organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Eth­­oxy-6-{[1-(3-eth­­oxy-2-hy­dr­oxy­benz­yl)-1H-benzimidazol-2-yl]meth­yl}phenol nitro­methane monosolvate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 23 May 2012; accepted 24 May 2012; online 31 May 2012)

In the title solvate, C24H24N2O4·CH3NO2, the benzene ring of the 2-eth­oxy-6-methyl­phenol substituent is approximately perpendicular to the nearly planar benzimidazole ring [maximum deviation = 0.021 (2) Å], making a dihedral angle of 84.32 (7)°. The benzene ring of the 2-eth­oxy­phenol group is somewhat inclined to the benzimidazole ring plane by 28.03 (5)°. The dihedral angle between the benzene rings is 82.20 (9)°. The compound reveals strong intra­molecular O—H⋯N and O—H⋯O hydrogen bonds, forming six- and five-membered rings, respectively. In the crystal, mol­ecules are connected by bifurcated O—H⋯(O,O) hydrogen bonds, forming chains along the b axis.

Related literature

For the crystal structure of the meth­oxy derivative of the title compound, see: Al-Douh et al. (2009[Al-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009). Acta Cryst. E65, o913-o914.]). For the crystal structure of the title compound as an acetonitrile monosolvate, see: Ha (2012[Ha, K. (2012). Acta Cryst. E68, o1398.]).

[Scheme 1]

Experimental

Crystal data
  • C24H24N2O4·CH3NO2

  • Mr = 465.50

  • Monoclinic, P 21 /c

  • a = 7.5151 (7) Å

  • b = 19.6463 (17) Å

  • c = 16.2578 (15) Å

  • β = 99.898 (2)°

  • V = 2364.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.36 × 0.20 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 1.000

  • 17462 measured reflections

  • 5846 independent reflections

  • 2523 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.157

  • S = 0.95

  • 5846 reflections

  • 318 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.92 (4) 1.75 (4) 2.596 (3) 152 (3)
O3—H3O⋯O4 0.99 (3) 2.27 (3) 2.710 (2) 106 (2)
O3—H3O⋯O1i 0.99 (3) 1.91 (3) 2.819 (2) 151 (2)
O3—H3O⋯O2i 0.99 (3) 2.36 (3) 3.012 (3) 122 (2)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structures of the related compound, 2-[1-(2-hydroxy-3-methoxybenzyl)-1H-benzimidazol-2-yl]-6-methoxyphenol monohydrate, and the title compound as an acetonitrile monosolvate have been reported previously (Al-Douh et al., 2009; Ha, 2012).

The title compound, C24H24N2O4.CH3NO2, contains a disubstituted benzimidazole molecule and a lattice solvent molecule (Fig. 1). The benzene ring (C17–C22) of the 2-ethoxy-6-methylphenol substituent is approximately perpendicular to the nearly planar benzimidazole ring system [maximum deviation = 0.021 (2) Å], making a dihedral angle of 84.32 (7)°. The benzene ring (C8–C13) of the 2-ethoxyphenol group is somewhat inclined to the benzimidazole ring plane by 28.03 (5)°. The dihedral angle between the benzene rings is 82.20 (9)°. The compound reveals strong intramolecular O—H···N and O—H···O hydrogen bonds, forming six- and five-membered rings, respectively (Fig. 2 and Table 1). In the crystal, molecules are connected by bifurcated O—H···(O,O) hydrogen bonds, forming chains along the b axis (Fig. 2 and Table 1).

Related literature top

For the crystal structure of the methoxy derivative of the title compound, see: Al-Douh et al. (2009). For the crystal structure of the title compound as an acetonitrile monosolvate, see: Ha (2012).

Experimental top

1,2-Phenylenediamine (0.7568 g, 6.998 mmol) and 3-ethoxysalicylaldehyde (2.3269 g, 14.003 mmol) in EtOH (20 ml) were stirred for 5 h at room temperature. After evaporation of the solvent, the residue was recrystallized from a mixture of acetone and ether at 188 K, to give an orange powder (1.9139 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from its CH3NO2 solution at room temperature.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 groups, respectively, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The hydroxy-H atoms were located from a difference Fourier map and refined freely. A number of reflections, (0 1 1), (0 3 2), (5 12 14), (2 11 15), (1 6 19), (2 13 16), (1 4 0) and (3 22 1), were omitted from the final refinement owing to poor agreement.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structure detail of the title compound, with atom numbering. Displacement ellipsoids are drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound. Intra- and intermolecular O—H···N and O—H···O hydrogen-bonds are shown as dashed lines.
2-Ethoxy-6-{[1-(3-ethoxy-2-hydroxybenzyl)-1H-benzimidazol- 2-yl]methyl}phenol nitromethane monosolvate top
Crystal data top
C24H24N2O4·CH3NO2F(000) = 984
Mr = 465.50Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2443 reflections
a = 7.5151 (7) Åθ = 2.8–22.7°
b = 19.6463 (17) ŵ = 0.09 mm1
c = 16.2578 (15) ÅT = 273 K
β = 99.898 (2)°Block, orange
V = 2364.6 (4) Å30.36 × 0.20 × 0.13 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5846 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 910
Tmin = 0.856, Tmax = 1.000k = 2623
17462 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0503P)2]
where P = (Fo2 + 2Fc2)/3
5846 reflections(Δ/σ)max < 0.001
318 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C24H24N2O4·CH3NO2V = 2364.6 (4) Å3
Mr = 465.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5151 (7) ŵ = 0.09 mm1
b = 19.6463 (17) ÅT = 273 K
c = 16.2578 (15) Å0.36 × 0.20 × 0.13 mm
β = 99.898 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5846 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2523 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 1.000Rint = 0.090
17462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.29 e Å3
5846 reflectionsΔρmin = 0.22 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1517 (3)0.00824 (8)0.25918 (12)0.0364 (5)
H1O0.166 (5)0.0034 (17)0.206 (2)0.105 (14)*
O20.1909 (3)0.02200 (9)0.41939 (11)0.0421 (5)
O30.0023 (2)0.36913 (9)0.19378 (11)0.0367 (5)
H3O0.032 (4)0.4180 (15)0.1965 (19)0.076 (10)*
O40.2353 (2)0.47405 (8)0.21047 (12)0.0399 (5)
N10.2058 (3)0.06287 (10)0.13119 (14)0.0362 (6)
N20.1347 (3)0.17347 (10)0.13095 (13)0.0329 (6)
C10.1707 (4)0.08554 (13)0.04930 (17)0.0352 (7)
C20.1729 (4)0.05148 (14)0.02530 (18)0.0424 (8)
H20.20120.00540.02580.051*
C30.1320 (4)0.08766 (15)0.09819 (18)0.0475 (8)
H30.13290.06570.14880.057*
C40.0889 (4)0.15692 (15)0.09826 (19)0.0494 (8)
H40.06290.18010.14880.059*
C50.0841 (4)0.19139 (14)0.02510 (19)0.0453 (8)
H50.05450.23730.02490.054*
C60.1256 (4)0.15445 (13)0.04832 (17)0.0345 (7)
C70.1872 (3)0.11683 (12)0.17827 (16)0.0312 (6)
C80.2174 (3)0.11250 (12)0.26941 (16)0.0311 (6)
C90.1955 (3)0.04905 (12)0.30544 (16)0.0298 (6)
C100.2224 (4)0.04219 (13)0.39271 (17)0.0336 (7)
C110.2786 (4)0.09698 (14)0.44263 (18)0.0403 (7)
H110.29740.09240.50040.048*
C120.3074 (4)0.15947 (14)0.40681 (18)0.0433 (8)
H120.34770.19630.44090.052*
C130.2772 (4)0.16734 (13)0.32187 (18)0.0396 (7)
H130.29650.20950.29890.048*
C140.2320 (4)0.03579 (14)0.50701 (17)0.0444 (8)
H14A0.15620.00850.53680.053*
H14B0.35740.02510.52850.053*
C150.1970 (4)0.11004 (14)0.51828 (18)0.0537 (9)
H15A0.07300.12010.49610.080*
H15B0.22160.12110.57660.080*
H15C0.27410.13650.48930.080*
C160.0750 (4)0.23959 (12)0.15603 (17)0.0355 (7)
H16A0.03740.23510.20990.043*
H16B0.02930.25390.11610.043*
C170.2187 (4)0.29402 (12)0.16189 (16)0.0323 (7)
C180.1706 (4)0.35914 (12)0.18154 (16)0.0313 (6)
C190.2982 (4)0.41196 (13)0.18991 (16)0.0335 (6)
C200.4725 (4)0.39823 (14)0.17722 (17)0.0408 (7)
H200.55790.43290.18210.049*
C210.5192 (4)0.33281 (14)0.15726 (18)0.0455 (8)
H210.63630.32360.14910.055*
C220.3929 (4)0.28132 (13)0.14944 (18)0.0414 (7)
H220.42520.23760.13570.050*
C230.3662 (4)0.52643 (13)0.2358 (2)0.0467 (8)
H23A0.42260.54010.18900.056*
H23B0.45950.50980.27990.056*
C240.2705 (4)0.58586 (14)0.2663 (2)0.0598 (10)
H24A0.17640.60120.22260.090*
H24B0.35500.62220.28200.090*
H24C0.21870.57230.31380.090*
O50.6407 (5)0.27813 (18)0.4851 (3)0.1619 (18)
O60.6611 (6)0.3759 (2)0.5301 (2)0.1664 (18)
N30.6350 (4)0.3364 (2)0.4748 (3)0.0808 (10)
C250.6008 (6)0.3659 (3)0.3918 (3)0.133 (2)
H25A0.48210.38560.38150.200*
H25B0.60870.33110.35110.200*
H25C0.68890.40060.38770.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0477 (13)0.0267 (10)0.0354 (12)0.0027 (8)0.0084 (10)0.0019 (9)
O20.0549 (14)0.0404 (11)0.0313 (11)0.0011 (9)0.0082 (10)0.0044 (9)
O30.0338 (12)0.0312 (11)0.0459 (12)0.0002 (8)0.0094 (10)0.0025 (9)
O40.0400 (13)0.0298 (10)0.0509 (13)0.0062 (9)0.0106 (10)0.0049 (9)
N10.0440 (16)0.0308 (12)0.0345 (14)0.0011 (10)0.0083 (12)0.0006 (11)
N20.0409 (15)0.0252 (12)0.0327 (14)0.0009 (10)0.0070 (11)0.0007 (10)
C10.0424 (18)0.0322 (15)0.0321 (16)0.0024 (13)0.0100 (14)0.0017 (13)
C20.050 (2)0.0393 (16)0.0385 (19)0.0033 (14)0.0103 (15)0.0039 (14)
C30.056 (2)0.056 (2)0.0324 (18)0.0049 (16)0.0112 (16)0.0025 (15)
C40.062 (2)0.051 (2)0.0354 (19)0.0020 (16)0.0086 (16)0.0086 (16)
C50.056 (2)0.0380 (17)0.042 (2)0.0000 (14)0.0088 (16)0.0043 (15)
C60.0391 (18)0.0341 (16)0.0310 (16)0.0049 (12)0.0076 (13)0.0013 (13)
C70.0301 (16)0.0298 (14)0.0338 (16)0.0002 (12)0.0055 (13)0.0008 (13)
C80.0299 (16)0.0268 (14)0.0360 (16)0.0012 (11)0.0045 (13)0.0028 (12)
C90.0280 (16)0.0285 (14)0.0326 (16)0.0019 (11)0.0047 (12)0.0041 (12)
C100.0323 (17)0.0324 (15)0.0366 (18)0.0021 (12)0.0070 (13)0.0027 (13)
C110.0438 (19)0.0438 (17)0.0326 (16)0.0002 (14)0.0044 (14)0.0019 (14)
C120.048 (2)0.0406 (17)0.0402 (19)0.0014 (14)0.0052 (15)0.0089 (14)
C130.0437 (19)0.0324 (16)0.0424 (19)0.0016 (13)0.0065 (15)0.0027 (13)
C140.047 (2)0.0526 (19)0.0332 (18)0.0012 (14)0.0060 (15)0.0065 (14)
C150.067 (2)0.053 (2)0.0408 (19)0.0023 (16)0.0111 (17)0.0124 (15)
C160.0391 (18)0.0275 (14)0.0405 (17)0.0010 (12)0.0088 (14)0.0017 (12)
C170.0357 (18)0.0303 (14)0.0314 (16)0.0014 (12)0.0071 (13)0.0018 (12)
C180.0308 (17)0.0352 (15)0.0271 (15)0.0006 (12)0.0028 (12)0.0027 (12)
C190.0369 (18)0.0338 (15)0.0291 (16)0.0024 (13)0.0041 (13)0.0001 (12)
C200.0394 (19)0.0452 (17)0.0384 (17)0.0081 (14)0.0080 (14)0.0010 (14)
C210.0402 (19)0.0466 (18)0.052 (2)0.0019 (15)0.0148 (16)0.0008 (15)
C220.043 (2)0.0357 (16)0.0463 (19)0.0018 (14)0.0101 (15)0.0004 (13)
C230.042 (2)0.0415 (17)0.055 (2)0.0142 (14)0.0040 (16)0.0075 (15)
C240.059 (2)0.0447 (19)0.077 (3)0.0144 (16)0.016 (2)0.0212 (17)
O50.123 (3)0.078 (2)0.279 (5)0.026 (2)0.018 (3)0.051 (3)
O60.212 (5)0.166 (4)0.118 (3)0.030 (3)0.021 (3)0.050 (3)
N30.067 (2)0.074 (3)0.098 (3)0.0158 (19)0.006 (2)0.000 (2)
C250.085 (4)0.232 (6)0.083 (4)0.034 (4)0.017 (3)0.060 (4)
Geometric parameters (Å, º) top
O1—C91.362 (3)C13—H130.9300
O1—H1O0.92 (4)C14—C151.499 (4)
O2—C101.367 (3)C14—H14A0.9700
O2—C141.431 (3)C14—H14B0.9700
O3—C181.362 (3)C15—H15A0.9600
O3—H3O0.99 (3)C15—H15B0.9600
O4—C191.370 (3)C15—H15C0.9600
O4—C231.434 (3)C16—C171.511 (3)
N1—C71.329 (3)C16—H16A0.9700
N1—C11.386 (3)C16—H16B0.9700
N2—C71.372 (3)C17—C221.381 (4)
N2—C61.385 (3)C17—C181.382 (3)
N2—C161.455 (3)C18—C191.403 (3)
C1—C21.388 (4)C19—C201.387 (4)
C1—C61.395 (3)C20—C211.385 (3)
C2—C31.371 (4)C20—H200.9300
C2—H20.9300C21—C221.378 (4)
C3—C41.399 (4)C21—H210.9300
C3—H30.9300C22—H220.9300
C4—C51.374 (4)C23—C241.500 (4)
C4—H40.9300C23—H23A0.9700
C5—C61.386 (4)C23—H23B0.9700
C5—H50.9300C24—H24A0.9600
C7—C81.462 (4)C24—H24B0.9600
C8—C91.399 (3)C24—H24C0.9600
C8—C131.399 (3)O5—N31.157 (4)
C9—C101.405 (3)O6—N31.178 (4)
C10—C111.370 (3)N3—C251.450 (5)
C11—C121.392 (3)C25—H25A0.9600
C11—H110.9300C25—H25B0.9600
C12—C131.369 (4)C25—H25C0.9600
C12—H120.9300
C9—O1—H1O105 (2)H14A—C14—H14B108.6
C10—O2—C14118.1 (2)C14—C15—H15A109.5
C18—O3—H3O112.0 (18)C14—C15—H15B109.5
C19—O4—C23117.4 (2)H15A—C15—H15B109.5
C7—N1—C1106.0 (2)C14—C15—H15C109.5
C7—N2—C6106.7 (2)H15A—C15—H15C109.5
C7—N2—C16129.8 (2)H15B—C15—H15C109.5
C6—N2—C16123.1 (2)N2—C16—C17113.5 (2)
N1—C1—C2131.0 (2)N2—C16—H16A108.9
N1—C1—C6109.2 (2)C17—C16—H16A108.9
C2—C1—C6119.8 (3)N2—C16—H16B108.9
C3—C2—C1118.1 (3)C17—C16—H16B108.9
C3—C2—H2121.0H16A—C16—H16B107.7
C1—C2—H2121.0C22—C17—C18119.5 (2)
C2—C3—C4121.5 (3)C22—C17—C16123.2 (2)
C2—C3—H3119.2C18—C17—C16117.2 (2)
C4—C3—H3119.2O3—C18—C17117.4 (2)
C5—C4—C3121.3 (3)O3—C18—C19122.2 (2)
C5—C4—H4119.4C17—C18—C19120.4 (2)
C3—C4—H4119.4O4—C19—C20125.7 (2)
C4—C5—C6116.9 (3)O4—C19—C18115.1 (2)
C4—C5—H5121.6C20—C19—C18119.2 (2)
C6—C5—H5121.6C21—C20—C19119.9 (3)
N2—C6—C5131.3 (2)C21—C20—H20120.0
N2—C6—C1106.2 (2)C19—C20—H20120.0
C5—C6—C1122.4 (3)C22—C21—C20120.3 (3)
N1—C7—N2111.9 (2)C22—C21—H21119.8
N1—C7—C8121.6 (2)C20—C21—H21119.8
N2—C7—C8126.5 (2)C21—C22—C17120.6 (2)
C9—C8—C13118.6 (2)C21—C22—H22119.7
C9—C8—C7117.8 (2)C17—C22—H22119.7
C13—C8—C7123.4 (2)O4—C23—C24108.0 (2)
O1—C9—C8122.7 (2)O4—C23—H23A110.1
O1—C9—C10117.2 (2)C24—C23—H23A110.1
C8—C9—C10120.1 (2)O4—C23—H23B110.1
O2—C10—C11126.1 (2)C24—C23—H23B110.1
O2—C10—C9114.0 (2)H23A—C23—H23B108.4
C11—C10—C9119.9 (2)C23—C24—H24A109.5
C10—C11—C12120.0 (3)C23—C24—H24B109.5
C10—C11—H11120.0H24A—C24—H24B109.5
C12—C11—H11120.0C23—C24—H24C109.5
C13—C12—C11120.7 (3)H24A—C24—H24C109.5
C13—C12—H12119.6H24B—C24—H24C109.5
C11—C12—H12119.6O5—N3—O6123.0 (5)
C12—C13—C8120.5 (3)O5—N3—C25121.8 (5)
C12—C13—H13119.7O6—N3—C25115.2 (4)
C8—C13—H13119.7N3—C25—H25A109.5
O2—C14—C15107.1 (2)N3—C25—H25B109.5
O2—C14—H14A110.3H25A—C25—H25B109.5
C15—C14—H14A110.3N3—C25—H25C109.5
O2—C14—H14B110.3H25A—C25—H25C109.5
C15—C14—H14B110.3H25B—C25—H25C109.5
C7—N1—C1—C2179.1 (3)O1—C9—C10—O23.3 (3)
C7—N1—C1—C61.6 (3)C8—C9—C10—O2178.0 (2)
N1—C1—C2—C3179.9 (3)O1—C9—C10—C11175.6 (2)
C6—C1—C2—C30.8 (4)C8—C9—C10—C113.1 (4)
C1—C2—C3—C40.1 (4)O2—C10—C11—C12179.3 (2)
C2—C3—C4—C50.6 (5)C9—C10—C11—C120.5 (4)
C3—C4—C5—C60.6 (4)C10—C11—C12—C131.2 (4)
C7—N2—C6—C5178.3 (3)C11—C12—C13—C80.3 (4)
C16—N2—C6—C58.6 (4)C9—C8—C13—C122.2 (4)
C7—N2—C6—C11.0 (3)C7—C8—C13—C12178.3 (3)
C16—N2—C6—C1172.1 (2)C10—O2—C14—C15176.3 (2)
C4—C5—C6—N2179.4 (3)C7—N2—C16—C17102.3 (3)
C4—C5—C6—C10.2 (4)C6—N2—C16—C1786.3 (3)
N1—C1—C6—N20.3 (3)N2—C16—C17—C223.6 (4)
C2—C1—C6—N2179.8 (2)N2—C16—C17—C18177.0 (2)
N1—C1—C6—C5179.7 (3)C22—C17—C18—O3179.6 (2)
C2—C1—C6—C50.9 (4)C16—C17—C18—O30.2 (4)
C1—N1—C7—N22.3 (3)C22—C17—C18—C190.8 (4)
C1—N1—C7—C8178.9 (2)C16—C17—C18—C19178.6 (2)
C6—N2—C7—N12.1 (3)C23—O4—C19—C2012.0 (4)
C16—N2—C7—N1170.3 (2)C23—O4—C19—C18168.1 (2)
C6—N2—C7—C8179.1 (2)O3—C18—C19—O40.6 (4)
C16—N2—C7—C88.4 (4)C17—C18—C19—O4179.2 (2)
N1—C7—C8—C925.1 (4)O3—C18—C19—C20179.5 (2)
N2—C7—C8—C9153.6 (2)C17—C18—C19—C200.8 (4)
N1—C7—C8—C13151.1 (3)O4—C19—C20—C21179.5 (3)
N2—C7—C8—C1330.3 (4)C18—C19—C20—C210.6 (4)
C13—C8—C9—O1174.7 (2)C19—C20—C21—C220.4 (4)
C7—C8—C9—O11.6 (4)C20—C21—C22—C170.4 (4)
C13—C8—C9—C103.9 (4)C18—C17—C22—C210.6 (4)
C7—C8—C9—C10179.8 (2)C16—C17—C22—C21178.7 (3)
C14—O2—C10—C114.9 (4)C19—O4—C23—C24172.3 (2)
C14—O2—C10—C9173.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.92 (4)1.75 (4)2.596 (3)152 (3)
O3—H3O···O40.99 (3)2.27 (3)2.710 (2)106 (2)
O3—H3O···O1i0.99 (3)1.91 (3)2.819 (2)151 (2)
O3—H3O···O2i0.99 (3)2.36 (3)3.012 (3)122 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H24N2O4·CH3NO2
Mr465.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)7.5151 (7), 19.6463 (17), 16.2578 (15)
β (°) 99.898 (2)
V3)2364.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.20 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.856, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17462, 5846, 2523
Rint0.090
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.157, 0.95
No. of reflections5846
No. of parameters318
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.92 (4)1.75 (4)2.596 (3)152 (3)
O3—H3O···O40.99 (3)2.27 (3)2.710 (2)106 (2)
O3—H3O···O1i0.99 (3)1.91 (3)2.819 (2)151 (2)
O3—H3O···O2i0.99 (3)2.36 (3)3.012 (3)122 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

References

First citationAl-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009). Acta Cryst. E65, o913–o914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, o1398.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds