organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzyl­aminium) 4,5-di­chloro­benzene-1,2-di­carboxyl­ate monohydrate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 21 May 2012; accepted 22 May 2012; online 31 May 2012)

In the structure of the title salt, 2C7H10N+·C8H2Cl2O42−·H2O, the two benzyl­aminium anions have different conformations, one being essentially planar and the other having the side chain rotated out of the benzene plane [minimum ring to side-chain C—C—C—N torsion angles = −3.6 (6) and 50.1 (5)°, respectively]. In the 4,5-dichloro­phthalate dianion, the carboxyl­ate groups make dihedral angles of 23.0 (2) and 76.5 (2)° with the benzene ring. In the crystal, aminium N—H⋯O and water O—H⋯O hydrogen-bonding associations with carboxyl­ate O-atom acceptors give a two-dimensional duplex sheet structure which extends along the (011) plane. Weak ππ inter­actions are also present between the benzene ring of the dianion and one of the cation rings [minimum ring centroid separation = 2.749 (3) Å].

Related literature

For the crystal structures of some 1:1 Lewis base salts of 4,5-dichloro­phthalic acid, see: Mattes & Dorau (1986[Mattes, R. & Dorau, A. (1986). Z. Naturforsch. Teil B, 41, 808-814.]); Smith et al. (2008[Smith, G., Wermuth, U. D. & White, J. M. (2008). Acta Cryst. C64, o532-o536.]). For crystal structures having dianionic 4,5-dichloro­phthalate species, see: Büyükgüngör & Odabaşoğlu (2007[Büyükgüngör, O. & Odabaşoğlu, M. (2007). Acta Cryst. E63, o4376-o4377.]); Smith & Wermuth (2010[Smith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o235.], 2011[Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o1645.]).

[Scheme 1]

Experimental

Crystal data
  • 2C7H10N+·C8H2Cl2O42−·H2O

  • Mr = 467.33

  • Monoclinic, P 21 /c

  • a = 17.3005 (16) Å

  • b = 10.0084 (7) Å

  • c = 13.6990 (12) Å

  • β = 112.641 (11)°

  • V = 2189.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.33 × 0.22 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.86, Tmax = 0.98

  • 12311 measured reflections

  • 3842 independent reflections

  • 3019 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.189

  • S = 1.19

  • 3842 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11A—H11A⋯O21 0.87 2.01 2.866 (4) 168
N11A—H12A⋯O12i 0.90 1.90 2.801 (5) 180
N11A—H13A⋯O22ii 0.88 1.94 2.816 (4) 175
N11B—H11B⋯O11i 0.88 1.96 2.823 (4) 167
N11B—H12B⋯O21 0.96 1.85 2.770 (4) 160
N11B—H13B⋯O22iii 0.82 1.99 2.803 (4) 172
O1W—H11W⋯O11i 0.85 1.94 2.789 (4) 179
O1W—H12W⋯O12 0.76 2.28 2.980 (4) 154
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

4,5-Dichlorophthalic acid (DCPA) most commonly forms 1:1 salts with the Lewis bases, often giving low-dimensional hydrogen-bonded structures (Mattes & Dorau, 1986; Smith et al., 2008). The structures of the 2:1 Lewis base salts of DCPA are less common; the bis(4-ethylaminium) salt (Büyükgüngör & Odabaşoğlu, 2007) and the bis(guanidinium) salt (Smith & Wermuth, 2011) are among these while the DCPA dianion is also found in the ethylenediaminium salt (Smith & Wermuth, 2010). However, our 1:1 stoichiometric reaction of DCPA with benzylamine gave unexpectedly a 2:1 salt 2(C7H10N+) C8H2Cl2O42-. H2O, the title compound, and the structure is reported here.

In this structure (Fig. 1), the two benzylaminium cations (A and B) have very different conformations, one being essentially planar the other having the side-chain rotated out of the benzene plane [minimum ring to side-chain C—C—C—N torsion angles = -3.6 (6)° (A) and 50.1 (5)° B]. In the 4,5-dichlorophthalate dianion the carboxyl groups make dihedral angles of 23.0 (2) and 76.5 (2)° with the benzene ring, corresponding to torsion angles C1—C2—C21—O21 and C2—C1—C11—O11 of -157.7 (4) and 78.1 (5)°. Aminium N—H···O and water O—H···O hydrogen-bonding associations with carboxyl O-atom acceptors (Table 1) give a two-dimensional duplex-sheet structure which extends along the (011) plane (Fig. 2). Weak ππ interactions are also present between the benzene ring of the DCPA dianion and one of the cation rings (A) [minimum ring centroid separation, 2.749 (3) Å].

Related literature top

For the crystal structures of some 1:1 Lewis base salts of 4,5-dichlorophthalic acid, see: Mattes & Dorau (1986); Smith et al. (2008). For crystal structures having dianionic 4,5-dichlorophthalate species, see: Büyükgüngör & Odabaşoğlu (2007); Smith & Wermuth (2010, 2011).

Experimental top

The title compound was synthesized by heating together, for 10 min under reflux, 1 mmol quantities of 4,5-dichlorophthalic acid and benzylamine in 50 ml of methanol. Partial evaporation of the solvent gave colourless crystalline plates of the title compound from which a specimen was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were initially refined. However, in the final refinement cycles these were set invariant with the displacement parameters riding on the parent atom [with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O)]. Other H atoms were included at calculated positions [C—H (aromatic) = 0.93 Å or C—H (methylene) = 0.97 Å] and allowed to ride, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Structure of the two cations (A and B), the dianion and the water molecule of solvation in the asymmetric unit of the title salt, with the inter-species hydrogen bonds shown as dashed lines. Non-H atoms are shown as 40% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A perspective view of part of the two-dimensional duplex-sheet structure in the unit cell, showing hydrogen-bonding associations as dashed lines. Non-associative H-atoms are omitted. For symmetry codes, see Table 1.
Bis(benzylaminium) 4,5-dichlorobenzene-1,2-dicarboxylate monohydrate top
Crystal data top
2C7H10N+·C8H2Cl2O42·H2OF(000) = 976
Mr = 467.33Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6279 reflections
a = 17.3005 (16) Åθ = 3.2–28.7°
b = 10.0084 (7) ŵ = 0.33 mm1
c = 13.6990 (12) ÅT = 200 K
β = 112.641 (11)°Plate, colourless
V = 2189.2 (4) Å30.33 × 0.22 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3842 independent reflections
Radiation source: Enhance (Mo) X-ray source3019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.077 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.86, Tmax = 0.98l = 1616
12311 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0794P)2 + 3.4869P]
where P = (Fo2 + 2Fc2)/3
3842 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
2C7H10N+·C8H2Cl2O42·H2OV = 2189.2 (4) Å3
Mr = 467.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.3005 (16) ŵ = 0.33 mm1
b = 10.0084 (7) ÅT = 200 K
c = 13.6990 (12) Å0.33 × 0.22 × 0.12 mm
β = 112.641 (11)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3842 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3019 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.98Rint = 0.045
12311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.19Δρmax = 0.79 e Å3
3842 reflectionsΔρmin = 0.37 e Å3
312 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11A0.4026 (2)0.4021 (3)0.0987 (2)0.0293 (11)
C1A0.2474 (3)0.4407 (4)0.0233 (3)0.0307 (11)
C2A0.1790 (3)0.5252 (5)0.0185 (4)0.0460 (17)
C3A0.0984 (3)0.4801 (6)0.0447 (4)0.0571 (19)
C4A0.0838 (3)0.3462 (6)0.0318 (4)0.0515 (19)
C5A0.1508 (3)0.2619 (5)0.0077 (4)0.0443 (16)
C6A0.2319 (3)0.3065 (4)0.0357 (3)0.0353 (14)
C11A0.3333 (3)0.4980 (4)0.0506 (3)0.0322 (12)
N11B0.5631 (2)0.4462 (3)0.4310 (2)0.0270 (10)
C1B0.6924 (3)0.3655 (4)0.5777 (3)0.0295 (11)
C2B0.7238 (3)0.3664 (4)0.6877 (3)0.0378 (14)
C3B0.8081 (3)0.3812 (5)0.7454 (4)0.0446 (16)
C4B0.8630 (3)0.3963 (4)0.6953 (4)0.0431 (16)
C5B0.8322 (3)0.3971 (5)0.5861 (4)0.0443 (17)
C6B0.7479 (3)0.3822 (5)0.5275 (4)0.0392 (16)
C11B0.6004 (3)0.3454 (4)0.5161 (3)0.0329 (12)
Cl40.05397 (7)0.26123 (11)0.21573 (9)0.0404 (4)
Cl50.06311 (7)0.04167 (12)0.15221 (10)0.0496 (4)
O110.38460 (19)0.0979 (3)0.2378 (2)0.0332 (9)
O120.45046 (18)0.0453 (3)0.3688 (2)0.0394 (10)
O210.40882 (18)0.3398 (3)0.3058 (2)0.0353 (9)
O220.39728 (17)0.3096 (3)0.4609 (2)0.0285 (8)
C10.3039 (2)0.0669 (4)0.2786 (3)0.0243 (11)
C20.2997 (2)0.1997 (4)0.3108 (3)0.0232 (11)
C30.2221 (2)0.2560 (4)0.2924 (3)0.0259 (11)
C40.1492 (2)0.1842 (4)0.2424 (3)0.0283 (12)
C50.1534 (3)0.0524 (4)0.2126 (3)0.0302 (12)
C60.2302 (3)0.0051 (4)0.2304 (3)0.0293 (12)
C110.3866 (3)0.0005 (4)0.2974 (3)0.0278 (12)
C210.3755 (2)0.2872 (4)0.3636 (3)0.0240 (11)
O1W0.5248 (2)0.1641 (3)0.2253 (2)0.0437 (11)
H2A0.187800.614800.029100.0550*
H3A0.053600.539300.071000.0690*
H4A0.029500.314500.049700.0620*
H5A0.141500.171800.015900.0530*
H6A0.276300.246800.062900.0420*
H11A0.402800.371700.158000.0350*
H12A0.449800.447700.109000.0350*
H13A0.400800.339700.053000.0350*
H14A0.337000.533800.013300.0390*
H15A0.340700.571800.099300.0390*
H2B0.687300.356900.722400.0450*
H3B0.828300.380900.818900.0540*
H4B0.920100.405900.734500.0520*
H5B0.868900.407800.551800.0530*
H6B0.727900.383400.454000.0470*
H11B0.583000.445100.381100.0320*
H12B0.505000.428100.391100.0320*
H13B0.570000.520100.459100.0320*
H14B0.591600.257000.484700.0390*
H15B0.571600.349300.564300.0390*
H30.219000.343300.313900.0310*
H60.232600.093000.209900.0350*
H11W0.552100.236600.236700.0650*
H12W0.505100.158600.265700.0650*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N11A0.037 (2)0.0257 (18)0.0298 (17)0.0037 (15)0.0179 (15)0.0026 (14)
C1A0.040 (2)0.030 (2)0.0254 (19)0.0025 (19)0.0164 (18)0.0033 (16)
C2A0.048 (3)0.036 (3)0.052 (3)0.008 (2)0.017 (2)0.002 (2)
C3A0.040 (3)0.069 (4)0.058 (3)0.018 (3)0.014 (2)0.002 (3)
C4A0.039 (3)0.079 (4)0.040 (3)0.008 (3)0.019 (2)0.004 (3)
C5A0.045 (3)0.050 (3)0.041 (2)0.009 (2)0.020 (2)0.003 (2)
C6A0.043 (3)0.036 (2)0.031 (2)0.002 (2)0.0188 (19)0.0054 (18)
C11A0.041 (2)0.023 (2)0.033 (2)0.0014 (18)0.0148 (18)0.0012 (17)
N11B0.0371 (19)0.0191 (16)0.0293 (16)0.0034 (14)0.0179 (15)0.0041 (13)
C1B0.038 (2)0.0147 (18)0.041 (2)0.0021 (17)0.0210 (19)0.0040 (16)
C2B0.045 (3)0.031 (2)0.042 (2)0.002 (2)0.022 (2)0.0070 (19)
C3B0.049 (3)0.040 (3)0.041 (2)0.002 (2)0.013 (2)0.004 (2)
C4B0.034 (3)0.027 (2)0.064 (3)0.0046 (19)0.014 (2)0.001 (2)
C5B0.041 (3)0.039 (3)0.062 (3)0.004 (2)0.030 (2)0.003 (2)
C6B0.042 (3)0.040 (3)0.041 (2)0.004 (2)0.022 (2)0.005 (2)
C11B0.041 (2)0.021 (2)0.043 (2)0.0023 (18)0.023 (2)0.0063 (17)
Cl40.0307 (6)0.0397 (6)0.0530 (7)0.0075 (5)0.0185 (5)0.0053 (5)
Cl50.0350 (6)0.0422 (7)0.0676 (8)0.0120 (5)0.0155 (6)0.0114 (6)
O110.0445 (18)0.0204 (14)0.0431 (16)0.0051 (13)0.0262 (14)0.0038 (12)
O120.0333 (17)0.0378 (17)0.0430 (17)0.0084 (14)0.0103 (14)0.0079 (14)
O210.0378 (17)0.0388 (17)0.0327 (15)0.0107 (14)0.0173 (13)0.0040 (13)
O220.0405 (16)0.0210 (14)0.0276 (14)0.0035 (12)0.0171 (12)0.0039 (11)
C10.035 (2)0.0204 (19)0.0226 (18)0.0011 (16)0.0169 (16)0.0002 (15)
C20.031 (2)0.0222 (19)0.0221 (17)0.0015 (16)0.0164 (16)0.0029 (15)
C30.036 (2)0.0210 (19)0.0255 (19)0.0025 (17)0.0173 (17)0.0015 (15)
C40.030 (2)0.032 (2)0.029 (2)0.0059 (18)0.0180 (17)0.0040 (17)
C50.035 (2)0.025 (2)0.032 (2)0.0073 (18)0.0146 (18)0.0015 (16)
C60.038 (2)0.024 (2)0.031 (2)0.0005 (18)0.0189 (18)0.0018 (16)
C110.034 (2)0.023 (2)0.032 (2)0.0036 (17)0.0188 (18)0.0075 (17)
C210.029 (2)0.0151 (18)0.031 (2)0.0028 (15)0.0150 (17)0.0032 (15)
O1W0.059 (2)0.0254 (16)0.0577 (19)0.0065 (15)0.0345 (17)0.0072 (14)
Geometric parameters (Å, º) top
Cl4—C41.726 (4)C6A—H6A0.9300
Cl5—C51.737 (5)C11A—H15A0.9700
O11—C111.271 (5)C11A—H14A0.9700
O12—C111.244 (5)C1B—C2B1.391 (5)
O21—C211.260 (5)C1B—C11B1.501 (7)
O22—C211.258 (5)C1B—C6B1.390 (7)
O1W—H11W0.8500C2B—C3B1.373 (7)
O1W—H12W0.7600C3B—C4B1.378 (8)
N11A—C11A1.478 (6)C4B—C5B1.381 (7)
N11A—H13A0.8800C5B—C6B1.376 (8)
N11A—H11A0.8700C2B—H2B0.9300
N11A—H12A0.9000C3B—H3B0.9300
N11B—C11B1.488 (5)C4B—H4B0.9300
N11B—H12B0.9600C5B—H5B0.9300
N11B—H13B0.8200C6B—H6B0.9300
N11B—H11B0.8800C11B—H15B0.9700
C1A—C6A1.393 (6)C11B—H14B0.9700
C1A—C2A1.386 (7)C1—C111.507 (6)
C1A—C11A1.500 (7)C1—C21.411 (6)
C2A—C3A1.375 (8)C1—C61.390 (6)
C3A—C4A1.388 (8)C2—C211.510 (5)
C4A—C5A1.366 (8)C2—C31.387 (5)
C5A—C6A1.379 (8)C3—C41.382 (5)
C2A—H2A0.9300C4—C51.391 (6)
C3A—H3A0.9300C5—C61.381 (7)
C4A—H4A0.9300C3—H30.9300
C5A—H5A0.9300C6—H60.9300
H11W—O1W—H12W108.00C4B—C5B—C6B120.8 (5)
C11A—N11A—H13A110.00C1B—C6B—C5B120.2 (5)
C11A—N11A—H11A111.00N11B—C11B—C1B113.3 (4)
H12A—N11A—H13A105.00C1B—C2B—H2B120.00
H11A—N11A—H13A114.00C3B—C2B—H2B120.00
H11A—N11A—H12A111.00C4B—C3B—H3B120.00
C11A—N11A—H12A106.00C2B—C3B—H3B120.00
C11B—N11B—H11B115.00C3B—C4B—H4B120.00
H12B—N11B—H13B112.00C5B—C4B—H4B120.00
C11B—N11B—H13B108.00C4B—C5B—H5B120.00
H11B—N11B—H13B110.00C6B—C5B—H5B120.00
C11B—N11B—H12B111.00C5B—C6B—H6B120.00
H11B—N11B—H12B101.00C1B—C6B—H6B120.00
C6A—C1A—C11A123.9 (4)N11B—C11B—H15B109.00
C2A—C1A—C11A118.4 (4)C1B—C11B—H14B109.00
C2A—C1A—C6A117.7 (5)C1B—C11B—H15B109.00
C1A—C2A—C3A121.7 (5)H14B—C11B—H15B108.00
C2A—C3A—C4A120.0 (5)N11B—C11B—H14B109.00
C3A—C4A—C5A118.6 (5)C2—C1—C6119.2 (4)
C4A—C5A—C6A121.9 (5)C2—C1—C11121.4 (3)
C1A—C6A—C5A120.1 (4)C6—C1—C11119.3 (4)
N11A—C11A—C1A114.8 (3)C1—C2—C21123.8 (3)
C3A—C2A—H2A119.00C3—C2—C21116.9 (3)
C1A—C2A—H2A119.00C1—C2—C3119.3 (4)
C2A—C3A—H3A120.00C2—C3—C4120.9 (4)
C4A—C3A—H3A120.00Cl4—C4—C3119.2 (3)
C3A—C4A—H4A121.00Cl4—C4—C5121.0 (3)
C5A—C4A—H4A121.00C3—C4—C5119.8 (4)
C4A—C5A—H5A119.00Cl5—C5—C6119.1 (3)
C6A—C5A—H5A119.00C4—C5—C6119.9 (4)
C1A—C6A—H6A120.00Cl5—C5—C4121.0 (4)
C5A—C6A—H6A120.00C1—C6—C5120.8 (4)
H14A—C11A—H15A108.00O11—C11—C1116.3 (4)
N11A—C11A—H14A109.00O12—C11—C1118.2 (4)
N11A—C11A—H15A109.00O11—C11—O12125.5 (5)
C1A—C11A—H14A109.00O21—C21—C2117.7 (3)
C1A—C11A—H15A109.00O22—C21—C2117.5 (3)
C2B—C1B—C6B118.6 (5)O21—C21—O22124.7 (4)
C2B—C1B—C11B119.8 (4)C2—C3—H3120.00
C6B—C1B—C11B121.6 (4)C4—C3—H3119.00
C1B—C2B—C3B120.6 (5)C1—C6—H6120.00
C2B—C3B—C4B120.5 (5)C5—C6—H6120.00
C3B—C4B—C5B119.2 (5)
C6A—C1A—C2A—C3A1.6 (7)C11—C1—C2—C3179.5 (4)
C11A—C1A—C2A—C3A179.5 (4)C11—C1—C2—C211.4 (6)
C2A—C1A—C6A—C5A0.6 (6)C2—C1—C6—C50.9 (6)
C11A—C1A—C6A—C5A179.4 (4)C11—C1—C6—C5179.6 (4)
C2A—C1A—C11A—N11A177.6 (4)C2—C1—C11—O11157.7 (4)
C6A—C1A—C11A—N11A3.6 (6)C2—C1—C11—O1222.4 (6)
C1A—C2A—C3A—C4A1.5 (8)C6—C1—C11—O1123.6 (6)
C2A—C3A—C4A—C5A0.4 (8)C6—C1—C11—O12156.3 (4)
C3A—C4A—C5A—C6A0.6 (8)C1—C2—C3—C40.5 (6)
C4A—C5A—C6A—C1A0.5 (7)C21—C2—C3—C4178.6 (3)
C6B—C1B—C2B—C3B1.1 (6)C1—C2—C21—O2178.1 (5)
C11B—C1B—C2B—C3B178.3 (4)C1—C2—C21—O22106.7 (5)
C2B—C1B—C6B—C5B1.0 (7)C3—C2—C21—O21101.0 (4)
C11B—C1B—C6B—C5B178.4 (4)C3—C2—C21—O2274.2 (5)
C2B—C1B—C11B—N11B130.6 (4)C2—C3—C4—Cl4177.0 (3)
C6B—C1B—C11B—N11B50.1 (5)C2—C3—C4—C51.8 (6)
C1B—C2B—C3B—C4B0.4 (7)Cl4—C4—C5—Cl52.6 (5)
C2B—C3B—C4B—C5B0.3 (7)Cl4—C4—C5—C6177.0 (3)
C3B—C4B—C5B—C6B0.4 (7)C3—C4—C5—Cl5178.6 (3)
C4B—C5B—C6B—C1B0.3 (7)C3—C4—C5—C61.8 (6)
C6—C1—C2—C30.8 (6)Cl5—C5—C6—C1180.0 (3)
C6—C1—C2—C21179.9 (4)C4—C5—C6—C10.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11A—H11A···O210.872.012.866 (4)168
N11A—H12A···O12i0.901.902.801 (5)180
N11A—H13A···O22ii0.881.942.816 (4)175
N11B—H11B···O11i0.881.962.823 (4)167
N11B—H12B···O210.961.852.770 (4)160
N11B—H13B···O22iii0.821.992.803 (4)172
O1W—H11W···O11i0.851.942.789 (4)179
O1W—H12W···O120.762.282.980 (4)154
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C7H10N+·C8H2Cl2O42·H2O
Mr467.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)17.3005 (16), 10.0084 (7), 13.6990 (12)
β (°) 112.641 (11)
V3)2189.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.33 × 0.22 × 0.12
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.86, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
12311, 3842, 3019
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.189, 1.19
No. of reflections3842
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.37

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11A—H11A···O210.872.012.866 (4)168
N11A—H12A···O12i0.901.902.801 (5)180
N11A—H13A···O22ii0.881.942.816 (4)175
N11B—H11B···O11i0.881.962.823 (4)167
N11B—H12B···O210.961.852.770 (4)160
N11B—H13B···O22iii0.821.992.803 (4)172
O1W—H11W···O11i0.851.942.789 (4)179
O1W—H12W···O120.762.282.980 (4)154
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationBüyükgüngör, O. & Odabaşoğlu, M. (2007). Acta Cryst. E63, o4376–o4377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMattes, R. & Dorau, A. (1986). Z. Naturforsch. Teil B, 41, 808–814.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2008). Acta Cryst. C64, o532–o536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds