metal-organic compounds
Lithium bis(2-methyllactato)borate monohydrate
aIonic Liquids and Electrolytes for Energy Technologies (ILEET) Laboratory, Dept. of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA, and bX-ray Structural Facility, Dept. of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
*Correspondence e-mail: whender@ncsu.edu
The title compound {systematic name: poly[[aqualithium]-μ-3,3,8,8-tetramethyl-1,4,6,9-tetraoxa-5λ4-borataspiro[4.4]nonane-2,7-dione]}, [Li(C8H12BO6)(H2O)]n (LiBMLB), forms a 12-membered macrocycle, which lies across a crystallographic inversion center. The lithium cations are pseudo-tetrahedrally coordinated by three methyllactate ligands and a water molecule. The asymmetric units couple across crystallographic inversion centers, forming the 12-membered macrocycles. These macrocycles, in turn, cross-link through the Li+ cations, forming an infinite polymeric structure in two dimensions parallel to (101).
Related literature
For the synthesis and purification of HBMLB [BMLB is bis(2-methyllactato)borate], see: Lamande et al. (1987). For the synthesis and properties of LiBMLB and BMLB−-based ionic liquids, see: Xu et al. (2003). For crystallographic data of similar lithium salts, see: Zavalij et al. (2004); Allen et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: XL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: cif2tables.py (Boyle, 2008).
Supporting information
10.1107/S1600536812017540/vn2036sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017540/vn2036Isup2.hkl
Lithium bis(2-methyllactato)borate was synthesized by dissolving 2-methyllactic acid, boric acid and lithium carbonate (mole ratio 4:2:1) in water. The aqueous solution was allowed to slowly evaporate, forming colorless crystals suitable for X-ray analysis.
The hydrogen atom positional and isotropic displacement parameters were included in the refinement.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: XL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: cif2tables.py (Boyle, 2008).[Li(C8H12BO6)(H2O)] | F(000) = 1008 |
Mr = 239.94 | Dx = 1.392 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 9969 reflections |
a = 12.7034 (4) Å | θ = 2.7–35.0° |
b = 11.3939 (4) Å | µ = 0.12 mm−1 |
c = 15.8258 (5) Å | T = 110 K |
V = 2290.65 (13) Å3 | Prism, colourless |
Z = 8 | 0.34 × 0.23 × 0.18 mm |
Bruker–Nonius Kappa X8 APEXII diffractometer | 5663 independent reflections |
Radiation source: fine-focus sealed tube | 4436 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω and ϕ scans | θmax = 37.4°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −21→21 |
Tmin = 0.961, Tmax = 0.979 | k = −19→19 |
97648 measured reflections | l = −24→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0519P)2 + 0.3146P] where P = (Fo2 + 2Fc2)/3 |
5663 reflections | (Δ/σ)max = 0.001 |
210 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
[Li(C8H12BO6)(H2O)] | V = 2290.65 (13) Å3 |
Mr = 239.94 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.7034 (4) Å | µ = 0.12 mm−1 |
b = 11.3939 (4) Å | T = 110 K |
c = 15.8258 (5) Å | 0.34 × 0.23 × 0.18 mm |
Bruker–Nonius Kappa X8 APEXII diffractometer | 5663 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 4436 reflections with I > 2σ(I) |
Tmin = 0.961, Tmax = 0.979 | Rint = 0.037 |
97648 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.098 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.51 e Å−3 |
5663 reflections | Δρmin = −0.26 e Å−3 |
210 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.50924 (9) | 0.90999 (11) | 0.30769 (8) | 0.0141 (2) | |
O1 | 0.36589 (3) | 0.97594 (4) | 0.31383 (3) | 0.01110 (9) | |
O2 | 0.21632 (3) | 1.07434 (4) | 0.36227 (3) | 0.01158 (9) | |
O3 | 0.09643 (4) | 1.00827 (4) | 0.27079 (3) | 0.01399 (9) | |
O4 | 0.38947 (4) | 1.16989 (4) | 0.37533 (3) | 0.01216 (9) | |
O5 | 0.34797 (4) | 1.01520 (4) | 0.46522 (3) | 0.01186 (9) | |
O6 | 0.42797 (4) | 1.07518 (5) | 0.58279 (3) | 0.01560 (10) | |
B1 | 0.33286 (5) | 1.05967 (6) | 0.37751 (4) | 0.01016 (11) | |
C1 | 0.28304 (4) | 0.95743 (5) | 0.25349 (4) | 0.00955 (10) | |
C2 | 0.18775 (5) | 1.01423 (5) | 0.29565 (4) | 0.01021 (10) | |
C3 | 0.30791 (5) | 1.02291 (6) | 0.17184 (4) | 0.01333 (11) | |
H3A | 0.3167 (9) | 1.1064 (10) | 0.1823 (7) | 0.024 (3)* | |
H3B | 0.2509 (10) | 1.0133 (10) | 0.1323 (7) | 0.023 (3)* | |
H3C | 0.3744 (9) | 0.9899 (9) | 0.1465 (7) | 0.020 (2)* | |
C4 | 0.26552 (5) | 0.82752 (5) | 0.23795 (4) | 0.01314 (11) | |
H4A | 0.3291 (9) | 0.7933 (10) | 0.2120 (7) | 0.025 (3)* | |
H4B | 0.2057 (9) | 0.8176 (9) | 0.1987 (7) | 0.020 (2)* | |
H4C | 0.2505 (8) | 0.7861 (9) | 0.2889 (7) | 0.019 (2)* | |
C5 | 0.42313 (5) | 1.20239 (5) | 0.45830 (4) | 0.01192 (11) | |
C6 | 0.40175 (5) | 1.09179 (5) | 0.50964 (4) | 0.01110 (11) | |
C7 | 0.35561 (7) | 1.30226 (7) | 0.49223 (5) | 0.02424 (16) | |
H7A | 0.3687 (10) | 1.3751 (11) | 0.4564 (8) | 0.033 (3)* | |
H7B | 0.3770 (11) | 1.3184 (12) | 0.5514 (9) | 0.041 (3)* | |
H7C | 0.2815 (11) | 1.2823 (12) | 0.4919 (8) | 0.036 (3)* | |
C8 | 0.53960 (6) | 1.23386 (7) | 0.45795 (5) | 0.01929 (13) | |
H8A | 0.5830 (10) | 1.1701 (11) | 0.4330 (8) | 0.032 (3)* | |
H8B | 0.5636 (9) | 1.2482 (10) | 0.5166 (8) | 0.030 (3)* | |
H8C | 0.5506 (9) | 1.3071 (10) | 0.4247 (7) | 0.026 (3)* | |
O1W | 0.51220 (4) | 0.74779 (4) | 0.26871 (3) | 0.01548 (10) | |
H1WA | 0.5426 (12) | 0.7243 (12) | 0.2236 (10) | 0.046 (4)* | |
H1WB | 0.4774 (11) | 0.6878 (12) | 0.2863 (9) | 0.041 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0132 (5) | 0.0162 (5) | 0.0128 (5) | 0.0010 (4) | −0.0010 (4) | 0.0001 (4) |
O1 | 0.00863 (17) | 0.0148 (2) | 0.00990 (19) | 0.00106 (14) | −0.00213 (14) | −0.00282 (15) |
O2 | 0.00987 (18) | 0.01454 (19) | 0.0103 (2) | 0.00099 (14) | −0.00098 (14) | −0.00277 (15) |
O3 | 0.00931 (18) | 0.0180 (2) | 0.0147 (2) | 0.00129 (15) | −0.00238 (16) | −0.00252 (17) |
O4 | 0.0154 (2) | 0.01258 (19) | 0.00853 (18) | −0.00325 (15) | −0.00187 (15) | 0.00066 (15) |
O5 | 0.01270 (19) | 0.01361 (19) | 0.00925 (19) | −0.00208 (15) | −0.00121 (15) | 0.00105 (15) |
O6 | 0.0148 (2) | 0.0233 (2) | 0.0087 (2) | 0.00015 (17) | −0.00136 (16) | 0.00053 (17) |
B1 | 0.0099 (2) | 0.0121 (3) | 0.0085 (3) | −0.0002 (2) | −0.0005 (2) | −0.0001 (2) |
C1 | 0.0085 (2) | 0.0109 (2) | 0.0092 (2) | −0.00022 (17) | −0.00104 (18) | −0.00056 (19) |
C2 | 0.0104 (2) | 0.0109 (2) | 0.0094 (2) | 0.00061 (18) | −0.00024 (18) | 0.00053 (18) |
C3 | 0.0150 (3) | 0.0149 (3) | 0.0101 (2) | −0.0014 (2) | 0.0006 (2) | 0.0015 (2) |
C4 | 0.0122 (2) | 0.0107 (2) | 0.0166 (3) | −0.00059 (18) | −0.0002 (2) | −0.0010 (2) |
C5 | 0.0137 (2) | 0.0123 (2) | 0.0098 (2) | −0.00051 (19) | −0.00179 (19) | −0.00122 (19) |
C6 | 0.0093 (2) | 0.0145 (2) | 0.0095 (2) | 0.00077 (18) | 0.00041 (18) | −0.0008 (2) |
C7 | 0.0333 (4) | 0.0180 (3) | 0.0214 (3) | 0.0094 (3) | 0.0012 (3) | −0.0049 (3) |
C8 | 0.0167 (3) | 0.0213 (3) | 0.0198 (3) | −0.0076 (2) | −0.0040 (2) | 0.0027 (3) |
O1W | 0.0147 (2) | 0.0146 (2) | 0.0172 (2) | −0.00084 (16) | 0.00323 (17) | −0.00317 (17) |
Li1—O1 | 1.9725 (13) | C1—C2 | 1.5263 (8) |
Li1—O1W | 1.9487 (13) | C3—H3A | 0.972 (11) |
Li1—O3i | 2.0059 (13) | C3—H3B | 0.963 (12) |
Li1—O6ii | 1.9155 (13) | C3—H3C | 1.007 (11) |
O1—C1 | 1.4366 (7) | C4—H4A | 0.987 (12) |
O1—B1 | 1.4498 (8) | C4—H4B | 0.988 (11) |
O2—C2 | 1.3086 (7) | C4—H4C | 0.953 (11) |
O2—B1 | 1.5094 (8) | C5—C8 | 1.5223 (9) |
O3—C2 | 1.2268 (7) | C5—C7 | 1.5228 (10) |
O3—Li1iii | 2.0059 (13) | C5—C6 | 1.5238 (9) |
O4—C5 | 1.4297 (8) | C7—H7A | 1.019 (13) |
O4—B1 | 1.4476 (8) | C7—H7B | 0.993 (14) |
O5—C6 | 1.3125 (8) | C7—H7C | 0.968 (13) |
O5—B1 | 1.4901 (8) | C8—H8A | 0.994 (13) |
O6—C6 | 1.2193 (8) | C8—H8B | 0.990 (12) |
O6—Li1ii | 1.9155 (13) | C8—H8C | 0.997 (12) |
C1—C4 | 1.5169 (8) | O1W—H1WA | 0.854 (16) |
C1—C3 | 1.5251 (9) | O1W—H1WB | 0.861 (14) |
O6ii—Li1—O1W | 111.23 (6) | H3A—C3—H3C | 109.7 (9) |
O6ii—Li1—O1 | 107.84 (6) | H3B—C3—H3C | 109.3 (10) |
O1W—Li1—O1 | 113.25 (6) | C1—C4—H4A | 109.4 (7) |
O6ii—Li1—O3i | 106.33 (6) | C1—C4—H4B | 109.1 (6) |
O1W—Li1—O3i | 108.83 (6) | H4A—C4—H4B | 108.8 (9) |
O1—Li1—O3i | 109.12 (6) | C1—C4—H4C | 112.0 (6) |
C1—O1—B1 | 110.28 (5) | H4A—C4—H4C | 108.7 (9) |
C1—O1—Li1 | 125.99 (5) | H4B—C4—H4C | 108.7 (9) |
B1—O1—Li1 | 123.51 (5) | O4—C5—C8 | 110.39 (5) |
C2—O2—B1 | 110.05 (5) | O4—C5—C7 | 110.42 (6) |
C2—O3—Li1iii | 138.72 (6) | C8—C5—C7 | 111.88 (6) |
C5—O4—B1 | 110.58 (5) | O4—C5—C6 | 102.84 (5) |
C6—O5—B1 | 109.87 (5) | C8—C5—C6 | 111.71 (5) |
C6—O6—Li1ii | 163.55 (6) | C7—C5—C6 | 109.24 (6) |
O4—B1—O1 | 114.25 (5) | O6—C6—O5 | 123.19 (6) |
O4—B1—O5 | 104.66 (5) | O6—C6—C5 | 125.87 (6) |
O1—B1—O5 | 112.74 (5) | O5—C6—C5 | 110.92 (5) |
O4—B1—O2 | 112.80 (5) | C5—C7—H7A | 108.7 (7) |
O1—B1—O2 | 104.22 (5) | C5—C7—H7B | 108.4 (8) |
O5—B1—O2 | 108.23 (5) | H7A—C7—H7B | 109.3 (11) |
O1—C1—C4 | 111.01 (5) | C5—C7—H7C | 111.7 (8) |
O1—C1—C3 | 109.85 (5) | H7A—C7—H7C | 110.3 (11) |
C4—C1—C3 | 111.74 (5) | H7B—C7—H7C | 108.4 (11) |
O1—C1—C2 | 103.20 (5) | C5—C8—H8A | 111.6 (7) |
C4—C1—C2 | 111.60 (5) | C5—C8—H8B | 109.5 (7) |
C3—C1—C2 | 109.10 (5) | H8A—C8—H8B | 108.8 (10) |
O3—C2—O2 | 123.33 (6) | C5—C8—H8C | 109.6 (7) |
O3—C2—C1 | 125.90 (6) | H8A—C8—H8C | 109.0 (10) |
O2—C2—C1 | 110.74 (5) | H8B—C8—H8C | 108.3 (9) |
C1—C3—H3A | 111.0 (7) | Li1—O1W—H1WA | 124.8 (9) |
C1—C3—H3B | 109.8 (7) | Li1—O1W—H1WB | 129.9 (9) |
H3A—C3—H3B | 107.9 (9) | H1WA—O1W—H1WB | 104.7 (13) |
C1—C3—H3C | 109.2 (6) | ||
O6ii—Li1—O1—C1 | −163.76 (5) | B1—O1—C1—C2 | −12.51 (6) |
O1W—Li1—O1—C1 | −40.24 (9) | Li1—O1—C1—C2 | 172.64 (6) |
O3i—Li1—O1—C1 | 81.15 (8) | Li1iii—O3—C2—O2 | −164.56 (7) |
O6ii—Li1—O1—B1 | 22.04 (9) | Li1iii—O3—C2—C1 | 17.31 (12) |
O1W—Li1—O1—B1 | 145.56 (6) | B1—O2—C2—O3 | 177.79 (6) |
O3i—Li1—O1—B1 | −93.05 (7) | B1—O2—C2—C1 | −3.83 (7) |
C5—O4—B1—O1 | −132.62 (5) | O1—C1—C2—O3 | −171.56 (6) |
C5—O4—B1—O5 | −8.84 (6) | C4—C1—C2—O3 | −52.29 (8) |
C5—O4—B1—O2 | 108.60 (6) | C3—C1—C2—O3 | 71.68 (8) |
C1—O1—B1—O4 | −112.92 (6) | O1—C1—C2—O2 | 10.11 (6) |
Li1—O1—B1—O4 | 62.07 (8) | C4—C1—C2—O2 | 129.38 (5) |
C1—O1—B1—O5 | 127.75 (5) | C3—C1—C2—O2 | −106.65 (6) |
Li1—O1—B1—O5 | −57.25 (8) | B1—O4—C5—C8 | 130.06 (6) |
C1—O1—B1—O2 | 10.61 (6) | B1—O4—C5—C7 | −105.70 (6) |
Li1—O1—B1—O2 | −174.39 (5) | B1—O4—C5—C6 | 10.76 (6) |
C6—O5—B1—O4 | 2.75 (6) | Li1ii—O6—C6—O5 | 172.88 (18) |
C6—O5—B1—O1 | 127.49 (5) | Li1ii—O6—C6—C5 | −8.8 (2) |
C6—O5—B1—O2 | −117.77 (5) | B1—O5—C6—O6 | −177.52 (6) |
C2—O2—B1—O4 | 120.53 (5) | B1—O5—C6—C5 | 3.98 (7) |
C2—O2—B1—O1 | −3.95 (6) | O4—C5—C6—O6 | 172.41 (6) |
C2—O2—B1—O5 | −124.16 (5) | C8—C5—C6—O6 | 54.03 (8) |
B1—O1—C1—C4 | −132.19 (5) | C7—C5—C6—O6 | −70.29 (8) |
Li1—O1—C1—C4 | 52.96 (8) | O4—C5—C6—O5 | −9.14 (6) |
B1—O1—C1—C3 | 103.72 (6) | C8—C5—C6—O5 | −127.51 (6) |
Li1—O1—C1—C3 | −71.13 (7) | C7—C5—C6—O5 | 108.16 (6) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+1, −y+2, −z+1; (iii) x−1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Li(C8H12BO6)(H2O)] |
Mr | 239.94 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 110 |
a, b, c (Å) | 12.7034 (4), 11.3939 (4), 15.8258 (5) |
V (Å3) | 2290.65 (13) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.34 × 0.23 × 0.18 |
Data collection | |
Diffractometer | Bruker–Nonius Kappa X8 APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.961, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 97648, 5663, 4436 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.855 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.098, 1.05 |
No. of reflections | 5663 |
No. of parameters | 210 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.51, −0.26 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR92 (Altomare et al., 1994), XL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), cif2tables.py (Boyle, 2008).
Li1—O1 | 1.9725 (13) | Li1—O3i | 2.0059 (13) |
Li1—O1W | 1.9487 (13) | Li1—O6ii | 1.9155 (13) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+1, −y+2, −z+1. |
Acknowledgements
This work was fully supported by the US DOE BATT Program (contract DE—AC02–05-CH11231). The authors wish to thank the Department of Chemistry of North Carolina State University and the State of North Carolina for funding the purchase of the APEXII diffractometer. JLA would like to thank the SMART Scholarship Program and the American Society for Engineering Education (ASEE) for the award of a SMART Graduate Research Fellowship.
References
Allen, J. L., Han, S.-D., Boyle, P. D. & Henderson, W. A. (2011). J. Power Sources, 196, 9737–9742. Web of Science CSD CrossRef CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Boyle, P.D. (2008). http://www.xray.ncsu.edu/PyCIFUtils/ Google Scholar
Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Lamande, L., Boyer, D. & Munoz, A. (1987). J. Organomet. Chem. 329, 1–29. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, W., Wang, L.-M., Nieman, R. A. & Angell, C. A. (2003). J. Phys. Chem. B, 107, 11749–11749. Web of Science CrossRef CAS Google Scholar
Zavalij, P. Y., Yang, S. & Whittingham, M. S. (2004). Acta Cryst. B60, 716–724. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Various lithium salts for lithium-ion batteries have been proposed in recent years either as alternatives to the commonly used lithium hexafluorophosphate (LiPF6) or as electrolyte additives. Of these salts, lithium bis(oxalato)borate [LiBOB] remains one of the most promising (Zavalij et al.). The title compound, lithium bis(2-methyllactato)borate [LiBMLB] is based on this structure, differing only by replacing the oxygen of a carbonyl group of each ligand with two methyl groups. Although this salt has previously been synthesized (Lamande et al., Xu et al.), the crystal structure and ion coordination have not yet been reported. The structure of the monohydrate solvate of this salt is reported in the present manuscript.
The Li+ cation coordination in the title compound is different from what has been previously reported for similar cyclic structures (Allen et al., Zavalij et al.). For salts such as LiBOB, the Li+ cations are exclusively coordinated by the anion carbonyl oxygen atoms. In the present structure, however, the anion ring pseudo-ether oxygen also participates in the Li+ cation coordination (Fig. 1). Thus, each Li+ cation is coordinated by two carbonyl oxygen atoms from two BMLB- anions, one ring oxygen from a third BMLB- anion and an oxygen from a single water molecule. The asymmetric unit couples across crystallographic inversion centers to form 12-membered macrocycles (Fig. 2). These macrocycles are cross-linked through the Li+ cation coordination, forming the infinite polymeric crystal structure in two dimensions parallel to (101) (Fig. 3).