2911-2914.]); Tong et al. (2003[Tong, M. L., Chen, X. M. & Batten, S. R. (2003). J. Am. Chem. Soc. 125, 16170-16171.]). For the τ-descriptor of penta-coordinated metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C3H7NO)2(H2O)4][Zn(C13H10N2O5)Cl]2

  • Mr = 1033.79

  • Triclinic, [P \overline 1]

  • a = 8.0040 (16) Å

  • b = 8.7276 (17) Å

  • c = 15.782 (3) Å

  • α = 90.06 (3)°

  • β = 101.22 (3)°

  • γ = 107.95 (3)°

  • V = 1026.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 291 K

  • 0.25 × 0.22 × 0.21 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.642, Tmax = 0.686

  • 10740 measured reflections

  • 4704 independent reflections

  • 3632 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.168

  • S = 1.07

  • 4704 reflections

  • 265 parameters

  • 23 restraints

  • H-atom parameters constrained

  • Δρmax = 1.99 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O3i 0.96 1.83 2.710 (5) 151
O8—H8B⋯O2ii 0.96 2.21 2.941 (5) 132
O8—H8C⋯O5iii 0.96 1.91 2.715 (5) 140
C2—H2A⋯Cl1iv 0.93 2.79 3.668 (5) 159
C10—H10B⋯O5v 0.97 2.59 3.511 (6) 159
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y-1, z; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+1; (v) x+1, y+1, z.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coordination compounds containing a pyrazole group have been the subject of an intense research effort in recent years, owing to their unique structures and their potential applications in advanced materials (Su et al., 2000; Tong et al., 2003). Pyrazole-derived ligands, such as [3-(2-Carboxymethoxy-phenyl)-pyrazol-1-yl]-acetic acid, have been the subject of limited studies with metal ions, and no coordination complexes have been reported to date. The title ligand comprises N atoms of the pyrazole group and O atoms of the carboxylate, which should display flexible coordination behaviour.

The molecular structure of the title compound is shown in Fig. 1. In the dication atom Zn1 is located on an inversion center. It is coordinated by four O atoms from four water molecules and two O atoms from two DMF molecules, forming a slightly distorted octahedron.

In the monoanion atom Zn2 is coordinated by one nitrogen atom (N1) from the pyrazolyl, three oxygen atoms (O1, O2, O4) from the carboxylate groups and one chlorine atom, leading to a highly distorted trigonal bipyramidal geometry [the τ factor is 0.69; for perfect SP τ = 0, while for perfect TBP τ = 1.0 (Addison et al., 1984). The ligand is chelated to the zinc(II) atom through a carboxylate bridge (O2, O4), a phenoxide group (O1) and a pyrazole nitrogen atom (N1) to form one five-membered and two six-membered chelate rings.

In the crystal, the ions are linked by O-H···O hydrogen-bonds, to form a two-dimensional network lying parallel to (001). There are also C-H···O and C-H···Cl interactions present leading to the formation of a three-dimensional structure (Table 1 and Fig. 2).

Related literature top

Forpotential applications of pyrazole derivatives in advanced materials, see: Su et al. (2000); Tong et al. (2003). For the τ-descriptor of penta-coordinated metal atoms, see: Addison et al. (1984).

Experimental top

The title compound was synthesized by the reaction of [3-(2-Carboxymethoxy-phenyl)-pyrazol-1-yl]-acetic acid (0.0552 g, 0.2 mmol) and ZnCl2.4H2O (0.0209 mg, 0.1 mmol) in DMF (5 mL). The mixture was sealed in a 25 ml Teflon lined stainless steel container, which was heated at 363 K for 48 h and then cooled to room temperature. Colourless block-like crystals were obtained in ca. 64% yield based on Zn. Analysis, found: C, 28.55; H, 4.08; N, 24.57%. calculated: C, 28.57; H, 4.04; N, 24.55%.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.96 Å; C-H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3 H-atoms and = 1.2 for other H-atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalClear (Rigaku/MSC, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and CrystalStructure (Rigaku/MSC, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure for title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (a) = -x+2, -y, -z].
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, with the hydrogen bonds shown as dashed lines - see Table 1 for details.
Tetraaquabis(N,N-dimethylformamide-κO)zinc(II) bis[(2-{3-[2-(carboxylatomethoxy-κ2O,O')phenyl]pyrazol-1- yl-κN2}acetato-κO)chloridozincate(II)] top
Crystal data top
[Zn(C3H7NO)2(H2O)4][Zn(C13H10N2O5)Cl]2Z = 1
Mr = 1033.79F(000) = 528
Triclinic, P1Dx = 1.672 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0040 (16) ÅCell parameters from 10740 reflections
b = 8.7276 (17) Åθ = 3.1–27.5°
c = 15.782 (3) ŵ = 1.95 mm1
α = 90.06 (3)°T = 291 K
β = 101.22 (3)°Block, colourless
γ = 107.95 (3)°0.25 × 0.22 × 0.21 mm
V = 1026.6 (3) Å3
Data collection top
Rigaku Mercury
diffractometer
4704 independent reflections
Radiation source: fine-focus sealed tube3632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.642, Tmax = 0.686k = 1111
10740 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4704 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 1.99 e Å3
23 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Zn(C3H7NO)2(H2O)4][Zn(C13H10N2O5)Cl]2γ = 107.95 (3)°
Mr = 1033.79V = 1026.6 (3) Å3
Triclinic, P1Z = 1
a = 8.0040 (16) ÅMo Kα radiation
b = 8.7276 (17) ŵ = 1.95 mm1
c = 15.782 (3) ÅT = 291 K
α = 90.06 (3)°0.25 × 0.22 × 0.21 mm
β = 101.22 (3)°
Data collection top
Rigaku Mercury
diffractometer
4704 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3632 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.686Rint = 0.051
10740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05323 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.07Δρmax = 1.99 e Å3
4704 reflectionsΔρmin = 0.73 e Å3
265 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn20.28061 (6)0.71444 (5)0.29770 (3)0.0271 (2)
Cl10.04523 (14)0.78125 (14)0.32248 (8)0.0415 (4)
O10.2909 (4)0.5528 (3)0.41252 (18)0.0343 (9)
O20.3455 (4)0.8648 (4)0.20287 (18)0.0371 (9)
O30.5276 (4)1.0071 (5)0.1224 (2)0.0509 (13)
O40.2013 (4)0.4924 (3)0.24461 (19)0.0365 (9)
O50.0503 (4)0.2338 (4)0.2575 (2)0.0459 (11)
N10.5313 (4)0.8109 (4)0.3703 (2)0.0283 (10)
N20.6622 (4)0.9126 (4)0.3366 (2)0.0301 (10)
C10.7964 (5)1.0017 (5)0.3987 (3)0.0361 (12)
C20.7530 (6)0.9617 (5)0.4766 (3)0.0350 (12)
C30.5845 (5)0.8392 (4)0.4578 (2)0.0249 (11)
C40.4840 (5)0.7501 (5)0.5203 (3)0.0277 (11)
C50.5382 (6)0.8039 (5)0.6081 (3)0.0336 (12)
C60.4588 (7)0.7199 (6)0.6715 (3)0.0413 (16)
C70.3213 (7)0.5759 (6)0.6478 (3)0.0432 (16)
C80.2595 (6)0.5178 (5)0.5621 (3)0.0348 (12)
C90.3411 (5)0.6049 (5)0.4985 (2)0.0273 (11)
C100.6618 (6)0.9009 (6)0.2440 (3)0.0398 (14)
C110.4999 (5)0.9281 (5)0.1858 (3)0.0339 (12)
C120.1551 (5)0.4021 (4)0.3845 (3)0.0281 (11)
C130.1363 (6)0.3744 (5)0.2887 (3)0.0348 (12)
Zn11.000000.000000.000000.0325 (2)
O61.0708 (8)0.2476 (5)0.0070 (4)0.094 (2)
O70.7437 (5)0.0088 (7)0.0101 (2)0.0810 (19)
O81.0867 (5)0.0342 (4)0.13520 (19)0.0494 (11)
N31.2254 (6)0.4929 (5)0.0348 (3)0.0660 (18)
C141.1206 (6)0.3353 (5)0.0562 (3)0.101 (3)
C151.3142 (14)0.5932 (12)0.0394 (5)0.117 (4)
C161.2371 (14)0.5717 (13)0.1167 (5)0.127 (5)
H1A0.901301.077700.390000.0430*
H2A0.820101.005700.530900.0420*
H5A0.631300.900100.624200.0400*
H6A0.497000.759200.729100.0500*
H7A0.269400.517000.690300.0520*
H8A0.165100.422300.546900.0420*
H10A0.666200.794700.228700.0480*
H10B0.769600.979800.233000.0480*
H12A0.042100.404200.397300.0340*
H12B0.188200.315500.414600.0340*
H7B0.669400.024600.046900.1210*
H7C0.747400.090900.037300.1210*
H8B1.211200.041400.150100.0740*
H8C1.071900.132500.154700.0740*
H14A1.089400.281600.112900.1510*
H15A1.302500.531700.089600.1750*
H15B1.262600.678300.042300.1750*
H15C1.438900.638800.037600.1750*
H16A1.172800.494200.164300.1900*
H16B1.360700.614700.121000.1900*
H16C1.185500.657700.118100.1900*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn20.0249 (3)0.0290 (3)0.0234 (3)0.0051 (2)0.0009 (2)0.0017 (2)
Cl10.0314 (5)0.0477 (7)0.0473 (7)0.0147 (5)0.0092 (5)0.0004 (5)
O10.0401 (16)0.0295 (15)0.0255 (14)0.0018 (12)0.0031 (12)0.0017 (12)
O20.0267 (14)0.0531 (19)0.0271 (15)0.0065 (13)0.0048 (12)0.0146 (14)
O30.0330 (17)0.083 (3)0.0349 (18)0.0130 (17)0.0115 (14)0.0271 (17)
O40.0455 (17)0.0321 (16)0.0290 (15)0.0076 (13)0.0084 (13)0.0017 (12)
O50.0502 (19)0.0320 (17)0.0456 (19)0.0007 (14)0.0089 (15)0.0144 (14)
N10.0214 (15)0.0339 (18)0.0270 (17)0.0061 (14)0.0030 (13)0.0041 (14)
N20.0237 (16)0.0361 (19)0.0286 (18)0.0079 (14)0.0033 (14)0.0075 (14)
C10.025 (2)0.033 (2)0.040 (2)0.0009 (17)0.0014 (18)0.0049 (19)
C20.029 (2)0.034 (2)0.034 (2)0.0038 (17)0.0023 (17)0.0019 (18)
C30.0261 (18)0.0230 (18)0.0244 (19)0.0099 (15)0.0013 (15)0.0002 (15)
C40.0262 (19)0.029 (2)0.028 (2)0.0126 (16)0.0004 (16)0.0002 (16)
C50.039 (2)0.036 (2)0.024 (2)0.0140 (18)0.0012 (17)0.0048 (17)
C60.046 (3)0.053 (3)0.026 (2)0.019 (2)0.0041 (19)0.004 (2)
C70.046 (3)0.058 (3)0.030 (2)0.017 (2)0.017 (2)0.013 (2)
C80.035 (2)0.037 (2)0.031 (2)0.0090 (19)0.0075 (18)0.0018 (18)
C90.029 (2)0.032 (2)0.0230 (19)0.0133 (17)0.0040 (16)0.0000 (16)
C100.029 (2)0.056 (3)0.035 (2)0.012 (2)0.0103 (18)0.013 (2)
C110.029 (2)0.045 (2)0.026 (2)0.0102 (19)0.0038 (17)0.0036 (18)
C120.0272 (19)0.0220 (19)0.032 (2)0.0034 (15)0.0057 (16)0.0013 (16)
C130.031 (2)0.034 (2)0.040 (2)0.0138 (18)0.0027 (18)0.0043 (19)
Zn10.0342 (4)0.0339 (4)0.0301 (4)0.0116 (3)0.0071 (3)0.0034 (3)
O60.133 (4)0.050 (3)0.098 (4)0.022 (3)0.030 (3)0.031 (2)
O70.050 (2)0.177 (5)0.0319 (19)0.058 (3)0.0093 (17)0.007 (2)
O80.070 (2)0.061 (2)0.0268 (16)0.0414 (19)0.0013 (15)0.0040 (15)
N30.073 (3)0.039 (2)0.090 (4)0.014 (2)0.032 (3)0.002 (2)
C140.116 (5)0.069 (4)0.113 (5)0.017 (4)0.031 (4)0.004 (4)
C150.168 (8)0.130 (7)0.066 (5)0.082 (6)0.001 (5)0.018 (5)
C160.157 (9)0.163 (9)0.052 (5)0.049 (7)0.005 (5)0.022 (5)
Geometric parameters (Å, º) top
Zn2—Cl12.2373 (14)C1—C21.359 (7)
Zn2—O12.302 (3)C2—C31.416 (6)
Zn2—O22.029 (3)C3—C41.466 (6)
Zn2—O41.973 (3)C4—C51.403 (7)
Zn2—N12.027 (3)C4—C91.409 (6)
Zn1—O62.067 (4)C5—C61.380 (7)
Zn1—O72.066 (4)C6—C71.385 (7)
Zn1—O82.102 (3)C7—C81.384 (7)
Zn1—O6i2.067 (4)C8—C91.401 (6)
Zn1—O7i2.066 (4)C10—C111.519 (7)
Zn1—O8i2.102 (3)C12—C131.502 (7)
O1—C91.372 (4)C1—H1A0.9300
O1—C121.427 (5)C2—H2A0.9300
O2—C111.271 (5)C5—H5A0.9300
O3—C111.233 (6)C6—H6A0.9300
O4—C131.276 (5)C7—H7A0.9300
O5—C131.252 (5)C8—H8A0.9300
O6—C141.132 (7)C10—H10B0.9700
O7—H7B0.9600C10—H10A0.9700
O7—H7C0.9600C12—H12B0.9700
O8—H8C0.9600C12—H12A0.9700
O8—H8B0.9600C14—H14A0.9600
N1—N21.347 (5)C15—H15A0.9600
N1—C31.362 (4)C15—H15B0.9600
N2—C11.339 (6)C15—H15C0.9600
N2—C101.464 (6)C16—H16A0.9600
N3—C151.390 (10)C16—H16B0.9600
N3—C161.470 (10)C16—H16C0.9600
N3—C141.374 (6)
Cl1—Zn2—O194.96 (9)C3—C4—C5119.3 (4)
Cl1—Zn2—O299.10 (11)C4—C5—C6122.6 (4)
Cl1—Zn2—O4110.29 (11)C5—C6—C7118.8 (4)
Cl1—Zn2—N1122.65 (10)C6—C7—C8121.3 (4)
O1—Zn2—O2164.05 (13)C7—C8—C9119.1 (4)
O1—Zn2—O474.99 (11)O1—C9—C4116.2 (3)
O1—Zn2—N175.37 (12)O1—C9—C8122.5 (4)
O2—Zn2—O4106.75 (13)C4—C9—C8121.2 (3)
O2—Zn2—N190.64 (13)N2—C10—C11114.2 (4)
O4—Zn2—N1120.51 (14)O2—C11—C10119.1 (4)
O7—Zn1—O7i180.00O2—C11—O3124.1 (4)
O7—Zn1—O8i89.06 (15)O3—C11—C10116.8 (4)
O6i—Zn1—O890.8 (2)O1—C12—C13108.3 (3)
O7i—Zn1—O889.06 (15)O4—C13—O5124.6 (4)
O8—Zn1—O8i180.00O5—C13—C12115.8 (4)
O6i—Zn1—O7i90.4 (2)O4—C13—C12119.6 (4)
O6i—Zn1—O8i89.2 (2)C2—C1—H1A126.00
O7i—Zn1—O8i90.94 (15)N2—C1—H1A126.00
O7—Zn1—O890.94 (15)C1—C2—H2A127.00
O6i—Zn1—O789.6 (2)C3—C2—H2A127.00
O6—Zn1—O790.4 (2)C6—C5—H5A119.00
O6—Zn1—O889.2 (2)C4—C5—H5A119.00
O6—Zn1—O6i180.00C5—C6—H6A121.00
O6—Zn1—O7i89.6 (2)C7—C6—H6A121.00
O6—Zn1—O8i90.8 (2)C8—C7—H7A119.00
Zn2—O1—C12106.2 (2)C6—C7—H7A119.00
C9—O1—C12120.6 (3)C7—C8—H8A120.00
Zn2—O1—C9125.9 (2)C9—C8—H8A120.00
Zn2—O2—C11127.5 (3)N2—C10—H10A109.00
Zn2—O4—C13119.3 (3)C11—C10—H10B109.00
Zn1—O6—C14135.3 (5)H10A—C10—H10B108.00
H7B—O7—H7C109.00N2—C10—H10B109.00
Zn1—O7—H7C110.00C11—C10—H10A109.00
Zn1—O7—H7B109.00C13—C12—H12A110.00
H8B—O8—H8C109.00O1—C12—H12B110.00
Zn1—O8—H8B109.00O1—C12—H12A110.00
Zn1—O8—H8C109.00C13—C12—H12B110.00
N2—N1—C3106.0 (3)H12A—C12—H12B108.00
Zn2—N1—C3129.2 (3)O6—C14—N3123.6 (5)
Zn2—N1—N2120.7 (2)O6—C14—H14A111.00
N1—N2—C1111.5 (3)N3—C14—H14A125.00
N1—N2—C10121.0 (3)N3—C15—H15A109.00
C1—N2—C10126.8 (4)N3—C15—H15B110.00
C14—N3—C16106.6 (5)N3—C15—H15C109.00
C14—N3—C15138.4 (6)H15A—C15—H15B109.00
C15—N3—C16115.0 (6)H15A—C15—H15C109.00
N2—C1—C2108.2 (4)H15B—C15—H15C109.00
C1—C2—C3105.7 (4)N3—C16—H16A109.00
N1—C3—C2108.6 (3)N3—C16—H16B109.00
N1—C3—C4124.3 (3)N3—C16—H16C109.00
C2—C3—C4127.0 (3)H16A—C16—H16B110.00
C3—C4—C9123.7 (4)H16A—C16—H16C110.00
C5—C4—C9116.9 (4)H16B—C16—H16C109.00
Cl1—Zn2—O1—C969.9 (3)Zn2—N1—N2—C1029.1 (5)
Cl1—Zn2—O1—C1279.9 (2)C3—N1—N2—C11.0 (4)
O4—Zn2—O1—C9179.6 (4)Zn2—N1—N2—C1160.1 (3)
O4—Zn2—O1—C1229.8 (2)N2—N1—C3—C4177.7 (4)
N1—Zn2—O1—C952.6 (3)C3—N1—N2—C10171.8 (4)
N1—Zn2—O1—C12157.7 (3)Zn2—N1—C3—C2156.8 (3)
Cl1—Zn2—O2—C11150.2 (3)Zn2—N1—C3—C425.6 (6)
O4—Zn2—O2—C1195.3 (4)N2—N1—C3—C20.1 (4)
N1—Zn2—O2—C1127.0 (4)N1—N2—C10—C1161.6 (5)
Cl1—Zn2—O4—C1366.6 (4)C1—N2—C10—C11129.1 (4)
O1—Zn2—O4—C1323.2 (3)C10—N2—C1—C2171.6 (4)
O2—Zn2—O4—C13173.3 (3)N1—N2—C1—C21.4 (5)
N1—Zn2—O4—C1385.7 (4)C15—N3—C14—O66.5 (13)
Cl1—Zn2—N1—N2111.0 (3)C16—N3—C14—O6171.4 (7)
Cl1—Zn2—N1—C342.7 (4)N2—C1—C2—C31.3 (5)
O1—Zn2—N1—N2162.5 (3)C1—C2—C3—N10.7 (5)
O1—Zn2—N1—C343.8 (3)C1—C2—C3—C4176.8 (4)
O2—Zn2—N1—N29.8 (3)N1—C3—C4—C5171.2 (4)
O2—Zn2—N1—C3143.9 (3)N1—C3—C4—C913.3 (6)
O4—Zn2—N1—N2100.2 (3)C2—C3—C4—C511.7 (7)
O4—Zn2—N1—C3106.1 (3)C2—C3—C4—C9163.8 (4)
O7i—Zn1—O6—C1460.2 (8)C3—C4—C9—O13.7 (6)
O8i—Zn1—O6—C1430.8 (8)C3—C4—C5—C6175.1 (5)
O7—Zn1—O6—C14119.8 (8)C9—C4—C5—C60.7 (7)
O8—Zn1—O6—C14149.3 (8)C5—C4—C9—C80.9 (6)
C12—O1—C9—C4176.1 (4)C3—C4—C9—C8174.6 (4)
C9—O1—C12—C13177.2 (4)C5—C4—C9—O1179.3 (4)
C12—O1—C9—C82.2 (6)C4—C5—C6—C70.7 (8)
Zn2—O1—C12—C1331.1 (4)C5—C6—C7—C81.8 (8)
Zn2—O1—C9—C438.1 (5)C6—C7—C8—C91.6 (8)
Zn2—O1—C9—C8143.6 (4)C7—C8—C9—O1178.1 (4)
Zn2—O2—C11—O3173.3 (3)C7—C8—C9—C40.2 (7)
Zn2—O2—C11—C104.1 (6)N2—C10—C11—O242.3 (6)
Zn2—O4—C13—O5165.2 (4)N2—C10—C11—O3140.2 (4)
Zn2—O4—C13—C1212.3 (6)O1—C12—C13—O416.5 (6)
Zn1—O6—C14—N3152.5 (5)O1—C12—C13—O5165.7 (4)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O3ii0.961.832.710 (5)151
O8—H8B···O2iii0.962.212.941 (5)132
O8—H8C···O5iv0.961.912.715 (5)140
C2—H2A···Cl1v0.932.793.668 (5)159
C10—H10B···O5vi0.972.593.511 (6)159
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y1, z; (iv) x+1, y, z; (v) x+1, y+2, z+1; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C3H7NO)2(H2O)4][Zn(C13H10N2O5)Cl]2
Mr1033.79
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.0040 (16), 8.7276 (17), 15.782 (3)
α, β, γ (°)90.06 (3), 101.22 (3), 107.95 (3)
V3)1026.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.25 × 0.22 × 0.21
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.642, 0.686
No. of measured, independent and
observed [I > 2σ(I)] reflections
10740, 4704, 3632
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.168, 1.07
No. of reflections4704
No. of parameters265
No. of restraints23
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.99, 0.73

Computer programs: CrystalClear (Rigaku/MSC, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and CrystalStructure (Rigaku/MSC, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O3i0.961.832.710 (5)151
O8—H8B···O2ii0.962.212.941 (5)132
O8—H8C···O5iii0.961.912.715 (5)140
C2—H2A···Cl1iv0.932.793.668 (5)159
C10—H10B···O5v0.972.593.511 (6)159
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1, z; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Foundation of Suzhou Science and Technology of Jiangsu Province of China (SYN201015) and the Key Laboratory of Advanced Functioal Materials of Jiangsu Province of China (No. 10KFJJ002).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, W. P., Hong, M. C., Weng, J. B., Cao, R. & Lu, S. F. (2000). Angew. Chem. Int. Ed. 39, 2911–2914.  Web of Science CrossRef CAS Google Scholar
First citationTong, M. L., Chen, X. M. & Batten, S. R. (2003). J. Am. Chem. Soc. 125, 16170–16171.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds