organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R,4S)-3,4,8-Trihy­dr­oxy-1,2,3,4-tetra­hydro­naphthalen-1-one monohydrate from Embellisia eureka

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bCNRST Division UATRS, Angle Allal Fassi/ FAR, BP 8027 Hay Riad, Rabat, Morocco, cInstitut für Pharmazeutische Biologie und Biotechnologie, Heinrich Heine University Düsseldorf, Gebäude 26.23, Universitätsstrasse 1, 40225 Düsseldorf, Germany, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 May 2012; accepted 17 May 2012; online 26 May 2012)

In the title hydrate, C10H10O4·H2O, the six-membered aliphatic ring that is fused to the benzene ring has a sofa shape, with the hy­droxy group in the 3-position (that represents the sofa back) of the aliphatic ring occupying a quasi-axial position. The hy­droxy group of the aromatic ring is hydrogen-bond donor to the carbonyl O atom; other O—H⋯O hydrogen bonds link the organic mol­ecules and the water mol­ecules into a three-dimensional network.

Related literature

For the isolation of the title compound from other fungi, see: Borgschulte et al. (1991[Borgschulte, K., Rebuffat, S., Trowitzsch-Kienast, W., Schomburg, D., Pinon, J. & Bodo, B. (1991). Tetrahedron, 47, 8351-8360.]); Iwasaki et al. (1972[Iwasaki, S., Muro, H., Nozoe, S. & Okuda, S. (1972). Tetrahedron Lett. 1, 13-16.]); Trisuwan et al. (2008[Trisuwan, K., Rukachaisirikul, V., Sukpondma, V., Preedanon, S., Phongpaichit, S., Rungjindamai, N. & Sakayaroj, J. (2008). J. Nat. Prod. 71, 1323-1326.]). The absolute configuration was assumed from published assignments, see: Trisuwan et al. (2008[Trisuwan, K., Rukachaisirikul, V., Sukpondma, V., Preedanon, S., Phongpaichit, S., Rungjindamai, N. & Sakayaroj, J. (2008). J. Nat. Prod. 71, 1323-1326.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O4·H2O

  • Mr = 212.20

  • Orthorhombic, P 21 21 21

  • a = 4.6430 (4) Å

  • b = 14.3904 (11) Å

  • c = 14.4976 (10) Å

  • V = 968.65 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.31 × 0.28 × 0.24 mm

Data collection
  • Bruker APEX DUO diffractometer

  • 6331 measured reflections

  • 1320 independent reflections

  • 916 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 0.99

  • 1320 reflections

  • 156 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (1) 1.87 (3) 2.590 (3) 143 (3)
O1—H1⋯O1wi 0.84 (1) 2.27 (3) 2.829 (3) 124 (3)
O3—H2⋯O1ii 0.84 (1) 2.15 (3) 2.924 (3) 153 (5)
O4—H3⋯O1wiii 0.85 (1) 1.82 (1) 2.657 (3) 170 (4)
O1w—H4⋯O2 0.84 (1) 1.98 (1) 2.805 (3) 167 (4)
O1w—H5⋯O4iv 0.85 (1) 1.88 (1) 2.726 (3) 177 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x-{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

3,4-Dihydro-3,4,8-trihydroxy-1[2H]-naphthalenone is a secondary metabolite produced by several endophytic fungi,e.g., Hypoxylon mammatum (Borgschulte et al., 1991), Nigrospora sp. (Trisuwan et al., 2008) and Pyrichularia orayzae (Iwasaki et al., 1972). The compound was isolated from Embellisia eureka in this study; the compound was found to crystallize as a monohydrate (Scheme I). In the hydrate, C10H10O4.H2O, the six-membered aliphatic ring that is fused to the benzene ring has a soft shape. The C-3 atom represents the sofa back. The hydroxy group of the aliphatic ring occupies a quasi-axial position (Fig. 1). The hydroxy group of the aromatic ring is hydrogen-bond donor to the carbonyl O atom; other O—H···O hydrogen bonds link the organic molecule and water molecule to form a 3D network (Table 1).

Related literature top

For the isolation of the compound from other fungi, see: Borgschulte et al. (1991); Iwasaki et al. (1972); Trisuwan et al. (2008).

Experimental top

Fungal extraction

The fungal strain, Embellisia eureka, was identified by PCR. About 250 ml of ethyl acetate was added into each culture material of the fungus in an Erlenmeyer flask. The ethyl acetate phase was then concentrated under reduced pressure. The residue was diluted in 90% aqueous methanol and further extracted with n-hexane to remove fatty acids and other non-polar constituents. The remaining 90% methanol phase was evaporated under reduced pressure to yield 3.0 g of crude product.

Isolation protocol of 3,4-dihydro-3,4,8-trihydroxy-1[2H]-naphthalenone

The 90% methanol extract was submitted to vacuum liquid chromatography on a column packed with silica as the stationary phase,. The resulting fraction was submitted two successive fractionations on a Sephadex column packed with Sephadex LH-20 as stationary phase. The mobile phase was the 100% methanol. This gave 113.4 mg of a material that was purified by using the semi-preparative HPLC to give 7.0 mg of the pure compound. Crystals were obtained by slow evaporation of a methanol: water (9:1) solution of the compound.

Refinement top

The aromatic and methylene H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The hydroxy and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of 0.84±0.01 Å; their temperature factors were refined.

The (0 1 1) reflection was omitted owing to bad disagreement.

The absolute configuration was assumed from published assignments (Trisuwan et al., 2008); 892 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C10H10O4.H2O at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
(3R,4S)-3,4,8-Trihydroxy-1,2,3,4-tetrahydronaphthalen-1-one monohydrate top
Crystal data top
C10H10O4·H2OF(000) = 448
Mr = 212.20Dx = 1.455 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1057 reflections
a = 4.6430 (4) Åθ = 2.8–21.8°
b = 14.3904 (11) ŵ = 0.12 mm1
c = 14.4976 (10) ÅT = 293 K
V = 968.65 (13) Å3Prism, brown
Z = 40.31 × 0.28 × 0.24 mm
Data collection top
Bruker APEX DUO
diffractometer
916 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ω scansh = 65
6331 measured reflectionsk = 1817
1320 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
1320 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.21 e Å3
5 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H10O4·H2OV = 968.65 (13) Å3
Mr = 212.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.6430 (4) ŵ = 0.12 mm1
b = 14.3904 (11) ÅT = 293 K
c = 14.4976 (10) Å0.31 × 0.28 × 0.24 mm
Data collection top
Bruker APEX DUO
diffractometer
916 reflections with I > 2σ(I)
6331 measured reflectionsRint = 0.063
1320 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0395 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.21 e Å3
1320 reflectionsΔρmin = 0.21 e Å3
156 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5051 (5)0.75199 (14)0.74392 (14)0.0280 (6)
O20.1740 (5)0.83227 (14)0.62424 (12)0.0281 (5)
O30.1933 (5)1.08380 (14)0.69719 (15)0.0262 (5)
O40.0651 (5)1.10191 (16)0.87414 (16)0.0318 (5)
O1w0.0565 (5)0.82560 (15)0.43458 (14)0.0268 (5)
C10.1862 (7)0.8812 (2)0.77911 (18)0.0198 (6)
C20.3877 (7)0.81217 (18)0.80514 (18)0.0226 (7)
C30.4788 (7)0.8053 (2)0.89602 (18)0.0270 (7)
H3A0.60840.75920.91340.032*
C40.3753 (7)0.8673 (2)0.96024 (19)0.0278 (8)
H4A0.43510.86221.02130.033*
C50.1843 (7)0.9371 (2)0.9362 (2)0.0247 (7)
H5A0.12020.97870.98090.030*
C60.0881 (7)0.94556 (19)0.8461 (2)0.0211 (6)
C70.1173 (7)1.02214 (19)0.8181 (2)0.0244 (7)
H70.31471.00080.82930.029*
C80.0888 (7)1.0480 (2)0.7169 (2)0.0235 (7)
H80.23521.09420.70040.028*
C90.1250 (6)0.96220 (19)0.6583 (2)0.0236 (7)
H9A0.31920.93850.66580.028*
H9B0.09930.97860.59400.028*
C100.0858 (6)0.88749 (19)0.68341 (18)0.0193 (6)
H10.439 (8)0.761 (2)0.6908 (13)0.049 (12)*
H20.228 (12)1.1339 (18)0.725 (3)0.103 (19)*
H30.228 (4)1.118 (3)0.895 (2)0.061 (13)*
H40.071 (10)0.821 (2)0.4923 (8)0.060 (13)*
H50.212 (4)0.848 (2)0.414 (2)0.039 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0361 (14)0.0245 (12)0.0236 (11)0.0091 (10)0.0056 (11)0.0015 (10)
O20.0319 (12)0.0308 (11)0.0215 (10)0.0076 (11)0.0046 (10)0.0056 (9)
O30.0207 (11)0.0228 (12)0.0351 (12)0.0052 (10)0.0051 (10)0.0006 (10)
O40.0180 (11)0.0354 (13)0.0420 (13)0.0034 (11)0.0007 (11)0.0182 (11)
O1w0.0195 (12)0.0378 (13)0.0231 (11)0.0054 (11)0.0032 (10)0.0044 (10)
C10.0176 (15)0.0199 (14)0.0220 (14)0.0065 (12)0.0019 (12)0.0013 (12)
C20.0261 (17)0.0187 (15)0.0229 (14)0.0045 (13)0.0005 (13)0.0019 (12)
C30.034 (2)0.0230 (16)0.0243 (15)0.0021 (14)0.0067 (14)0.0071 (14)
C40.034 (2)0.0321 (17)0.0175 (14)0.0094 (15)0.0003 (14)0.0024 (13)
C50.0224 (16)0.0282 (17)0.0235 (15)0.0068 (14)0.0066 (14)0.0030 (13)
C60.0153 (14)0.0246 (15)0.0234 (15)0.0070 (13)0.0052 (13)0.0015 (12)
C70.0173 (16)0.0263 (16)0.0298 (16)0.0011 (13)0.0007 (14)0.0069 (14)
C80.0157 (14)0.0209 (15)0.0340 (16)0.0029 (13)0.0003 (13)0.0015 (13)
C90.0158 (16)0.0299 (16)0.0252 (16)0.0005 (13)0.0031 (13)0.0006 (13)
C100.0155 (14)0.0215 (14)0.0211 (13)0.0048 (13)0.0004 (13)0.0016 (12)
Geometric parameters (Å, º) top
O1—C21.355 (3)C3—H3A0.9300
O1—H10.840 (10)C4—C51.384 (4)
O2—C101.239 (3)C4—H4A0.9300
O3—C81.436 (4)C5—C61.386 (4)
O3—H20.841 (10)C5—H5A0.9300
O4—C71.427 (3)C6—C71.513 (4)
O4—H30.846 (10)C7—C81.520 (4)
O1w—H40.842 (10)C7—H70.9800
O1w—H50.846 (10)C8—C91.508 (4)
C1—C61.417 (4)C8—H80.9800
C1—C21.416 (4)C9—C101.498 (4)
C1—C101.466 (4)C9—H9A0.9700
C2—C31.387 (4)C9—H9B0.9700
C3—C41.377 (4)
C2—O1—H1111 (3)O4—C7—C6109.1 (2)
C8—O3—H2113 (4)O4—C7—C8109.7 (2)
C7—O4—H3106 (3)C6—C7—C8112.5 (3)
H4—O1w—H5109 (4)O4—C7—H7108.5
C6—C1—C2119.2 (2)C6—C7—H7108.5
C6—C1—C10120.4 (3)C8—C7—H7108.5
C2—C1—C10120.3 (2)O3—C8—C9106.4 (2)
O1—C2—C3117.0 (3)O3—C8—C7111.0 (2)
O1—C2—C1122.7 (2)C9—C8—C7109.5 (2)
C3—C2—C1120.3 (3)O3—C8—H8109.9
C4—C3—C2119.3 (3)C9—C8—H8109.9
C4—C3—H3A120.3C7—C8—H8109.9
C2—C3—H3A120.3C10—C9—C8112.2 (2)
C3—C4—C5121.6 (3)C10—C9—H9A109.2
C3—C4—H4A119.2C8—C9—H9A109.2
C5—C4—H4A119.2C10—C9—H9B109.2
C4—C5—C6120.5 (3)C8—C9—H9B109.2
C4—C5—H5A119.8H9A—C9—H9B107.9
C6—C5—H5A119.8O2—C10—C1120.7 (3)
C5—C6—C1119.0 (3)O2—C10—C9120.5 (2)
C5—C6—C7121.3 (3)C1—C10—C9118.8 (3)
C1—C6—C7119.6 (3)
C6—C1—C2—O1175.8 (3)C1—C6—C7—O4148.4 (3)
C10—C1—C2—O12.8 (4)C5—C6—C7—C8153.2 (3)
C6—C1—C2—C32.6 (4)C1—C6—C7—C826.4 (4)
C10—C1—C2—C3178.9 (3)O4—C7—C8—O359.1 (3)
O1—C2—C3—C4177.3 (3)C6—C7—C8—O362.5 (3)
C1—C2—C3—C41.2 (4)O4—C7—C8—C9176.3 (2)
C2—C3—C4—C50.6 (5)C6—C7—C8—C954.7 (3)
C3—C4—C5—C61.0 (5)O3—C8—C9—C1063.4 (3)
C4—C5—C6—C10.5 (4)C7—C8—C9—C1056.7 (3)
C4—C5—C6—C7179.1 (3)C6—C1—C10—O2178.9 (3)
C2—C1—C6—C52.2 (4)C2—C1—C10—O20.4 (4)
C10—C1—C6—C5179.2 (3)C6—C1—C10—C90.8 (4)
C2—C1—C6—C7177.4 (3)C2—C1—C10—C9179.3 (3)
C10—C1—C6—C71.1 (4)C8—C9—C10—O2149.4 (3)
C5—C6—C7—O431.2 (4)C8—C9—C10—C130.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (1)1.87 (3)2.590 (3)143 (3)
O1—H1···O1wi0.84 (1)2.27 (3)2.829 (3)124 (3)
O3—H2···O1ii0.84 (1)2.15 (3)2.924 (3)153 (5)
O4—H3···O1wiii0.85 (1)1.82 (1)2.657 (3)170 (4)
O1w—H4···O20.84 (1)1.98 (1)2.805 (3)167 (4)
O1w—H5···O4iv0.85 (1)1.88 (1)2.726 (3)177 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x1/2, y+2, z+1/2; (iv) x+1/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H10O4·H2O
Mr212.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.6430 (4), 14.3904 (11), 14.4976 (10)
V3)968.65 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.31 × 0.28 × 0.24
Data collection
DiffractometerBruker APEX DUO
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6331, 1320, 916
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 0.99
No. of reflections1320
No. of parameters156
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (1)1.87 (3)2.590 (3)143 (3)
O1—H1···O1wi0.84 (1)2.27 (3)2.829 (3)124 (3)
O3—H2···O1ii0.84 (1)2.15 (3)2.924 (3)153 (5)
O4—H3···O1wiii0.85 (1)1.82 (1)2.657 (3)170 (4)
O1w—H4···O20.84 (1)1.98 (1)2.805 (3)167 (4)
O1w—H5···O4iv0.85 (1)1.88 (1)2.726 (3)177 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x1/2, y+2, z+1/2; (iv) x+1/2, y+2, z1/2.
 

Acknowledgements

We thank Université Mohammed V-Agdal, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBorgschulte, K., Rebuffat, S., Trowitzsch-Kienast, W., Schomburg, D., Pinon, J. & Bodo, B. (1991). Tetrahedron, 47, 8351–8360.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIwasaki, S., Muro, H., Nozoe, S. & Okuda, S. (1972). Tetrahedron Lett. 1, 13–16.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrisuwan, K., Rukachaisirikul, V., Sukpondma, V., Preedanon, S., Phongpaichit, S., Rungjindamai, N. & Sakayaroj, J. (2008). J. Nat. Prod. 71, 1323–1326.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds