metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lithium bis­­(2-methyl­lactato)borate monohydrate

aIonic Liquids and Electrolytes for Energy Technologies (ILEET) Laboratory, Dept. of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA, and bX-ray Structural Facility, Dept. of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
*Correspondence e-mail: whender@ncsu.edu

(Received 13 April 2012; accepted 19 April 2012; online 12 May 2012)

The title compound {systematic name: poly[[aqua­lithium]-μ-3,3,8,8-tetra­methyl-1,4,6,9-tetra­oxa-5λ4-borataspiro­[4.4]nonane-2,7-dione]}, [Li(C8H12BO6)(H2O)]n (LiBMLB), forms a 12-membered macrocycle, which lies across a crystallographic inversion center. The lithium cations are pseudo-tetra­hedrally coordinated by three methyl­lactate ligands and a water mol­ecule. The asymmetric units couple across crystallographic inversion centers, forming the 12-membered macrocycles. These macrocycles, in turn, cross-link through the Li+ cations, forming an infinite polymeric structure in two dimensions parallel to (101).

Related literature

For the synthesis and purification of HBMLB [BMLB is bis­(2-methyl­lactato)borate], see: Lamande et al. (1987[Lamande, L., Boyer, D. & Munoz, A. (1987). J. Organomet. Chem. 329, 1-29.]). For the synthesis and properties of LiBMLB and BMLB-based ionic liquids, see: Xu et al. (2003[Xu, W., Wang, L.-M., Nieman, R. A. & Angell, C. A. (2003). J. Phys. Chem. B, 107, 11749-11749.]). For crystallographic data of similar lithium salts, see: Zavalij et al. (2004[Zavalij, P. Y., Yang, S. & Whittingham, M. S. (2004). Acta Cryst. B60, 716-724.]); Allen et al. (2011[Allen, J. L., Han, S.-D., Boyle, P. D. & Henderson, W. A. (2011). J. Power Sources, 196, 9737-9742.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C8H12BO6)(H2O)]

  • Mr = 239.94

  • Orthorhombic, P b c a

  • a = 12.7034 (4) Å

  • b = 11.3939 (4) Å

  • c = 15.8258 (5) Å

  • V = 2290.65 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 110 K

  • 0.34 × 0.23 × 0.18 mm

Data collection
  • Bruker–Nonius Kappa X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.979

  • 97648 measured reflections

  • 5663 independent reflections

  • 4436 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.05

  • 5663 reflections

  • 210 parameters

  • All H-atom parameters refined

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O1 1.9725 (13)
Li1—O1W 1.9487 (13)
Li1—O3i 2.0059 (13)
Li1—O6ii 1.9155 (13)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: XL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: cif2tables.py (Boyle, 2008[Boyle, P.D. (2008). http://www.xray.ncsu.edu/PyCIFUtils/]).

Supporting information


Comment top

Various lithium salts for lithium-ion batteries have been proposed in recent years either as alternatives to the commonly used lithium hexafluorophosphate (LiPF6) or as electrolyte additives. Of these salts, lithium bis(oxalato)borate [LiBOB] remains one of the most promising (Zavalij et al.). The title compound, lithium bis(2-methyllactato)borate [LiBMLB] is based on this structure, differing only by replacing the oxygen of a carbonyl group of each ligand with two methyl groups. Although this salt has previously been synthesized (Lamande et al., Xu et al.), the crystal structure and ion coordination have not yet been reported. The structure of the monohydrate solvate of this salt is reported in the present manuscript.

The Li+ cation coordination in the title compound is different from what has been previously reported for similar cyclic structures (Allen et al., Zavalij et al.). For salts such as LiBOB, the Li+ cations are exclusively coordinated by the anion carbonyl oxygen atoms. In the present structure, however, the anion ring pseudo-ether oxygen also participates in the Li+ cation coordination (Fig. 1). Thus, each Li+ cation is coordinated by two carbonyl oxygen atoms from two BMLB- anions, one ring oxygen from a third BMLB- anion and an oxygen from a single water molecule. The asymmetric unit couples across crystallographic inversion centers to form 12-membered macrocycles (Fig. 2). These macrocycles are cross-linked through the Li+ cation coordination, forming the infinite polymeric crystal structure in two dimensions parallel to (101) (Fig. 3).

Related literature top

For the synthesis and purification of HBMLB [BMLB is bis(2-methyllactato)borate], see: Lamande et al. (1987). For the synthesis and properties of LiBMLB and BMLB--based ionic liquids, see: Xu et al. (2003). For crystallographic data of similar lithium salts, see: Zavalij et al. (2004); Allen et al. (2011).

Experimental top

Lithium bis(2-methyllactato)borate was synthesized by dissolving 2-methyllactic acid, boric acid and lithium carbonate (mole ratio 4:2:1) in water. The aqueous solution was allowed to slowly evaporate, forming colorless crystals suitable for X-ray analysis.

Refinement top

The hydrogen atom positional and isotropic displacement parameters were included in the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: XL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: cif2tables.py (Boyle, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of LiBMLB-H2O showing naming and numbering scheme. Thermal ellipsoids are at 50% probability (Li-purple, O-red, B-tan, C-grey).
[Figure 2] Fig. 2. A 12-membered macrocycle formed from two LiBMLB-H2O units. Thermal ellipsoids are at 50% probability (Li-purple, O-red, B-tan, C-grey).
[Figure 3] Fig. 3. A portion of the unit cell of [LiBMLB-H2O]n. Thermal ellipsoids are at 50% probability (Li-purple, O-red, B-tan, C-grey).
poly[[aqualithium(I)]-µ-3,3,8,8-tetramethyl-1,4,6,9-tetraoxa-5λ4- borataspiro[4.4]nonane-2,7-dione] top
Crystal data top
[Li(C8H12BO6)(H2O)]F(000) = 1008
Mr = 239.94Dx = 1.392 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9969 reflections
a = 12.7034 (4) Åθ = 2.7–35.0°
b = 11.3939 (4) ŵ = 0.12 mm1
c = 15.8258 (5) ÅT = 110 K
V = 2290.65 (13) Å3Prism, colourless
Z = 80.34 × 0.23 × 0.18 mm
Data collection top
Bruker–Nonius Kappa X8 APEXII
diffractometer
5663 independent reflections
Radiation source: fine-focus sealed tube4436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scansθmax = 37.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2121
Tmin = 0.961, Tmax = 0.979k = 1919
97648 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.3146P]
where P = (Fo2 + 2Fc2)/3
5663 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Li(C8H12BO6)(H2O)]V = 2290.65 (13) Å3
Mr = 239.94Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7034 (4) ŵ = 0.12 mm1
b = 11.3939 (4) ÅT = 110 K
c = 15.8258 (5) Å0.34 × 0.23 × 0.18 mm
Data collection top
Bruker–Nonius Kappa X8 APEXII
diffractometer
5663 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4436 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.979Rint = 0.037
97648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098All H-atom parameters refined
S = 1.05Δρmax = 0.51 e Å3
5663 reflectionsΔρmin = 0.26 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.50924 (9)0.90999 (11)0.30769 (8)0.0141 (2)
O10.36589 (3)0.97594 (4)0.31383 (3)0.01110 (9)
O20.21632 (3)1.07434 (4)0.36227 (3)0.01158 (9)
O30.09643 (4)1.00827 (4)0.27079 (3)0.01399 (9)
O40.38947 (4)1.16989 (4)0.37533 (3)0.01216 (9)
O50.34797 (4)1.01520 (4)0.46522 (3)0.01186 (9)
O60.42797 (4)1.07518 (5)0.58279 (3)0.01560 (10)
B10.33286 (5)1.05967 (6)0.37751 (4)0.01016 (11)
C10.28304 (4)0.95743 (5)0.25349 (4)0.00955 (10)
C20.18775 (5)1.01423 (5)0.29565 (4)0.01021 (10)
C30.30791 (5)1.02291 (6)0.17184 (4)0.01333 (11)
H3A0.3167 (9)1.1064 (10)0.1823 (7)0.024 (3)*
H3B0.2509 (10)1.0133 (10)0.1323 (7)0.023 (3)*
H3C0.3744 (9)0.9899 (9)0.1465 (7)0.020 (2)*
C40.26552 (5)0.82752 (5)0.23795 (4)0.01314 (11)
H4A0.3291 (9)0.7933 (10)0.2120 (7)0.025 (3)*
H4B0.2057 (9)0.8176 (9)0.1987 (7)0.020 (2)*
H4C0.2505 (8)0.7861 (9)0.2889 (7)0.019 (2)*
C50.42313 (5)1.20239 (5)0.45830 (4)0.01192 (11)
C60.40175 (5)1.09179 (5)0.50964 (4)0.01110 (11)
C70.35561 (7)1.30226 (7)0.49223 (5)0.02424 (16)
H7A0.3687 (10)1.3751 (11)0.4564 (8)0.033 (3)*
H7B0.3770 (11)1.3184 (12)0.5514 (9)0.041 (3)*
H7C0.2815 (11)1.2823 (12)0.4919 (8)0.036 (3)*
C80.53960 (6)1.23386 (7)0.45795 (5)0.01929 (13)
H8A0.5830 (10)1.1701 (11)0.4330 (8)0.032 (3)*
H8B0.5636 (9)1.2482 (10)0.5166 (8)0.030 (3)*
H8C0.5506 (9)1.3071 (10)0.4247 (7)0.026 (3)*
O1W0.51220 (4)0.74779 (4)0.26871 (3)0.01548 (10)
H1WA0.5426 (12)0.7243 (12)0.2236 (10)0.046 (4)*
H1WB0.4774 (11)0.6878 (12)0.2863 (9)0.041 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0132 (5)0.0162 (5)0.0128 (5)0.0010 (4)0.0010 (4)0.0001 (4)
O10.00863 (17)0.0148 (2)0.00990 (19)0.00106 (14)0.00213 (14)0.00282 (15)
O20.00987 (18)0.01454 (19)0.0103 (2)0.00099 (14)0.00098 (14)0.00277 (15)
O30.00931 (18)0.0180 (2)0.0147 (2)0.00129 (15)0.00238 (16)0.00252 (17)
O40.0154 (2)0.01258 (19)0.00853 (18)0.00325 (15)0.00187 (15)0.00066 (15)
O50.01270 (19)0.01361 (19)0.00925 (19)0.00208 (15)0.00121 (15)0.00105 (15)
O60.0148 (2)0.0233 (2)0.0087 (2)0.00015 (17)0.00136 (16)0.00053 (17)
B10.0099 (2)0.0121 (3)0.0085 (3)0.0002 (2)0.0005 (2)0.0001 (2)
C10.0085 (2)0.0109 (2)0.0092 (2)0.00022 (17)0.00104 (18)0.00056 (19)
C20.0104 (2)0.0109 (2)0.0094 (2)0.00061 (18)0.00024 (18)0.00053 (18)
C30.0150 (3)0.0149 (3)0.0101 (2)0.0014 (2)0.0006 (2)0.0015 (2)
C40.0122 (2)0.0107 (2)0.0166 (3)0.00059 (18)0.0002 (2)0.0010 (2)
C50.0137 (2)0.0123 (2)0.0098 (2)0.00051 (19)0.00179 (19)0.00122 (19)
C60.0093 (2)0.0145 (2)0.0095 (2)0.00077 (18)0.00041 (18)0.0008 (2)
C70.0333 (4)0.0180 (3)0.0214 (3)0.0094 (3)0.0012 (3)0.0049 (3)
C80.0167 (3)0.0213 (3)0.0198 (3)0.0076 (2)0.0040 (2)0.0027 (3)
O1W0.0147 (2)0.0146 (2)0.0172 (2)0.00084 (16)0.00323 (17)0.00317 (17)
Geometric parameters (Å, º) top
Li1—O11.9725 (13)C1—C21.5263 (8)
Li1—O1W1.9487 (13)C3—H3A0.972 (11)
Li1—O3i2.0059 (13)C3—H3B0.963 (12)
Li1—O6ii1.9155 (13)C3—H3C1.007 (11)
O1—C11.4366 (7)C4—H4A0.987 (12)
O1—B11.4498 (8)C4—H4B0.988 (11)
O2—C21.3086 (7)C4—H4C0.953 (11)
O2—B11.5094 (8)C5—C81.5223 (9)
O3—C21.2268 (7)C5—C71.5228 (10)
O3—Li1iii2.0059 (13)C5—C61.5238 (9)
O4—C51.4297 (8)C7—H7A1.019 (13)
O4—B11.4476 (8)C7—H7B0.993 (14)
O5—C61.3125 (8)C7—H7C0.968 (13)
O5—B11.4901 (8)C8—H8A0.994 (13)
O6—C61.2193 (8)C8—H8B0.990 (12)
O6—Li1ii1.9155 (13)C8—H8C0.997 (12)
C1—C41.5169 (8)O1W—H1WA0.854 (16)
C1—C31.5251 (9)O1W—H1WB0.861 (14)
O6ii—Li1—O1W111.23 (6)H3A—C3—H3C109.7 (9)
O6ii—Li1—O1107.84 (6)H3B—C3—H3C109.3 (10)
O1W—Li1—O1113.25 (6)C1—C4—H4A109.4 (7)
O6ii—Li1—O3i106.33 (6)C1—C4—H4B109.1 (6)
O1W—Li1—O3i108.83 (6)H4A—C4—H4B108.8 (9)
O1—Li1—O3i109.12 (6)C1—C4—H4C112.0 (6)
C1—O1—B1110.28 (5)H4A—C4—H4C108.7 (9)
C1—O1—Li1125.99 (5)H4B—C4—H4C108.7 (9)
B1—O1—Li1123.51 (5)O4—C5—C8110.39 (5)
C2—O2—B1110.05 (5)O4—C5—C7110.42 (6)
C2—O3—Li1iii138.72 (6)C8—C5—C7111.88 (6)
C5—O4—B1110.58 (5)O4—C5—C6102.84 (5)
C6—O5—B1109.87 (5)C8—C5—C6111.71 (5)
C6—O6—Li1ii163.55 (6)C7—C5—C6109.24 (6)
O4—B1—O1114.25 (5)O6—C6—O5123.19 (6)
O4—B1—O5104.66 (5)O6—C6—C5125.87 (6)
O1—B1—O5112.74 (5)O5—C6—C5110.92 (5)
O4—B1—O2112.80 (5)C5—C7—H7A108.7 (7)
O1—B1—O2104.22 (5)C5—C7—H7B108.4 (8)
O5—B1—O2108.23 (5)H7A—C7—H7B109.3 (11)
O1—C1—C4111.01 (5)C5—C7—H7C111.7 (8)
O1—C1—C3109.85 (5)H7A—C7—H7C110.3 (11)
C4—C1—C3111.74 (5)H7B—C7—H7C108.4 (11)
O1—C1—C2103.20 (5)C5—C8—H8A111.6 (7)
C4—C1—C2111.60 (5)C5—C8—H8B109.5 (7)
C3—C1—C2109.10 (5)H8A—C8—H8B108.8 (10)
O3—C2—O2123.33 (6)C5—C8—H8C109.6 (7)
O3—C2—C1125.90 (6)H8A—C8—H8C109.0 (10)
O2—C2—C1110.74 (5)H8B—C8—H8C108.3 (9)
C1—C3—H3A111.0 (7)Li1—O1W—H1WA124.8 (9)
C1—C3—H3B109.8 (7)Li1—O1W—H1WB129.9 (9)
H3A—C3—H3B107.9 (9)H1WA—O1W—H1WB104.7 (13)
C1—C3—H3C109.2 (6)
O6ii—Li1—O1—C1163.76 (5)B1—O1—C1—C212.51 (6)
O1W—Li1—O1—C140.24 (9)Li1—O1—C1—C2172.64 (6)
O3i—Li1—O1—C181.15 (8)Li1iii—O3—C2—O2164.56 (7)
O6ii—Li1—O1—B122.04 (9)Li1iii—O3—C2—C117.31 (12)
O1W—Li1—O1—B1145.56 (6)B1—O2—C2—O3177.79 (6)
O3i—Li1—O1—B193.05 (7)B1—O2—C2—C13.83 (7)
C5—O4—B1—O1132.62 (5)O1—C1—C2—O3171.56 (6)
C5—O4—B1—O58.84 (6)C4—C1—C2—O352.29 (8)
C5—O4—B1—O2108.60 (6)C3—C1—C2—O371.68 (8)
C1—O1—B1—O4112.92 (6)O1—C1—C2—O210.11 (6)
Li1—O1—B1—O462.07 (8)C4—C1—C2—O2129.38 (5)
C1—O1—B1—O5127.75 (5)C3—C1—C2—O2106.65 (6)
Li1—O1—B1—O557.25 (8)B1—O4—C5—C8130.06 (6)
C1—O1—B1—O210.61 (6)B1—O4—C5—C7105.70 (6)
Li1—O1—B1—O2174.39 (5)B1—O4—C5—C610.76 (6)
C6—O5—B1—O42.75 (6)Li1ii—O6—C6—O5172.88 (18)
C6—O5—B1—O1127.49 (5)Li1ii—O6—C6—C58.8 (2)
C6—O5—B1—O2117.77 (5)B1—O5—C6—O6177.52 (6)
C2—O2—B1—O4120.53 (5)B1—O5—C6—C53.98 (7)
C2—O2—B1—O13.95 (6)O4—C5—C6—O6172.41 (6)
C2—O2—B1—O5124.16 (5)C8—C5—C6—O654.03 (8)
B1—O1—C1—C4132.19 (5)C7—C5—C6—O670.29 (8)
Li1—O1—C1—C452.96 (8)O4—C5—C6—O59.14 (6)
B1—O1—C1—C3103.72 (6)C8—C5—C6—O5127.51 (6)
Li1—O1—C1—C371.13 (7)C7—C5—C6—O5108.16 (6)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+2, z+1; (iii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Li(C8H12BO6)(H2O)]
Mr239.94
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)110
a, b, c (Å)12.7034 (4), 11.3939 (4), 15.8258 (5)
V3)2290.65 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.34 × 0.23 × 0.18
Data collection
DiffractometerBruker–Nonius Kappa X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.961, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
97648, 5663, 4436
Rint0.037
(sin θ/λ)max1)0.855
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.05
No. of reflections5663
No. of parameters210
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.51, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR92 (Altomare et al., 1994), XL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), cif2tables.py (Boyle, 2008).

Selected bond lengths (Å) top
Li1—O11.9725 (13)Li1—O3i2.0059 (13)
Li1—O1W1.9487 (13)Li1—O6ii1.9155 (13)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was fully supported by the US DOE BATT Program (contract DE—AC02–05-CH11231). The authors wish to thank the Department of Chemistry of North Carolina State University and the State of North Carolina for funding the purchase of the APEXII diffractometer. JLA would like to thank the SMART Scholarship Program and the American Society for Engineering Education (ASEE) for the award of a SMART Graduate Research Fellowship.

References

First citationAllen, J. L., Han, S.-D., Boyle, P. D. & Henderson, W. A. (2011). J. Power Sources, 196, 9737–9742.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoyle, P.D. (2008). http://www.xray.ncsu.edu/PyCIFUtils/  Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLamande, L., Boyer, D. & Munoz, A. (1987). J. Organomet. Chem. 329, 1–29.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, W., Wang, L.-M., Nieman, R. A. & Angell, C. A. (2003). J. Phys. Chem. B, 107, 11749–11749.  Web of Science CrossRef CAS Google Scholar
First citationZavalij, P. Y., Yang, S. & Whittingham, M. S. (2004). Acta Cryst. B60, 716–724.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds