organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-3,3-bis­­(4-methyl­piperazin-1-yl)-1-[2-(4-methyl­piperazin-1-yl)eth­yl]indolin-2-one

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: slcao@cnu.edu.cn

(Received 4 May 2012; accepted 17 May 2012; online 23 May 2012)

In the title compound, C26H43N7O, each piperazine ring adopts a chair conformation. Two 1-methyl­piperazine rings bond to one Csp3 of the pyrrole ring via the piperazine N atoms, while the third one links to the N atom of the indolin-2-one unit through a flexible ethyl group with an almost syn conformation. In the crystal, mol­ecules are connected through methyl­ene–carbonyl C—H⋯O inter­actions into an infinite chain along the c axis. The almost parallel arrays are stacked, forming a three-dimensional framework.

Related literature

For the background to indoline-2,3-dione and its derivatives, see Chiyanzu et al. (2005[Chiyanzu, I., Clarkson, C., Smith, P. J., Lehman, J., Gut, J., Rosenthalc, P. J. & Chibalea, K. (2005). Bioorg. Med. Chem. 13, 3249-3261.]); Solomon et al. (2009[Solomon, V. R., Hua, C. & Lee, H. (2009). Bioorg. Med. Chem. 17, 7585-7592.]); Sriram et al. (2004[Sriram, D., Bal, T. R. & Yogeeswari, P. (2004). Bioorg. Med. Chem. 12, 5865-5873.]). For a related structure, see: Lin et al. (2012[Lin, H.-H., Wu, W.-Y., Zhang, J.-J. & Cao, S.-L. (2012). Acta Cryst. E68, o821.]).

[Scheme 1]

Experimental

Crystal data
  • C26H43N7O

  • Mr = 469.67

  • Monoclinic, P 21 /c

  • a = 15.9433 (8) Å

  • b = 14.4097 (6) Å

  • c = 12.5310 (6) Å

  • β = 108.774 (3)°

  • V = 2725.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.33 × 0.21 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.613, Tmax = 0.746

  • 17378 measured reflections

  • 4785 independent reflections

  • 3332 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.03

  • 4785 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯O1i 0.97 2.64 3.388 (2) 135
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Mannich base derivatives of indoline-2,3-dione (isatin) exhibit antibacterial (Chiyanzu et al., 2005), anti-HIV (Sriram et al., 2004) and anticancer activity (Solomon et al., 2009).Recently, we obtained an isatin derivative with an flexible ethylene linker between the N atom of the isatin moiety and the amine group of the morpholine through the reaction of 1-(2-bromoethyl)-5-methylindoline-2,3-dione with excess of morpholine, namely 5-methyl-3,3-bis(morpholin-4-yl)-1-[2(morpholin-4-yl)ethyl] -2,3-dihydro-1H-indol-2-one. As a continue research on the synthesis of indole-2,3-dione(isatin) derivatives, herein we report the synthesis and crystal structure of a new compound based on indoline-2,3-dione through the reaction of 1-(2-bromoethyl)-5-methylindoline-2,3-dione with 1-methylpiperazine, namely 5-methyl-3,3-bis(4-methylpiperazin-1-yl)-1-(2-(4-methylpiperazin-1-yl)ethyl) indolin-2-one.

In the title compound, each piperazine ring adopts a chair conformation. Two 1-methylpiperazine rings bond to one C8(sp3) of the pyrrole ring via the piperazine N atoms (N2, N6), while the third one links to the N1 atom of indolin-2-one moiety through a flexible ethyl group with an almost syn conformation (N1-C15-C16-N5 torsion angle of 58.0 (3)°, as shown in Fig. 1). This steric configuration is similar to that of 5-methyl-3,3-bis(morpholin-4-yl)-1-[2(morpholin-4-yl)ethyl] -2,3-dihydro-1H-indol-2-one (59.7 (3)°) reported by us recently (Lin et al., 2012). Through C19—H19b(methylene)···O2i(carbonyl) interactions(see Table 1), the molecules are interconnected and arranged into an array along the c direction (i x, -y + 0.5, z +0.5), as shown in Fig. 2. The almost parallel arrays are stacked to form a three-dimensional framework (Fig. 3)

Related literature top

For the background to indoline-2,3-dione and its derivatives, see Chiyanzu et al. (2005); Solomon et al. (2009); Sriram et al. (2004). For a related structure, see: Lin et al. (2012).

Experimental top

To a solution of 1-(2-bromoethyl)-5-methylindoline-2,3-dione (0.27 g, 1 mmol) in N,N-dimethylformamide (5 ml) was added dropwise 1-methylpiperazine (0.60 g, 6 mmol). The mixture was stirred at 80–90°C for 3 h. The colorless crystals of the title compound were deposited by evaporation of the resulting solution in room temperature for one day (m.p. 401.2–403.0 K; yield 45%).

Refinement top

All H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on their respective carrier atoms, with C—H = 0.93 and 0.97 Å for aryl and methylene hydrogens, respectively. Uiso(H) = 1.2Ueq(C)aryl/methylene.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids of the non-hydrogen atoms are shown at the 30% probability level.
[Figure 2] Fig. 2. The array of the title compound along the c direction. The red-dashed lines indicate C19—H19b···O2i interactions (i x, -y + 0.5, z + 0.5).
[Figure 3] Fig. 3. View down the c direction of the stacking structure of the title compound. The stacking structures are shown with different color for clarity.
5-Methyl-3,3-bis(4-methylpiperazin-1-yl)-1-[2-(4-methylpiperazin-1- yl)ethyl]indolin-2-one top
Crystal data top
C26H43N7OF(000) = 1024
Mr = 469.67Dx = 1.145 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 233 reflections
a = 15.9433 (8) Åθ = 2.2–27.0°
b = 14.4097 (6) ŵ = 0.07 mm1
c = 12.5310 (6) ÅT = 296 K
β = 108.774 (3)°Block, colorless
V = 2725.7 (2) Å30.33 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4785 independent reflections
Radiation source: fine-focus sealed tube3332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1812
Tmin = 0.613, Tmax = 0.746k = 1517
17378 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.4418P] P = (Fo2 + 2Fc2)/3
4785 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H43N7OV = 2725.7 (2) Å3
Mr = 469.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.9433 (8) ŵ = 0.07 mm1
b = 14.4097 (6) ÅT = 296 K
c = 12.5310 (6) Å0.33 × 0.21 × 0.20 mm
β = 108.774 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4785 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3332 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.746Rint = 0.036
17378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
4785 reflectionsΔρmin = 0.20 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61856 (8)0.42163 (9)0.51428 (11)0.0505 (4)
N10.63105 (9)0.48564 (10)0.68622 (13)0.0417 (4)
N20.81475 (9)0.38396 (9)0.65785 (12)0.0382 (4)
N30.84094 (11)0.18704 (11)0.66137 (14)0.0508 (4)
N40.56630 (11)0.10611 (11)0.64539 (14)0.0509 (4)
N50.56530 (10)0.29754 (10)0.71078 (12)0.0445 (4)
N60.78671 (10)0.52537 (10)0.55620 (12)0.0426 (4)
N70.83904 (12)0.65751 (12)0.42139 (14)0.0594 (5)
C10.93336 (16)0.62601 (16)1.02535 (18)0.0685 (7)
H1A0.91810.65081.08780.103*
H1B0.96000.67380.99360.103*
H1C0.97450.57581.05090.103*
C20.85101 (14)0.59104 (13)0.93714 (16)0.0508 (5)
C30.76872 (15)0.59731 (14)0.95242 (18)0.0567 (6)
H3A0.76510.62441.01820.068*
C40.69174 (14)0.56483 (13)0.87348 (17)0.0516 (5)
H4A0.63730.56940.88560.062*
C50.69861 (12)0.52560 (12)0.77654 (15)0.0411 (4)
C60.77938 (12)0.51941 (11)0.75634 (15)0.0385 (4)
C70.85514 (13)0.55156 (12)0.83746 (15)0.0457 (5)
H7A0.90950.54670.82530.055*
C80.76536 (11)0.47217 (12)0.64355 (14)0.0382 (4)
C90.66284 (12)0.45605 (12)0.60356 (15)0.0395 (4)
C100.89282 (18)0.10229 (16)0.6758 (2)0.0817 (8)
H10A0.88370.06590.73520.123*
H10B0.95450.11770.69470.123*
H10C0.87460.06740.60690.123*
C140.80539 (13)0.32577 (12)0.74919 (16)0.0457 (5)
H14A0.74410.30690.73190.055*
H14B0.82200.36110.81880.055*
C120.79338 (14)0.32871 (14)0.55410 (16)0.0529 (5)
H12A0.80120.36630.49380.064*
H12B0.73190.30920.53200.064*
C130.86357 (14)0.24095 (14)0.76392 (16)0.0529 (5)
H13A0.92510.26000.78470.063*
H13B0.85660.20290.82440.063*
C110.85262 (15)0.24454 (14)0.57235 (17)0.0575 (6)
H11A0.83840.20890.50310.069*
H11B0.91400.26410.59240.069*
C210.61197 (17)0.03109 (15)0.6078 (2)0.0715 (7)
H21A0.62410.01860.66160.107*
H21B0.66660.05400.60120.107*
H21C0.57510.00870.53580.107*
C190.62220 (14)0.13991 (14)0.75484 (17)0.0523 (5)
H19A0.67960.15740.75000.063*
H19B0.63120.09050.81000.063*
C200.58116 (14)0.22236 (14)0.79314 (16)0.0536 (5)
H20A0.52560.20400.80300.064*
H20B0.62040.24390.86530.064*
C180.54742 (15)0.18231 (14)0.56412 (17)0.0555 (5)
H18A0.50750.16060.49250.067*
H18B0.60210.20190.55250.067*
C170.50618 (13)0.26400 (14)0.60349 (16)0.0526 (5)
H17A0.49480.31330.54790.063*
H17B0.45010.24560.61180.063*
C160.53429 (13)0.38064 (13)0.75112 (18)0.0516 (5)
H16A0.56880.38990.82970.062*
H16B0.47300.37170.74700.062*
C150.54066 (12)0.46790 (13)0.68498 (17)0.0498 (5)
H15A0.50250.46100.60760.060*
H15B0.51980.52070.71720.060*
C220.73461 (14)0.60954 (14)0.51764 (18)0.0550 (5)
H22A0.75430.65810.57380.066*
H22B0.67250.59730.50610.066*
C250.87969 (13)0.54758 (15)0.57798 (18)0.0558 (5)
H25A0.91600.49380.60860.067*
H25B0.89730.59750.63250.067*
C260.8496 (2)0.68403 (19)0.3141 (2)0.0871 (8)
H26A0.81370.73750.28460.131*
H26B0.83150.63360.26170.131*
H26C0.91070.69850.32540.131*
C240.89265 (16)0.57653 (16)0.4690 (2)0.0669 (6)
H24A0.95470.59080.48230.080*
H24B0.87640.52560.41560.080*
C230.74686 (15)0.63994 (15)0.40848 (18)0.0606 (6)
H23A0.72440.59210.35200.073*
H23B0.71280.69600.38210.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0457 (8)0.0621 (8)0.0380 (8)0.0015 (6)0.0053 (6)0.0015 (7)
N10.0393 (8)0.0425 (8)0.0440 (9)0.0020 (7)0.0145 (7)0.0015 (7)
N20.0452 (9)0.0371 (8)0.0313 (8)0.0021 (6)0.0110 (7)0.0003 (7)
N30.0609 (10)0.0404 (9)0.0488 (10)0.0074 (8)0.0145 (8)0.0025 (8)
N40.0605 (10)0.0466 (9)0.0479 (10)0.0058 (8)0.0206 (8)0.0001 (8)
N50.0497 (9)0.0447 (9)0.0377 (9)0.0012 (7)0.0122 (7)0.0013 (8)
N60.0429 (9)0.0427 (8)0.0428 (9)0.0008 (7)0.0145 (7)0.0079 (7)
N70.0748 (12)0.0513 (10)0.0556 (11)0.0103 (9)0.0261 (10)0.0090 (9)
C10.0831 (16)0.0589 (13)0.0493 (13)0.0106 (12)0.0016 (12)0.0094 (11)
C20.0689 (14)0.0371 (10)0.0406 (11)0.0035 (9)0.0097 (10)0.0022 (9)
C30.0830 (16)0.0438 (11)0.0445 (12)0.0027 (11)0.0225 (12)0.0111 (10)
C40.0633 (13)0.0445 (11)0.0530 (12)0.0023 (10)0.0270 (11)0.0069 (10)
C50.0499 (11)0.0331 (9)0.0404 (11)0.0029 (8)0.0146 (9)0.0004 (8)
C60.0443 (10)0.0337 (9)0.0366 (10)0.0010 (8)0.0118 (8)0.0000 (8)
C70.0499 (11)0.0401 (10)0.0442 (11)0.0021 (8)0.0111 (9)0.0003 (9)
C80.0401 (10)0.0388 (9)0.0353 (10)0.0005 (8)0.0118 (8)0.0003 (8)
C90.0428 (10)0.0382 (9)0.0358 (10)0.0028 (8)0.0102 (9)0.0049 (9)
C100.109 (2)0.0567 (14)0.0793 (18)0.0317 (14)0.0299 (16)0.0022 (13)
C140.0561 (12)0.0420 (10)0.0409 (11)0.0034 (9)0.0182 (9)0.0005 (9)
C120.0704 (14)0.0486 (11)0.0365 (11)0.0082 (10)0.0125 (10)0.0037 (10)
C130.0628 (13)0.0489 (11)0.0428 (11)0.0087 (10)0.0113 (10)0.0053 (10)
C110.0729 (14)0.0542 (12)0.0475 (12)0.0109 (11)0.0224 (11)0.0067 (11)
C210.0855 (17)0.0564 (13)0.0788 (17)0.0015 (12)0.0349 (14)0.0081 (13)
C190.0576 (12)0.0496 (11)0.0488 (12)0.0002 (10)0.0160 (10)0.0078 (10)
C200.0658 (13)0.0564 (12)0.0389 (11)0.0026 (10)0.0175 (10)0.0048 (10)
C180.0689 (14)0.0559 (12)0.0400 (11)0.0113 (11)0.0152 (10)0.0015 (10)
C170.0530 (12)0.0550 (12)0.0439 (11)0.0058 (10)0.0072 (10)0.0039 (10)
C160.0478 (11)0.0562 (12)0.0568 (13)0.0028 (9)0.0251 (10)0.0066 (11)
C150.0408 (11)0.0527 (12)0.0568 (12)0.0077 (9)0.0169 (9)0.0004 (10)
C220.0590 (13)0.0463 (11)0.0610 (14)0.0050 (10)0.0210 (11)0.0112 (11)
C250.0480 (12)0.0617 (13)0.0589 (13)0.0020 (10)0.0189 (10)0.0096 (11)
C260.121 (2)0.0796 (18)0.0699 (17)0.0179 (16)0.0443 (16)0.0146 (14)
C240.0666 (14)0.0676 (14)0.0772 (16)0.0018 (12)0.0379 (13)0.0128 (13)
C230.0716 (15)0.0481 (12)0.0570 (14)0.0014 (11)0.0136 (11)0.0137 (11)
Geometric parameters (Å, º) top
O1—C91.220 (2)C14—H14A0.9700
N1—C91.360 (2)C14—H14B0.9700
N1—C51.410 (2)C12—C111.509 (3)
N1—C151.459 (2)C12—H12A0.9700
N2—C141.465 (2)C12—H12B0.9700
N2—C121.468 (2)C13—H13A0.9700
N2—C81.476 (2)C13—H13B0.9700
N3—C131.445 (2)C11—H11A0.9700
N3—C111.449 (3)C11—H11B0.9700
N3—C101.453 (3)C21—H21A0.9600
N4—C191.458 (3)C21—H21B0.9600
N4—C181.461 (2)C21—H21C0.9600
N4—C211.464 (3)C19—C201.507 (3)
N5—C161.447 (2)C19—H19A0.9700
N5—C171.454 (2)C19—H19B0.9700
N5—C201.461 (2)C20—H20A0.9700
N6—C251.454 (2)C20—H20B0.9700
N6—C221.462 (2)C18—C171.507 (3)
N6—C81.464 (2)C18—H18A0.9700
N7—C231.448 (3)C18—H18B0.9700
N7—C241.456 (3)C17—H17A0.9700
N7—C261.459 (3)C17—H17B0.9700
C1—C21.505 (3)C16—C151.527 (3)
C1—H1A0.9600C16—H16A0.9700
C1—H1B0.9600C16—H16B0.9700
C1—H1C0.9600C15—H15A0.9700
C2—C31.388 (3)C15—H15B0.9700
C2—C71.393 (3)C22—C231.508 (3)
C3—C41.387 (3)C22—H22A0.9700
C3—H3A0.9300C22—H22B0.9700
C4—C51.376 (3)C25—C241.505 (3)
C4—H4A0.9300C25—H25A0.9700
C5—C61.393 (2)C25—H25B0.9700
C6—C71.384 (2)C26—H26A0.9600
C6—C81.519 (2)C26—H26B0.9600
C7—H7A0.9300C26—H26C0.9600
C8—C91.565 (2)C24—H24A0.9700
C10—H10A0.9600C24—H24B0.9700
C10—H10B0.9600C23—H23A0.9700
C10—H10C0.9600C23—H23B0.9700
C14—C131.509 (3)
C9—N1—C5111.34 (14)N3—C11—C12110.32 (17)
C9—N1—C15123.09 (16)N3—C11—H11A109.6
C5—N1—C15125.23 (15)C12—C11—H11A109.6
C14—N2—C12109.19 (14)N3—C11—H11B109.6
C14—N2—C8113.78 (13)C12—C11—H11B109.6
C12—N2—C8113.39 (13)H11A—C11—H11B108.1
C13—N3—C11108.67 (15)N4—C21—H21A109.5
C13—N3—C10111.86 (17)N4—C21—H21B109.5
C11—N3—C10111.54 (17)H21A—C21—H21B109.5
C19—N4—C18109.32 (15)N4—C21—H21C109.5
C19—N4—C21109.44 (17)H21A—C21—H21C109.5
C18—N4—C21110.04 (16)H21B—C21—H21C109.5
C16—N5—C17113.91 (16)N4—C19—C20111.48 (17)
C16—N5—C20111.57 (15)N4—C19—H19A109.3
C17—N5—C20108.67 (15)C20—C19—H19A109.3
C25—N6—C22108.43 (15)N4—C19—H19B109.3
C25—N6—C8116.32 (14)C20—C19—H19B109.3
C22—N6—C8115.95 (14)H19A—C19—H19B108.0
C23—N7—C24110.28 (16)N5—C20—C19110.71 (16)
C23—N7—C26110.92 (19)N5—C20—H20A109.5
C24—N7—C26111.1 (2)C19—C20—H20A109.5
C2—C1—H1A109.5N5—C20—H20B109.5
C2—C1—H1B109.5C19—C20—H20B109.5
H1A—C1—H1B109.5H20A—C20—H20B108.1
C2—C1—H1C109.5N4—C18—C17111.87 (16)
H1A—C1—H1C109.5N4—C18—H18A109.2
H1B—C1—H1C109.5C17—C18—H18A109.2
C3—C2—C7118.01 (18)N4—C18—H18B109.2
C3—C2—C1121.10 (19)C17—C18—H18B109.2
C7—C2—C1120.9 (2)H18A—C18—H18B107.9
C4—C3—C2122.57 (19)N5—C17—C18109.94 (16)
C4—C3—H3A118.7N5—C17—H17A109.7
C2—C3—H3A118.7C18—C17—H17A109.7
C5—C4—C3117.70 (19)N5—C17—H17B109.7
C5—C4—H4A121.1C18—C17—H17B109.7
C3—C4—H4A121.1H17A—C17—H17B108.2
C4—C5—C6121.85 (18)N5—C16—C15113.69 (16)
C4—C5—N1128.26 (17)N5—C16—H16A108.8
C6—C5—N1109.88 (15)C15—C16—H16A108.8
C7—C6—C5118.97 (17)N5—C16—H16B108.8
C7—C6—C8131.72 (17)C15—C16—H16B108.8
C5—C6—C8109.27 (15)H16A—C16—H16B107.7
C6—C7—C2120.87 (18)N1—C15—C16112.12 (15)
C6—C7—H7A119.6N1—C15—H15A109.2
C2—C7—H7A119.6C16—C15—H15A109.2
N6—C8—N2107.37 (13)N1—C15—H15B109.2
N6—C8—C6117.46 (14)C16—C15—H15B109.2
N2—C8—C6111.11 (14)H15A—C15—H15B107.9
N6—C8—C9107.98 (13)N6—C22—C23108.37 (17)
N2—C8—C9111.87 (14)N6—C22—H22A110.0
C6—C8—C9100.97 (14)C23—C22—H22A110.0
O1—C9—N1125.35 (17)N6—C22—H22B110.0
O1—C9—C8126.21 (16)C23—C22—H22B110.0
N1—C9—C8108.44 (15)H22A—C22—H22B108.4
N3—C10—H10A109.5N6—C25—C24108.67 (17)
N3—C10—H10B109.5N6—C25—H25A110.0
H10A—C10—H10B109.5C24—C25—H25A110.0
N3—C10—H10C109.5N6—C25—H25B110.0
H10A—C10—H10C109.5C24—C25—H25B110.0
H10B—C10—H10C109.5H25A—C25—H25B108.3
N2—C14—C13110.23 (15)N7—C26—H26A109.5
N2—C14—H14A109.6N7—C26—H26B109.5
C13—C14—H14A109.6H26A—C26—H26B109.5
N2—C14—H14B109.6N7—C26—H26C109.5
C13—C14—H14B109.6H26A—C26—H26C109.5
H14A—C14—H14B108.1H26B—C26—H26C109.5
N2—C12—C11110.25 (16)N7—C24—C25111.09 (19)
N2—C12—H12A109.6N7—C24—H24A109.4
C11—C12—H12A109.6C25—C24—H24A109.4
N2—C12—H12B109.6N7—C24—H24B109.4
C11—C12—H12B109.6C25—C24—H24B109.4
H12A—C12—H12B108.1H24A—C24—H24B108.0
N3—C13—C14111.04 (16)N7—C23—C22111.87 (18)
N3—C13—H13A109.4N7—C23—H23A109.2
C14—C13—H13A109.4C22—C23—H23A109.2
N3—C13—H13B109.4N7—C23—H23B109.2
C14—C13—H13B109.4C22—C23—H23B109.2
H13A—C13—H13B108.0H23A—C23—H23B107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O1i0.972.643.388 (2)135
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H43N7O
Mr469.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.9433 (8), 14.4097 (6), 12.5310 (6)
β (°) 108.774 (3)
V3)2725.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.33 × 0.21 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.613, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17378, 4785, 3332
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.03
No. of reflections4785
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O1i0.972.643.388 (2)135
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (project No. 20972099) and the Beijing Municipal Commission of Education (project No. KZ201210028035) for financial support.

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationChiyanzu, I., Clarkson, C., Smith, P. J., Lehman, J., Gut, J., Rosenthalc, P. J. & Chibalea, K. (2005). Bioorg. Med. Chem. 13, 3249–3261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, H.-H., Wu, W.-Y., Zhang, J.-J. & Cao, S.-L. (2012). Acta Cryst. E68, o821.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, V. R., Hua, C. & Lee, H. (2009). Bioorg. Med. Chem. 17, 7585–7592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Bal, T. R. & Yogeeswari, P. (2004). Bioorg. Med. Chem. 12, 5865–5873.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds