organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-N′-(3-nitro­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: houjinlong09@163.com

(Received 2 May 2012; accepted 7 May 2012; online 16 May 2012)

In the title compound, C15H13N3O4, the dihedral angle between the benzene rings is 3.1 (3)°. The mol­ecule displays an E conformation about the C=N bond. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, generating chains that propagate along the b-axis direction. There is also a C—H⋯O inter­action present.

Related literature

For the biological properties of hydrazone compounds, see: Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]). For related hydrazone compounds, see: Hou (2009[Hou, J.-L. (2009). Acta Cryst. E65, o851.], 2012[Hou, J.-L. (2012). Acta Cryst. E68, o1352.]); Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Zhang et al. (2009[Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.]); Khaledi et al. (2008[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4

  • Mr = 299.28

  • Monoclinic, P 21

  • a = 6.8472 (17) Å

  • b = 4.8269 (16) Å

  • c = 21.414 (3) Å

  • β = 96.696 (2)°

  • V = 702.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.987

  • 3686 measured reflections

  • 1445 independent reflections

  • 1275 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.05

  • 1445 reflections

  • 203 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.90 (2) 2.03 (2) 2.861 (3) 154 (3)
C6—H6⋯O1ii 0.93 2.60 3.268 (3) 129
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones derived from the condensation reactions of hydrazides with aldehydes show excellent biological properties (Cukurovali et al., 2006; Karthikeyan et al., 2006; Kucukguzel et al., 2006). In the last few years, the crystal structure of a large number of hydrazone compounds have been reported (Hou, 2009; Hou, 2012; Lair et al., 2009; Fun et al., 2008; Zhang et al., 2009; Khaledi et al., 2008). Herein we report on the synthesis and crystal structure of the title compound, derived from the condensation reaction of 3-nitrobenzaldehyde and 4-methoxybenzohydrazide.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the two benzene rings is 3.1 (3)°. The molecule displays an E conformation about the CN bond. All the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal, molecules are linked via N–H···O hydrogen bonds (Table 1) generating chains along the b axis direction (Fig. 2). There is also a C-H···O interaction present (Table 1).

Related literature top

For the biological properties of hydrazone compounds, see: Cukurovali et al. (2006); Karthikeyan et al. (2006); Kucukguzel et al. (2006). For related hydrazone compounds, see: Hou (2009, 2012); Mohd Lair et al. (2009); Fun et al. (2008); Zhang et al. (2009); Khaledi et al. (2008). For standard bond lengths, see: Allen et al. (1987).

Experimental top

3-Nitrobenzaldehyde (1.0 mmol, 151 mg) and 4-methoxybenzohydrazide (1.0 mmol, 166 mg) were mixed and refluxed with stirring for two hours. Yellow single crystals were formed after slow evaporation of the solution in air for a week.

Refinement top

The NH H atom was located in a difference Fourier map and refined with the N–H distance restrained to 0.90 (2) Å and Uiso(H) = 0.08 Å2. The other H atoms were placed in calculated positions and constrained to ride on their parent atoms: C–H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms, and 1.2 for other H atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 929 Friedel pairs were merged and \Df " set to zero.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. The displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, with the N-H···O hydrogen bonds shown as dashed lines (see Table 1 for details).
4-Methoxy-N'-(3-nitrobenzylidene)benzohydrazide top
Crystal data top
C15H13N3O4F(000) = 312
Mr = 299.28Dx = 1.414 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1829 reflections
a = 6.8472 (17) Åθ = 2.8–27.0°
b = 4.8269 (16) ŵ = 0.11 mm1
c = 21.414 (3) ÅT = 298 K
β = 96.696 (2)°Block, yellow
V = 702.9 (3) Å30.17 × 0.13 × 0.13 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1445 independent reflections
Radiation source: fine-focus sealed tube1275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.982, Tmax = 0.987k = 55
3686 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.0855P]
where P = (Fo2 + 2Fc2)/3
1445 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.11 e Å3
2 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H13N3O4V = 702.9 (3) Å3
Mr = 299.28Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.8472 (17) ŵ = 0.11 mm1
b = 4.8269 (16) ÅT = 298 K
c = 21.414 (3) Å0.17 × 0.13 × 0.13 mm
β = 96.696 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1445 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1275 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.987Rint = 0.036
3686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.11 e Å3
1445 reflectionsΔρmin = 0.16 e Å3
203 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0350 (3)0.0065 (5)0.08818 (9)0.0671 (9)
O20.1567 (3)0.1359 (5)0.16985 (9)0.0556 (7)
O30.9986 (3)0.0624 (4)0.29825 (8)0.0492 (6)
O41.7677 (3)0.4319 (5)0.44850 (8)0.0531 (6)
N10.1167 (3)0.0136 (5)0.12433 (10)0.0439 (7)
N20.8115 (3)0.3103 (4)0.21877 (9)0.0376 (7)
N30.9792 (3)0.3715 (5)0.25841 (10)0.0393 (6)
C10.2599 (3)0.2248 (5)0.11108 (11)0.0352 (7)
C20.4255 (3)0.2586 (5)0.15295 (11)0.0347 (7)
C30.5608 (3)0.4617 (5)0.14098 (10)0.0350 (7)
C40.5242 (4)0.6221 (6)0.08719 (11)0.0412 (8)
C50.3576 (4)0.5802 (6)0.04504 (12)0.0454 (9)
C60.2229 (4)0.3800 (7)0.05691 (11)0.0431 (8)
C70.7391 (3)0.5089 (5)0.18495 (11)0.0381 (8)
C81.0667 (4)0.1711 (5)0.29592 (11)0.0362 (8)
C91.2529 (3)0.2545 (5)0.33428 (11)0.0351 (7)
C101.3057 (4)0.1192 (6)0.39120 (12)0.0451 (9)
C111.4763 (4)0.1874 (6)0.42782 (11)0.0460 (9)
C121.6014 (3)0.3851 (6)0.40846 (10)0.0377 (8)
C131.5529 (4)0.5197 (6)0.35165 (11)0.0407 (8)
C141.3780 (4)0.4556 (6)0.31541 (11)0.0388 (8)
C151.8987 (4)0.6411 (7)0.43234 (14)0.0561 (10)
H20.447100.148000.188700.0420*
H31.015 (5)0.550 (3)0.2629 (16)0.0800*
H40.612900.760100.079300.0490*
H50.336400.687000.008700.0550*
H60.110100.350400.029100.0520*
H70.798200.682600.187900.0460*
H101.224700.018300.404400.0540*
H111.508100.099200.466300.0550*
H131.637100.651900.338000.0490*
H141.343800.549200.277800.0470*
H15A1.946500.594100.393300.0840*
H15B2.007500.655300.464800.0840*
H15C1.830800.815200.428000.0840*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0447 (11)0.091 (2)0.0624 (12)0.0261 (12)0.0075 (9)0.0027 (13)
O20.0545 (11)0.0582 (14)0.0551 (11)0.0166 (11)0.0106 (9)0.0077 (11)
O30.0609 (12)0.0281 (10)0.0556 (10)0.0084 (9)0.0057 (9)0.0020 (9)
O40.0444 (10)0.0673 (14)0.0447 (9)0.0134 (10)0.0075 (8)0.0069 (10)
N10.0373 (12)0.0506 (15)0.0445 (11)0.0108 (11)0.0074 (10)0.0085 (11)
N20.0365 (11)0.0324 (12)0.0422 (11)0.0062 (9)0.0031 (9)0.0048 (10)
N30.0386 (11)0.0299 (11)0.0465 (11)0.0082 (10)0.0070 (9)0.0017 (10)
C10.0323 (12)0.0338 (14)0.0396 (12)0.0023 (10)0.0050 (10)0.0061 (11)
C20.0373 (13)0.0338 (13)0.0329 (11)0.0031 (11)0.0038 (10)0.0011 (10)
C30.0341 (12)0.0325 (14)0.0384 (12)0.0023 (10)0.0039 (10)0.0033 (11)
C40.0411 (14)0.0357 (15)0.0471 (14)0.0045 (12)0.0063 (11)0.0016 (12)
C50.0533 (16)0.0439 (17)0.0384 (13)0.0015 (13)0.0023 (12)0.0059 (13)
C60.0388 (13)0.0488 (17)0.0400 (12)0.0012 (13)0.0022 (10)0.0042 (13)
C70.0372 (13)0.0324 (14)0.0439 (13)0.0083 (11)0.0010 (11)0.0007 (12)
C80.0416 (14)0.0266 (14)0.0402 (13)0.0029 (11)0.0037 (11)0.0050 (11)
C90.0389 (13)0.0288 (13)0.0370 (12)0.0004 (11)0.0014 (10)0.0010 (11)
C100.0470 (15)0.0383 (15)0.0494 (15)0.0091 (13)0.0027 (12)0.0078 (12)
C110.0510 (16)0.0481 (17)0.0369 (13)0.0042 (13)0.0037 (12)0.0095 (13)
C120.0347 (12)0.0406 (15)0.0369 (12)0.0018 (12)0.0008 (10)0.0042 (12)
C130.0382 (13)0.0410 (16)0.0425 (13)0.0079 (12)0.0031 (11)0.0031 (12)
C140.0424 (14)0.0376 (15)0.0355 (12)0.0005 (12)0.0004 (10)0.0042 (12)
C150.0434 (15)0.062 (2)0.0604 (17)0.0112 (15)0.0041 (13)0.0008 (16)
Geometric parameters (Å, º) top
O1—N11.225 (3)C9—C141.386 (4)
O2—N11.218 (3)C9—C101.393 (4)
O3—C81.223 (3)C10—C111.369 (4)
O4—C121.362 (3)C11—C121.378 (4)
O4—C151.420 (4)C12—C131.385 (3)
N1—C11.465 (3)C13—C141.384 (4)
N2—N31.378 (3)C2—H20.9300
N2—C71.267 (3)C4—H40.9300
N3—C81.352 (3)C5—H50.9300
N3—H30.898 (18)C6—H60.9300
C1—C61.379 (4)C7—H70.9300
C1—C21.371 (3)C10—H100.9300
C2—C31.393 (3)C11—H110.9300
C3—C41.386 (3)C13—H130.9300
C3—C71.470 (3)C14—H140.9300
C4—C51.385 (4)C15—H15A0.9600
C5—C61.380 (4)C15—H15B0.9600
C8—C91.489 (3)C15—H15C0.9600
C12—O4—C15118.0 (2)O4—C12—C11115.4 (2)
O1—N1—O2123.6 (2)C11—C12—C13119.7 (2)
O1—N1—C1118.1 (2)C12—C13—C14119.4 (2)
O2—N1—C1118.3 (2)C9—C14—C13121.1 (2)
N3—N2—C7115.6 (2)C1—C2—H2121.00
N2—N3—C8119.5 (2)C3—C2—H2121.00
C8—N3—H3122 (2)C3—C4—H4119.00
N2—N3—H3118 (2)C5—C4—H4119.00
N1—C1—C6118.7 (2)C4—C5—H5120.00
N1—C1—C2118.5 (2)C6—C5—H5120.00
C2—C1—C6122.8 (2)C1—C6—H6121.00
C1—C2—C3118.7 (2)C5—C6—H6121.00
C2—C3—C7120.8 (2)N2—C7—H7120.00
C2—C3—C4119.1 (2)C3—C7—H7120.00
C4—C3—C7120.1 (2)C9—C10—H10120.00
C3—C4—C5121.0 (2)C11—C10—H10120.00
C4—C5—C6120.0 (2)C10—C11—H11120.00
C1—C6—C5118.3 (2)C12—C11—H11120.00
N2—C7—C3119.3 (2)C12—C13—H13120.00
O3—C8—C9122.2 (2)C14—C13—H13120.00
N3—C8—C9115.2 (2)C9—C14—H14119.00
O3—C8—N3122.6 (2)C13—C14—H14119.00
C10—C9—C14118.5 (2)O4—C15—H15A109.00
C8—C9—C10118.3 (2)O4—C15—H15B109.00
C8—C9—C14123.2 (2)O4—C15—H15C109.00
C9—C10—C11120.4 (2)H15A—C15—H15B109.00
C10—C11—C12120.9 (2)H15A—C15—H15C109.00
O4—C12—C13124.9 (2)H15B—C15—H15C109.00
C15—O4—C12—C11177.6 (2)C7—C3—C4—C5179.7 (2)
C15—O4—C12—C132.4 (4)C2—C3—C4—C51.0 (4)
O2—N1—C1—C24.8 (3)C3—C4—C5—C61.3 (4)
O1—N1—C1—C63.6 (3)C4—C5—C6—C10.4 (4)
O2—N1—C1—C6174.9 (2)O3—C8—C9—C1027.8 (4)
O1—N1—C1—C2176.7 (2)N3—C8—C9—C1429.2 (3)
N3—N2—C7—C3179.63 (19)O3—C8—C9—C14150.7 (3)
C7—N2—N3—C8179.7 (2)N3—C8—C9—C10152.3 (2)
N2—N3—C8—C9176.7 (2)C8—C9—C14—C13177.8 (2)
N2—N3—C8—O33.1 (4)C10—C9—C14—C130.7 (4)
N1—C1—C6—C5179.4 (2)C8—C9—C10—C11179.5 (2)
C2—C1—C6—C50.9 (4)C14—C9—C10—C110.9 (4)
C6—C1—C2—C31.2 (4)C9—C10—C11—C121.8 (4)
N1—C1—C2—C3179.2 (2)C10—C11—C12—C130.9 (4)
C1—C2—C3—C40.2 (3)C10—C11—C12—O4179.1 (2)
C1—C2—C3—C7179.0 (2)O4—C12—C13—C14179.3 (3)
C2—C3—C7—N227.7 (3)C11—C12—C13—C140.7 (4)
C4—C3—C7—N2153.1 (2)C12—C13—C14—C91.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.90 (2)2.03 (2)2.861 (3)154 (3)
C6—H6···O1ii0.932.603.268 (3)129
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O4
Mr299.28
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.8472 (17), 4.8269 (16), 21.414 (3)
β (°) 96.696 (2)
V3)702.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.17 × 0.13 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
3686, 1445, 1275
Rint0.036
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.05
No. of reflections1445
No. of parameters203
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.16

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.898 (18)2.026 (19)2.861 (3)154 (3)
C6—H6···O1ii0.932.603.268 (3)129
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z.
 

Acknowledgements

This project was supported by the Research Foundation of the Education Bureau of Heilongjiang Province, China (grant No. 11521312).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, J.-L. (2009). Acta Cryst. E65, o851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, J.-L. (2012). Acta Cryst. E68, o1352.  CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds