organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-((E)-{[4-(Hy­dr­oxy­meth­yl)phen­yl]imino}­meth­yl)phenol

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Purdue University, W. Lafayette, IN 47907, USA, and dDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 25 April 2012; accepted 30 April 2012; online 5 May 2012)

The title compound, C14H13NO2, adopts the enol–imine tautomeric form, with an intra­molecular O—H⋯N hydrogen bond which generates an S(6) ring motif. The dihedral angle between the aromatic rings is 7.85 (7)°. The crystal structure is stabilized by O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, forming a two-dimensional array that stacks along the a axis. In addition, a C—H⋯π inter­action contributes to the stabilization of the crystal packing.

Related literature

For background to Schiff base compounds, see: Elena et al. (2000[Elena, E.-F., Torres, L., Antonia, M., Mendialoey, M. A. & Sevela, M. T. (2000). Polyhedron, 19, 441-451.]); Mohamed et al. (2006[Mohamed, G. G., Omar, M. M. & Hindy, A. M. (2006). Turk. J. Chem. 30, 361-382.]); Rajavel et al. (2008[Rajavel, P., Senthil, M. S. & Anitha, C. (2008). E-Journal Chem. 5, 620-626.]); Uğraş et al. (2006[Uğraş, H. I., Başaran, I., Kılıç, T. & Çakır, U. (2006). J. Heterocycl. Chem. 43, 1679-1684.]); Wadher et al. (2009[Wadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharm. Tech. Res. 1, 22-33.]). For similar structures, see: Deveci et al. (2008[Deveci, Ö., Işık, Ş., Erşahin, F. & Ağar, E. (2008). Acta Cryst. E64, o539.]); Karadayı et al. (2003[Karadayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, o851-o853.]); Koşar et al. (2010[Koşar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2010). Turk. J. Chem. 34, 481-487.]); Ünver et al. (2002[Ünver, H., Kendi, E., Güven, K. & Durlu, T. (2002). Z. Naturforsch. Teil B, 57, 685-690.]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2

  • Mr = 227.25

  • Monoclinic, P 21 /c

  • a = 19.8172 (14) Å

  • b = 4.7217 (1) Å

  • c = 12.3106 (2) Å

  • β = 104.005 (7)°

  • V = 1117.67 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.08 mm

Data collection
  • Rigaku RAPID II diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.838, Tmax = 0.944

  • 10711 measured reflections

  • 1958 independent reflections

  • 1641 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.14

  • 1958 reflections

  • 163 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.94 (3) 1.79 (2) 2.7235 (14) 172 (2)
O2—H2⋯N1 0.93 (2) 1.74 (2) 2.5990 (15) 151.7 (19)
C7—H7⋯O1ii 0.95 2.57 3.4288 (16) 150
C8—H8⋯O2iii 0.95 2.59 3.4492 (16) 151
C1—H1BCg1iv 0.99 2.56 3.5050 (15) 160
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Schiff base compounds are important class of materials due to their flexibility, structural similarities with natural biological substances and also due to presence of imine (–N=CH–) which relates to the mechanism of transformation and racemisation reactions in biological system (Rajavel et al., 2008). Schiff bases-bimolecular condensation products of amnio alcohols with aldehydes represent valuable intermediates in organic synthesis with various applications (Uğraş et al., 2006). Schiff bases resulted from aromatic aldehydes ortho-substituted with a hydroxyl group initially aroused interest due to the several donor atoms in their structures which give them an advantage to form a water soluble transition metal complexes (Wadher et al., 2009). This advantage raises potential applications in water treatment (Elena et al., 2000). They could also act as valuable ligands whose biological activity has been shown to increase on complexation (Mohamed et al., 2006).

As seen in Fig. 1, the title compound shows the enol-imine tautomeric form, which has an intramolecular O— H···N hydrogen bond forming an S(6) ring motif (Bernstein et al., 1995). The C14—O2 single bond [1.3525 (17) Å] and the C8N1 double bond [1.2829 (17) Å] verify the enol-imine form. These distances and the values of the other geometric parameters are in the normal range and are comparable with those of other similar compounds reported previously (Koşar, et al., 2010; Deveci et al., 2008; Ünver et al., 2002; Karadayı et al., 2003). The N1—C8—C9—C14 torsion angle is 1.8 (2)°. Therefore, the N1/C8/C9/C14/O2/H2 S(6) ring is essentially coplanar with the C9–C14 benzene ring to which it is bonded.

In the crystal, molecules are linked by O—H···O and weak C—H···O hydrogen bonds, forming a two dimensional array that stacks along the a axis Fig. 2 and Table 1. The crystal packing is further stabilized by C—H···π interactions, Table 1.

Related literature top

For background to Schiff base compounds, see: Elena et al. (2000); Mohamed et al. (2006); Rajavel et al. (2008); Uğraş et al. (2006); Wadher et al. (2009). For similar structures, see: Deveci et al. (2008); Karadayı et al. (2003); Koşar et al. (2010); Ünver et al. (2002). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized as a secondary product from a three component reaction of cyclohexane-1,3-dione (1 mmol), (4-aminophenyl)methanol (1 mmol), and salicylaldehde (1 mmol). The reaction mixture was refluxed in ethanol at 351 K for four hours then left at room temperature for two days. The resulting solid product was filtered of, dried and recrystallized from ethanol. (43% yield, M.pt: 403 K). Crystals suitable for X-ray diffraction were grown in a diluted ethanol solution at room temperature by the slow evaporation method.

Refinement top

The H atoms of the hydroxyl groups were located from a difference Fourier map and refined freely [O1—H1 = 0.94 (3) Å and O2—H2 = 0.93 (2) Å]. The hydrogen atoms at C were located geometrically and refined using a riding model with C—H = 0.95 Å for aromatic and 0.99 Å for methylene, and with Uiso = 1.2Ueq(C). Sixteen poorly fitted reflections (-3 2 10), (-11 0 10), (1 0 0), (-5 1 13), (-7 0 14), (-9 0 14), (-13 1 12), (-12 0 12), (-3 1 14), (-14 1 12), (-8 0 14), (-16 1 12), (-10 5 2), (-4 0 14), (17 1 6), and (12 0 10) were omitted from the refinement.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalClear (Rigaku/MSC, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing and hydrogen bonding of (I), viewed along the b axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-((E)-{[4-(Hydroxymethyl)phenyl]imino}methyl)phenol top
Crystal data top
C14H13NO2F(000) = 480
Mr = 227.25Dx = 1.351 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 11657 reflections
a = 19.8172 (14) Åθ = 2–66°
b = 4.7217 (1) ŵ = 0.73 mm1
c = 12.3106 (2) ÅT = 150 K
β = 104.005 (7)°Plate, yellow
V = 1117.67 (9) Å30.25 × 0.20 × 0.08 mm
Z = 4
Data collection top
Rigaku RAPID II
diffractometer
1641 reflections with I > 2σ(I)
Confocal optics monochromatorRint = 0.030
ω scansθmax = 66.6°, θmin = 4.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2001)
h = 2323
Tmin = 0.838, Tmax = 0.944k = 55
10711 measured reflectionsl = 1114
1958 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.170P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1958 reflectionsΔρmax = 0.23 e Å3
163 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0077 (8)
Crystal data top
C14H13NO2V = 1117.67 (9) Å3
Mr = 227.25Z = 4
Monoclinic, P21/cCu Kα radiation
a = 19.8172 (14) ŵ = 0.73 mm1
b = 4.7217 (1) ÅT = 150 K
c = 12.3106 (2) Å0.25 × 0.20 × 0.08 mm
β = 104.005 (7)°
Data collection top
Rigaku RAPID II
diffractometer
1958 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2001)
1641 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.944Rint = 0.030
10711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.23 e Å3
1958 reflectionsΔρmin = 0.18 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46733 (5)0.1618 (2)0.25819 (8)0.0330 (3)
O20.19567 (6)1.2380 (2)0.56950 (8)0.0408 (4)
N10.24780 (5)0.9636 (2)0.42590 (9)0.0258 (3)
C10.44786 (7)0.1429 (3)0.36158 (11)0.0285 (4)
C20.39457 (6)0.3581 (3)0.37420 (11)0.0252 (4)
C30.34633 (7)0.4685 (3)0.28219 (11)0.0278 (4)
C40.29742 (7)0.6676 (3)0.29556 (11)0.0279 (4)
C50.29508 (6)0.7592 (3)0.40265 (11)0.0245 (4)
C60.34194 (7)0.6431 (3)0.49448 (11)0.0279 (4)
C70.39100 (7)0.4468 (3)0.48021 (11)0.0287 (4)
C80.20820 (6)1.1083 (3)0.34759 (11)0.0257 (4)
C90.15921 (6)1.3145 (3)0.37087 (11)0.0259 (4)
C100.11604 (6)1.4634 (3)0.28242 (11)0.0296 (4)
C110.06849 (7)1.6600 (3)0.30125 (13)0.0340 (4)
C120.06377 (7)1.7098 (3)0.41032 (13)0.0371 (5)
C130.10585 (7)1.5687 (3)0.49924 (12)0.0375 (5)
C140.15422 (7)1.3713 (3)0.48079 (11)0.0299 (4)
H10.4926 (14)0.330 (5)0.259 (2)0.099 (8)*
H1A0.489900.167300.423500.0340*
H1B0.429100.048900.368400.0340*
H20.2230 (10)1.115 (5)0.5393 (17)0.071 (6)*
H30.346900.406300.209000.0330*
H40.265400.741900.231700.0330*
H60.340300.699100.567900.0340*
H70.422800.371400.544100.0340*
H80.211001.079700.272400.0310*
H100.119501.428600.208000.0360*
H110.039501.759500.240500.0410*
H120.030901.843600.423800.0440*
H130.101901.605900.573300.0450*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0382 (6)0.0280 (5)0.0374 (6)0.0013 (4)0.0182 (4)0.0000 (4)
O20.0522 (7)0.0451 (7)0.0276 (6)0.0127 (5)0.0147 (5)0.0002 (5)
N10.0276 (6)0.0231 (6)0.0285 (6)0.0012 (4)0.0104 (5)0.0012 (4)
C10.0317 (7)0.0239 (7)0.0317 (7)0.0005 (5)0.0113 (6)0.0021 (5)
C20.0270 (7)0.0198 (6)0.0305 (7)0.0041 (5)0.0102 (6)0.0012 (5)
C30.0331 (7)0.0266 (7)0.0255 (7)0.0008 (5)0.0105 (6)0.0023 (5)
C40.0301 (7)0.0283 (7)0.0248 (7)0.0021 (5)0.0059 (6)0.0010 (5)
C50.0272 (7)0.0209 (6)0.0275 (7)0.0034 (5)0.0110 (6)0.0013 (5)
C60.0354 (7)0.0264 (7)0.0236 (7)0.0019 (5)0.0102 (6)0.0013 (5)
C70.0319 (7)0.0256 (7)0.0277 (7)0.0006 (6)0.0054 (6)0.0025 (5)
C80.0289 (7)0.0235 (7)0.0263 (7)0.0042 (5)0.0101 (6)0.0025 (5)
C90.0265 (7)0.0212 (6)0.0323 (7)0.0041 (5)0.0116 (6)0.0025 (5)
C100.0303 (7)0.0279 (7)0.0315 (7)0.0024 (5)0.0090 (6)0.0015 (6)
C110.0291 (7)0.0275 (7)0.0451 (9)0.0001 (6)0.0085 (6)0.0008 (6)
C120.0326 (8)0.0302 (8)0.0528 (10)0.0022 (6)0.0189 (7)0.0049 (7)
C130.0445 (8)0.0356 (8)0.0383 (8)0.0005 (7)0.0213 (7)0.0063 (7)
C140.0329 (7)0.0283 (7)0.0311 (7)0.0018 (5)0.0130 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1—C11.4193 (17)C10—C111.382 (2)
O2—C141.3525 (17)C11—C121.388 (2)
O1—H10.94 (3)C12—C131.377 (2)
O2—H20.93 (2)C13—C141.395 (2)
N1—C51.4216 (17)C1—H1A0.9900
N1—C81.2829 (17)C1—H1B0.9900
C1—C21.5004 (19)C3—H30.9500
C2—C71.3886 (19)C4—H40.9500
C2—C31.3945 (19)C6—H60.9500
C3—C41.388 (2)C7—H70.9500
C4—C51.3989 (19)C8—H80.9500
C5—C61.3902 (19)C10—H100.9500
C6—C71.385 (2)C11—H110.9500
C8—C91.4516 (19)C12—H120.9500
C9—C141.4063 (19)C13—H130.9500
C9—C101.4003 (19)
C1—O1—H1107.7 (15)O2—C14—C13119.12 (12)
C14—O2—H2105.4 (13)O1—C1—H1A109.00
C5—N1—C8121.56 (11)O1—C1—H1B109.00
O1—C1—C2113.65 (11)C2—C1—H1A109.00
C1—C2—C7119.92 (12)C2—C1—H1B109.00
C3—C2—C7118.02 (12)H1A—C1—H1B108.00
C1—C2—C3122.03 (12)C2—C3—H3119.00
C2—C3—C4121.19 (12)C4—C3—H3119.00
C3—C4—C5120.29 (12)C3—C4—H4120.00
N1—C5—C4124.99 (12)C5—C4—H4120.00
C4—C5—C6118.46 (12)C5—C6—H6120.00
N1—C5—C6116.56 (12)C7—C6—H6120.00
C5—C6—C7120.80 (12)C2—C7—H7119.00
C2—C7—C6121.20 (12)C6—C7—H7119.00
N1—C8—C9121.70 (12)N1—C8—H8119.00
C10—C9—C14118.72 (12)C9—C8—H8119.00
C8—C9—C10119.68 (12)C9—C10—H10119.00
C8—C9—C14121.60 (12)C11—C10—H10119.00
C9—C10—C11121.33 (13)C10—C11—H11120.00
C10—C11—C12118.97 (13)C12—C11—H11121.00
C11—C12—C13121.15 (13)C11—C12—H12119.00
C12—C13—C14120.12 (13)C13—C12—H12119.00
C9—C14—C13119.70 (13)C12—C13—H13120.00
O2—C14—C9121.19 (12)C14—C13—H13120.00
C5—N1—C8—C9179.17 (12)C5—C6—C7—C20.6 (2)
C8—N1—C5—C48.8 (2)N1—C8—C9—C10178.71 (12)
C8—N1—C5—C6171.49 (12)N1—C8—C9—C141.8 (2)
O1—C1—C2—C7153.49 (12)C8—C9—C10—C11179.61 (13)
O1—C1—C2—C328.42 (18)C14—C9—C10—C110.9 (2)
C3—C2—C7—C61.2 (2)C8—C9—C14—O20.9 (2)
C1—C2—C3—C4179.98 (14)C8—C9—C14—C13179.25 (13)
C1—C2—C7—C6179.38 (13)C10—C9—C14—O2178.60 (12)
C7—C2—C3—C41.9 (2)C10—C9—C14—C131.3 (2)
C2—C3—C4—C50.8 (2)C9—C10—C11—C120.0 (2)
C3—C4—C5—C61.0 (2)C10—C11—C12—C130.5 (2)
C3—C4—C5—N1179.32 (13)C11—C12—C13—C140.1 (2)
C4—C5—C6—C71.7 (2)C12—C13—C14—O2179.11 (13)
N1—C5—C6—C7178.61 (12)C12—C13—C14—C90.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.94 (3)1.79 (2)2.7235 (14)172 (2)
O2—H2···N10.93 (2)1.74 (2)2.5990 (15)151.7 (19)
C7—H7···O1ii0.952.573.4288 (16)150
C8—H8···O2iii0.952.593.4492 (16)151
C1—H1B···Cg1iv0.992.563.5050 (15)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+5/2, z1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H13NO2
Mr227.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)19.8172 (14), 4.7217 (1), 12.3106 (2)
β (°) 104.005 (7)
V3)1117.67 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.73
Crystal size (mm)0.25 × 0.20 × 0.08
Data collection
DiffractometerRigaku RAPID II
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2001)
Tmin, Tmax0.838, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
10711, 1958, 1641
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.14
No. of reflections1958
No. of parameters163
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.94 (3)1.79 (2)2.7235 (14)172 (2)
O2—H2···N10.93 (2)1.74 (2)2.5990 (15)151.7 (19)
C7—H7···O1ii0.952.573.4288 (16)150
C8—H8···O2iii0.952.593.4492 (16)151
C1—H1B···Cg1iv0.992.563.5050 (15)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+5/2, z1/2; (iv) x, y1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Ministry of Egypt for financial support of this project. Manchester Metropolitan University and Purdue University are also acknowledged for the data collection and support of this study.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDeveci, Ö., Işık, Ş., Erşahin, F. & Ağar, E. (2008). Acta Cryst. E64, o539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElena, E.-F., Torres, L., Antonia, M., Mendialoey, M. A. & Sevela, M. T. (2000). Polyhedron, 19, 441–451.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKaradayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, o851–o853.  CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2010). Turk. J. Chem. 34, 481–487.  Google Scholar
First citationMohamed, G. G., Omar, M. M. & Hindy, A. M. (2006). Turk. J. Chem. 30, 361–382.  CAS Google Scholar
First citationRajavel, P., Senthil, M. S. & Anitha, C. (2008). E-Journal Chem. 5, 620–626.  CAS Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUğraş, H. I., Başaran, I., Kılıç, T. & Çakır, U. (2006). J. Heterocycl. Chem. 43, 1679–1684.  Google Scholar
First citationÜnver, H., Kendi, E., Güven, K. & Durlu, T. (2002). Z. Naturforsch. Teil B, 57, 685–690.  Google Scholar
First citationWadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharm. Tech. Res. 1, 22–33.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds