organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Dioxa-λ6-thia­tetra­cyclo­[5.3.1.15,9.01,5]do­decane-3,3-dione

aChemistry Department, University of Cyprus, Nicosia 1678, Cyprus
*Correspondence e-mail: ioannou.savvas@ucy.ac.cy

(Received 5 April 2012; accepted 8 May 2012; online 16 May 2012)

The crystal structure of the title compound, C9H12O4S, was determined in order to investigate the effect of the eclipsed O atoms on the bond length of the vicinal quaternary C atoms. The two quaternary C atoms of the noradamantane skeleton and the two O atoms to which they are connected all located essentially in the same plane (maximum deviation = 0.01 Å), resulting in an eclipsed conformation of the C—O bonds. The C—C bond of the quaternary C atoms is 1.581 (3) Å, considerably longer than the other C—C bonds of the mol­ecule due to the stretch of the cage structure.

Related literature

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989[Borden, W. T. (1989). Chem. Rev. 89, 1095-1109.], 1996[Borden, W. T. (1996). Synlett, pp. 711-719.]); Vázquez & Camps (2005[Vázquez, S. & Camps, P. (2005). Tetrahedron, 61, 5147-5208.]). For the syntheses of cyclic sulfates of acyclic alcohols, see: Byun et al. (2000[Byun, H. S., He, L. & Bittman, R. (2000). Tetrahedron, 56, 7051-7091.]); Kaiser (1970[Kaiser, E. T. (1970). Acc. Chem. Res. 3, 145-151.]); Boer et al. (1968[Boer, F. P., Flynn, J. J., Kaiser, E. T., Zaborsky, O. R., Tomalia, D. A., Young, A. E. & Tong, Y. C. (1968). J. Am. Chem. Soc. 90, 2970-2971.]). For the synthesis of the precursor diol (tricyclo-[3.3.1.03,7]nonane-3,7- diol), an important inter­mediate in the synthetic route towards the generation of noradamantene, see: Zalikowski et al. (1980)[Zalikowski, J. A., Gilbert, K. E. & Borden, W. T. (1980). J. Org. Chem. 45, 346-347]; Bertz (1985[Bertz, S. H. (1985). J. Org. Chem. 50, 3585-3592.]). For the synthesis of the title compound, see: Ioannou & Nicolaides (2009[Ioannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938-6940.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12O4S

  • Mr = 216.25

  • Monoclinic, P 21 /n

  • a = 7.6571 (3) Å

  • b = 13.0442 (6) Å

  • c = 9.1755 (4) Å

  • β = 95.410 (4)°

  • V = 912.37 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.05 × 0.03 × 0.02 mm

Data collection
  • Oxford Diffraction SuperNova Dual Cu at zero Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.803, Tmax = 1.000

  • 5195 measured reflections

  • 1596 independent reflections

  • 1389 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.02

  • 1596 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006)[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.] and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Five member cyclic sulfates are known for their exceptional reactivity to solvolysis in comparison to the six member rings or their acyclic analogs (Kaiser 1970, Boer et al. 1968). Their significant role in organic synthesis originates from their high reactivity towards various nucleophiles (Byun et al. 2000).

Pyramidalized alkenes is a special category of olefins which have their four substituents of the double bond not lying on the same plane (Borden 1989, 1996, Vázquez & Camps et al. 2005). This fact makes the higher pyramidalized alkenes (like noradamantene) very reactive and impossible to isolate at ambient conditions. Due to their high reactivity, once they form, they react instantly with any nucleophile. In the absence of any reactive compound during their formation, the most common product is their [2 + 2] dimer. Noradamantene is a member of a homologous series of this category and its preparation is quite important on studying the properties of these highly reactive compounds, as well as using it for the preparation of larger polycyclic hydrocarbons. The only convenient way of producing noradamantene quantitative is by reduction of the corresponding diiodide (scheme 3). Unfortunately, the precursor diol gives a very poor yield of diiodide (~20%) upon iodination (Ioannou et al. 2009). The title compound was synthesized in an attempt to build new good precursors for noradamantene, or even for the corresponding diiodide in order to improve the reaction yields.

Related literature top

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989, 1996); Vázquez & Camps (2005). For the syntheses of cyclic sulfates of acyclic alcohols, see: Byun et al. (2000); Kaiser (1970); Boer et al. (1968). For the synthesis of the precursor diol (tricyclo-[3.3.1.03,7]nonane-3,7- diol), an important intermediate in the synthetic route towards the generation of noradamantene, see: Zalikowski et al. (1980); Bertz (1985). For the synthesis of the title compound, see: Ioannou & Nicolaides (2009).

Experimental top

Synthesis of tricyclo[3.3.1.03,7]nonane-3,7-diol cyclic sulfate. Tricyclo[3.3.1.03,7]nonane-3,7-diol (500 mg, 3.25 mmol) was added to concd H2SO4 (95–97%, 5 ml) and the resulting mixture was stirred at 130 οC for 1 h. After cooling, H2O (100 ml) was added very slowly. The solution was extracted with CH2Cl2 (4 x 20 ml), and the combined organic phase was dried (Na2SO4) and the solvent was removed under vacuum to give crude product (629 mg, 90%). Crystallization by slow evaporation of the solvent (hexane/dichloromethane 4:1), afforded colorless needle-like crystals. Mp 117–118 oC; νmax(KBr) 2955, 2922, 2853, 1460, 1382, 1337, 1306, 1242, 1202, 1090, 960, 837, 812, 777; δH (300 MHz, CDCl3) 2.65 (2H, s, –CH), 2.32 (4Heq, d, J = 11.1 Hz), 2.19 (4Hax, d, J = 10.8 Hz), 1.55 (2H, s, –CH2 bridge); δC (75.5 MHz, CDCl3) 94.47 (C–O), 46.44 (CH2), 37.04 (CH), 33.00 (CH2 bridge). Anal. Calcd for C9H12O4S: C, 50.0; H, 5.6; S, 14.8. Found: C, 50.4; H, 5.6; S, 14.4.

Refinement top

The H atoms are positioned with idealized geometry and refined using a riding model with Uiso(H) = 1.2 of Ueq (C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Structure of the title compound tricyclo-[3.3.1.03,7]nonane-3,7-diol cyclic sulfate with the atom-labelling. Displacement elipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along [1 0 0].
[Figure 3] Fig. 3. Preparation of the title compound and the experimental path of noradamantene formation.
2,4-Dioxa-λ6-thiatetracyclo[5.3.1.15,9.01,5]dodecane-3,3-dione top
Crystal data top
C9H12O4SF(000) = 456
Mr = 216.25Dx = 1.574 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6571 (3) ÅCell parameters from 3034 reflections
b = 13.0442 (6) Åθ = 3.1–28.8°
c = 9.1755 (4) ŵ = 0.34 mm1
β = 95.410 (4)°T = 100 K
V = 912.37 (7) Å3Needle, colorless
Z = 40.05 × 0.03 × 0.02 mm
Data collection top
Oxford Diffraction SuperNova Dual Cu at zero Atlas
diffractometer
1596 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1389 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4223 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1415
Tmin = 0.803, Tmax = 1.000l = 1010
5195 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.8407P]
where P = (Fo2 + 2Fc2)/3
1596 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C9H12O4SV = 912.37 (7) Å3
Mr = 216.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6571 (3) ŵ = 0.34 mm1
b = 13.0442 (6) ÅT = 100 K
c = 9.1755 (4) Å0.05 × 0.03 × 0.02 mm
β = 95.410 (4)°
Data collection top
Oxford Diffraction SuperNova Dual Cu at zero Atlas
diffractometer
1596 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1389 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 1.000Rint = 0.036
5195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
1596 reflectionsΔρmin = 0.36 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10031 (6)0.20071 (4)0.77561 (6)0.01630 (19)
O10.05353 (18)0.13375 (11)0.64114 (16)0.0169 (4)
O20.09088 (18)0.23740 (11)0.83001 (17)0.0175 (4)
O30.20095 (19)0.28604 (12)0.72290 (18)0.0224 (4)
O40.16597 (19)0.13680 (12)0.88353 (17)0.0226 (4)
C10.4547 (3)0.01132 (17)0.7302 (2)0.0185 (5)
H1A0.56410.02020.79130.022*
H1B0.46840.04650.66580.022*
C20.3060 (3)0.01186 (16)0.8282 (2)0.0177 (5)
H20.33050.07330.88810.021*
C30.1296 (3)0.01977 (16)0.7334 (2)0.0170 (5)
H3A0.13270.07050.65640.020*
H3B0.03300.03440.79140.020*
C40.1219 (3)0.08940 (16)0.6732 (2)0.0147 (5)
C50.2365 (3)0.09867 (17)0.5474 (2)0.0178 (5)
H5A0.20760.15890.48790.021*
H5B0.23000.03800.48600.021*
C60.4163 (3)0.10886 (17)0.6370 (2)0.0180 (5)
H60.51040.12420.57500.022*
C70.3780 (3)0.19974 (17)0.7360 (3)0.0181 (5)
H7A0.47350.21210.81110.022*
H7B0.35240.26200.68030.022*
C80.2171 (3)0.15760 (16)0.7992 (2)0.0153 (5)
C90.2700 (3)0.08211 (17)0.9218 (2)0.0189 (5)
H9A0.17570.06980.98310.023*
H9B0.37420.10430.98190.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0148 (3)0.0156 (3)0.0191 (3)0.0000 (2)0.0042 (2)0.0004 (2)
O10.0144 (7)0.0174 (8)0.0187 (8)0.0018 (6)0.0006 (6)0.0029 (6)
O20.0150 (7)0.0138 (8)0.0239 (9)0.0009 (6)0.0027 (6)0.0052 (7)
O30.0209 (8)0.0200 (9)0.0269 (10)0.0054 (7)0.0048 (7)0.0023 (7)
O40.0223 (8)0.0237 (9)0.0229 (9)0.0025 (7)0.0076 (6)0.0031 (7)
C10.0188 (11)0.0159 (11)0.0210 (12)0.0020 (9)0.0026 (9)0.0014 (9)
C20.0210 (11)0.0120 (11)0.0196 (12)0.0014 (9)0.0005 (9)0.0040 (9)
C30.0184 (11)0.0132 (11)0.0196 (12)0.0017 (9)0.0037 (8)0.0004 (9)
C40.0116 (10)0.0132 (11)0.0191 (12)0.0001 (9)0.0001 (8)0.0010 (9)
C50.0209 (11)0.0169 (11)0.0159 (12)0.0022 (9)0.0036 (9)0.0005 (9)
C60.0165 (10)0.0161 (11)0.0225 (12)0.0006 (9)0.0075 (9)0.0004 (9)
C70.0156 (11)0.0155 (12)0.0236 (13)0.0016 (9)0.0037 (9)0.0011 (9)
C80.0148 (10)0.0124 (11)0.0189 (12)0.0007 (9)0.0037 (8)0.0035 (9)
C90.0185 (10)0.0222 (12)0.0158 (12)0.0001 (10)0.0007 (8)0.0006 (10)
Geometric parameters (Å, º) top
S1—O31.4129 (16)C3—H3B0.9700
S1—O41.4221 (16)C4—C51.520 (3)
S1—O21.5759 (15)C4—C81.581 (3)
S1—O11.5801 (15)C5—C61.541 (3)
O1—C41.466 (2)C5—H5A0.9700
O2—C81.466 (2)C5—H5B0.9700
C1—C61.546 (3)C6—C71.538 (3)
C1—C21.546 (3)C6—H60.9800
C1—H1A0.9700C7—C81.514 (3)
C1—H1B0.9700C7—H7A0.9700
C2—C91.536 (3)C7—H7B0.9700
C2—C31.540 (3)C8—C91.521 (3)
C2—H20.9800C9—H9A0.9700
C3—C41.526 (3)C9—H9B0.9700
C3—H3A0.9700
O3—S1—O4118.88 (9)C3—C4—C8105.15 (17)
O3—S1—O2109.24 (9)C4—C5—C698.78 (17)
O4—S1—O2109.66 (9)C4—C5—H5A112.0
O3—S1—O1108.94 (9)C6—C5—H5A112.0
O4—S1—O1109.92 (9)C4—C5—H5B112.0
O2—S1—O198.22 (8)C6—C5—H5B112.0
C4—O1—S1109.39 (12)H5A—C5—H5B109.7
C8—O2—S1109.44 (12)C7—C6—C599.84 (16)
C6—C1—C2111.76 (17)C7—C6—C1110.17 (18)
C6—C1—H1A109.3C5—C6—C1109.73 (18)
C2—C1—H1A109.3C7—C6—H6112.2
C6—C1—H1B109.3C5—C6—H6112.2
C2—C1—H1B109.3C1—C6—H6112.2
H1A—C1—H1B107.9C8—C7—C698.85 (17)
C9—C2—C3100.12 (16)C8—C7—H7A112.0
C9—C2—C1110.47 (17)C6—C7—H7A112.0
C3—C2—C1109.83 (18)C8—C7—H7B112.0
C9—C2—H2111.9C6—C7—H7B112.0
C3—C2—H2111.9H7A—C7—H7B109.7
C1—C2—H2111.9O2—C8—C7113.03 (17)
C4—C3—C298.27 (16)O2—C8—C9116.85 (17)
C4—C3—H3A112.1C7—C8—C9110.41 (17)
C2—C3—H3A112.1O2—C8—C4105.88 (15)
C4—C3—H3B112.1C7—C8—C4105.08 (17)
C2—C3—H3B112.1C9—C8—C4104.40 (16)
H3A—C3—H3B109.8C8—C9—C298.76 (17)
O1—C4—C5113.56 (17)C8—C9—H9A112.0
O1—C4—C3116.37 (16)C2—C9—H9A112.0
C5—C4—C3110.08 (18)C8—C9—H9B112.0
O1—C4—C8105.98 (16)C2—C9—H9B112.0
C5—C4—C8104.54 (16)H9A—C9—H9B109.7

Experimental details

Crystal data
Chemical formulaC9H12O4S
Mr216.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.6571 (3), 13.0442 (6), 9.1755 (4)
β (°) 95.410 (4)
V3)912.37 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.05 × 0.03 × 0.02
Data collection
DiffractometerOxford Diffraction SuperNova Dual Cu at zero Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.803, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5195, 1596, 1389
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.02
No. of reflections1596
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

 

Acknowledgements

We are grateful to the Research Promotion Foundation (IΠE) of Cyprus and the European Structural Funds for grant ANABAΘ/ΠAΓIO/0308/12 which allowed the purchase of the XRD instrument, NEKYΠ/0308/02 enabling the purchase of a 500 MHz NMR spectrometer, of the RSC journal archive and for access to Reaxys and financial support to SI (ΠENEK/ENIΣX/0308/01). Partial financial support (SI) was also provided by the SRP "Inter­esting Divalent Carbon Compounds" granted by UCY. The A. G. Leventis Foundation is gratefully acknowledged for a generous donation to the University of Cyprus enabling the purchase of the 300 MHz NMR spectrometer. Dr Athanassios Nicolaides and Dr Anastasios Tasiopoulos are thanked for illuminating comment.

References

First citationBertz, S. H. (1985). J. Org. Chem. 50, 3585–3592.  CrossRef CAS Web of Science Google Scholar
First citationBoer, F. P., Flynn, J. J., Kaiser, E. T., Zaborsky, O. R., Tomalia, D. A., Young, A. E. & Tong, Y. C. (1968). J. Am. Chem. Soc. 90, 2970–2971.  CSD CrossRef CAS Web of Science Google Scholar
First citationBorden, W. T. (1989). Chem. Rev. 89, 1095–1109.  CrossRef CAS Web of Science Google Scholar
First citationBorden, W. T. (1996). Synlett, pp. 711–719.  CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationByun, H. S., He, L. & Bittman, R. (2000). Tetrahedron, 56, 7051–7091.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIoannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938–6940.  Web of Science CrossRef CAS Google Scholar
First citationKaiser, E. T. (1970). Acc. Chem. Res. 3, 145–151.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVázquez, S. & Camps, P. (2005). Tetrahedron, 61, 5147–5208.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZalikowski, J. A., Gilbert, K. E. & Borden, W. T. (1980). J. Org. Chem. 45, 346–347  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds