organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E,4E)-1-(2-Nitro­phen­yl)-5-(2,6,6-tri­methyl­cyclo­hex-1-en-1-yl)penta-1,4-dien-3-one

aInstitute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, People's Republic of China
*Correspondence e-mail: shulin_yang@126.com

(Received 6 May 2012; accepted 17 May 2012; online 23 May 2012)

In the title curcumin–ionone derivative, C20H23NO3, the dihedral angle between the cyclo­hexene and benzene rings is 21.03 (8)°, with both double bonds in the inter­linking olefinic chain adopting E conformations. Two of the methyl­ene groups of the β-ionone ring are disordered over two sets of sites with occupancy ratios of 0.50:0.50 and 0.60:0.40. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds into zigzag chains extending along the b axis.

Related literature

For related structures, see: Liang et al. (2007[Liang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007). Acta Cryst. E63, o4118.]); Zhang et al. (2012[Zhang, Y.-L., Xiang, L.-F., Zou, P., Jin, Y.-J. & Yang, S.-L. (2012). Acta Cryst. E68, o1859.]). For background to the biological properties of curcumin–ionone derivatives, see: Asokkumar et al. (2012[Asokkumar, S., Naveenkumar, C., Raghunandhakumar, S., Kamaraj, S., Anandakumar, P., Jagan, S. & Devaki, T. (2012). Mol. Cell. Biochem. 363, 335-345.]); Hsu & Cheng (2007[Hsu, C. H. & Cheng, A. L. (2007). Adv. Exp. Med. Biol. 595, 471-480.]); Kuttan et al. (1985[Kuttan, R., Sudheeran, P. C. & Josph, C. D. (1985). Cancer Lett. 29, 197-202.]); Zhao, Cai et al. (2010[Zhao, C. G., Cai, Y. P., He, X. Z., Li, J. L., Zhang, L., Wu, J. Z., Zhao, Y. J., Yang, S. L., Li, X. K., Li, W. L. & Liang, G. (2010). Eur. J. Med. Chem. 45, 5773-5780.]); Zhao, Yang et al. (2010[Zhao, C. G., Yang, J., Wang, Y., Liang, D. L., Yang, X. Y., Wu, J. Z., Wu, X. P., Yang, S. L., Li, X. K. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388-2393.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23NO3

  • Mr = 325.39

  • Monoclinic, P 21 /n

  • a = 7.2941 (6) Å

  • b = 19.2984 (15) Å

  • c = 12.7491 (10) Å

  • β = 92.892 (2)°

  • V = 1792.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.33 × 0.25 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.533, Tmax = 1.000

  • 10762 measured reflections

  • 3512 independent reflections

  • 2629 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.144

  • S = 1.06

  • 3512 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.50 3.182 (2) 131
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ionone is an important intermediate in the metabolism of terpenoids, and has been isolated from many sources, and represents a promising candidate for chemopreventive applications. Ionone has been used for in vivo and in vitro protection against various types of cancer cells (Asokkumar et al., 2012). Curcumin is a yellow compound isolated from the rhizome of the herb Curcuma longa L, which has been used for centuries as a dietary pigment, spice, and traditional medicine in India and China (Kuttan et al., 1985). Several clinical trials involving curcumin are currently being conducted on patients with pancreatic cancer, multiple myeloma, rheumatoid arthritis, cystic fibrosis, inflammatory bowel disease, psoriasis, and other disorders (Hsu & Cheng, 2007). Our previous studies also showed that some monocarbonyl analogues of curcumin without the β-diketone moiety exhibited better anti-inflammatory activities than those of curcumin (Liang et al., 2007; Zhao, Cai et al., 2010; Zhao, Yang et al., 2010).

In the present study, we designed and synthesized a series of ionone-based monocarbonyl analogues of curcumin by incorporating ionone and monocarbonyl dienone into one chemical entity. One of these was the title compound, C20H23NO3 and its structure is reported here. In the molecule (Fig. 1) the dihedral angle between the cyclohexene ring and the benzene ring is 21.03 (8)° with both double bonds in the inter-linking olefinic chain adopting E-configurations. Two of the methylene groups (C15 and C16) of the β-ionone ring are disordered over two sites, C15' (S.O.F = 0.40) and C16' (S.O.F. = 0.50), respectively. In the crystal, the molecules are linked through a weak intermolecular aromatic C—H···Ocarbonyl hydrogen bond, (Table 1), giving zigzag chains which extend down the b-cell direction.

Related literature top

For related structures, see: Liang et al. (2007); Zhang et al. (2012). For background to the biological properties of curcumin–ionone derivatives, see: Asokkumar et al. (2012); Hsu & Cheng (2007); Kuttan et al. (1985); Zhao, Cai et al. (2010); Zhao, Yang et al. (2010).

Experimental top

To the mixture of β-ionone (2.5 mmol, 0.481 g) and 2-nitrobenzaldehyde (2.5 mmol) in 10 ml of ethanol, 1 ml of 10% NaOH was added and the mixture was stirred for 12 h at room temperature. After addition of 10 ml of water, the solution was extracted by 3×10 ml of CH2Cl2. The crude product was obtained from the combined organic layers, and was purified by silica gel column chromatography (elutant: EtOAc/hexane). Crystals of the title compound suitable for X-ray analysis were obtained from an ethanol/chloroform solution (1:3, v/v) at 293 K.

Refinement top

Hydrogen atoms were positioned geometrically, with C—H = 0.93 Å (aromatic or olefinic), 0.96 Å (methyl) or 0.97 Å (methylene) and were allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(aromatic, olefinic or methylene C) or 1.5Ueq (methyl C). The methyl groups C15 and C16 were found to be disordered over two sites (C15' and C16') with occupancies of 0.60/0.40 and 0.50/0.50, respectively.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. The disordered components of C15 and C16 are not shown. Hydrogen atoms are drawn as spheres of arbitrary radius.
(1E,4E)-1-(2-Nitrophenyl)-5-(2,6,6-trimethylcyclohex-1-en-1- yl)penta-1,4-dien-3-one top
Crystal data top
C20H23NO3F(000) = 696
Mr = 325.39Dx = 1.206 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2030 reflections
a = 7.2941 (6) Åθ = 5.3–42.7°
b = 19.2984 (15) ŵ = 0.08 mm1
c = 12.7491 (10) ÅT = 293 K
β = 92.892 (2)°Prismatic, green
V = 1792.3 (2) Å30.33 × 0.25 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube2629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.533, Tmax = 1.000k = 2319
10762 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.407P]
where P = (Fo2 + 2Fc2)/3
3512 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C20H23NO3V = 1792.3 (2) Å3
Mr = 325.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2941 (6) ŵ = 0.08 mm1
b = 19.2984 (15) ÅT = 293 K
c = 12.7491 (10) Å0.33 × 0.25 × 0.08 mm
β = 92.892 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2629 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 1.000Rint = 0.029
10762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
3512 reflectionsΔρmin = 0.14 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional Rfactors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating Rfactors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.0393 (2)0.29601 (10)0.52846 (12)0.0552 (5)
O10.67912 (19)0.20268 (9)0.48739 (10)0.0668 (5)
O20.1133 (2)0.24512 (10)0.56699 (11)0.0761 (5)
O30.0291 (3)0.34121 (11)0.57997 (12)0.0906 (6)
C10.6322 (2)0.18763 (10)0.39702 (13)0.0458 (5)
C20.4555 (3)0.21296 (11)0.34870 (14)0.0486 (5)
H20.42120.19900.28070.058*
C30.3453 (2)0.25430 (10)0.39799 (14)0.0447 (4)
H30.38130.26760.46610.054*
C40.1692 (2)0.28111 (9)0.35343 (13)0.0410 (4)
C50.0265 (2)0.30303 (9)0.41389 (13)0.0413 (4)
C60.1358 (3)0.32970 (10)0.37105 (15)0.0487 (5)
H60.22630.34510.41430.058*
C70.1623 (3)0.33330 (10)0.26406 (15)0.0530 (5)
H70.27330.34930.23410.064*
C80.0240 (3)0.31316 (11)0.20119 (15)0.0536 (5)
H80.04110.31610.12850.064*
C90.1391 (3)0.28873 (10)0.24514 (14)0.0489 (5)
H90.23230.27690.20140.059*
C100.7434 (3)0.14433 (10)0.33055 (14)0.0468 (5)
H100.70350.13660.26110.056*
C110.8992 (3)0.11580 (10)0.36674 (14)0.0465 (5)
H110.93130.12650.43640.056*
C121.0294 (3)0.07069 (10)0.31721 (15)0.0468 (5)
C131.1754 (3)0.04690 (10)0.37653 (17)0.0540 (5)
C141.3181 (3)0.00004 (14)0.3345 (2)0.0806 (8)
H14A1.30060.04640.36120.097*0.60
H14B1.43860.01580.35980.097*0.60
H14C1.35640.03260.38800.097*0.40
H14D1.42200.02720.31610.097*0.40
C151.3113 (7)0.0023 (4)0.2146 (5)0.0806 (15)0.60
H15A1.35340.04140.18680.097*0.60
H15B1.38980.03900.19080.097*0.60
C161.1135 (8)0.0156 (3)0.1771 (5)0.0617 (14)0.50
H16A1.06590.05550.21300.074*0.50
H16B1.10650.02490.10220.074*0.50
C15'1.2479 (15)0.0375 (4)0.2337 (8)0.082 (3)0.40
H15C1.34610.06350.20350.099*0.40
H15D1.14910.06910.24850.099*0.40
C16'1.1810 (10)0.0186 (4)0.1612 (5)0.0762 (16)0.50
H16C1.15880.00000.09100.091*0.50
H16D1.27360.05460.15820.091*0.50
C170.9974 (3)0.05041 (11)0.20138 (16)0.0582 (6)
C181.2140 (3)0.06430 (14)0.49096 (18)0.0751 (7)
H18A1.19820.11320.50130.113*
H18B1.33780.05150.51150.113*
H18C1.13050.03930.53280.113*
C190.8125 (4)0.01320 (13)0.1825 (2)0.0835 (8)
H19A0.71450.04620.18550.125*
H19B0.79940.02140.23570.125*
H19C0.80820.00850.11470.125*
C201.0017 (3)0.11384 (14)0.13065 (17)0.0729 (7)
H20A0.90970.14620.15040.109*
H20B0.97770.10010.05890.109*
H20C1.12050.13520.13810.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0414 (9)0.0854 (13)0.0391 (9)0.0153 (9)0.0032 (7)0.0070 (9)
O10.0511 (9)0.1112 (13)0.0381 (8)0.0193 (8)0.0009 (6)0.0105 (8)
O20.0691 (11)0.1120 (14)0.0473 (8)0.0321 (10)0.0044 (7)0.0175 (9)
O30.0924 (13)0.1301 (16)0.0492 (9)0.0438 (12)0.0039 (8)0.0284 (10)
C10.0395 (10)0.0623 (12)0.0361 (10)0.0027 (9)0.0070 (8)0.0016 (8)
C20.0431 (10)0.0630 (12)0.0396 (10)0.0048 (9)0.0018 (8)0.0062 (9)
C30.0395 (10)0.0578 (12)0.0370 (9)0.0027 (8)0.0034 (8)0.0042 (8)
C40.0409 (10)0.0440 (10)0.0382 (9)0.0021 (8)0.0027 (8)0.0044 (7)
C50.0402 (10)0.0475 (10)0.0359 (9)0.0036 (8)0.0009 (7)0.0039 (8)
C60.0445 (11)0.0530 (12)0.0487 (11)0.0098 (9)0.0025 (9)0.0063 (9)
C70.0513 (12)0.0538 (12)0.0527 (11)0.0118 (9)0.0086 (9)0.0015 (9)
C80.0625 (13)0.0603 (12)0.0372 (10)0.0070 (10)0.0048 (9)0.0028 (9)
C90.0524 (12)0.0562 (12)0.0388 (10)0.0058 (9)0.0083 (8)0.0018 (8)
C100.0419 (11)0.0607 (12)0.0377 (9)0.0065 (9)0.0013 (8)0.0019 (8)
C110.0439 (11)0.0551 (11)0.0405 (9)0.0036 (9)0.0021 (8)0.0018 (8)
C120.0426 (10)0.0472 (10)0.0507 (11)0.0051 (8)0.0030 (8)0.0026 (8)
C130.0448 (11)0.0490 (11)0.0679 (13)0.0027 (9)0.0014 (10)0.0089 (10)
C140.0597 (15)0.0751 (16)0.106 (2)0.0257 (13)0.0002 (14)0.0025 (15)
C150.059 (3)0.081 (4)0.102 (4)0.028 (3)0.016 (3)0.010 (3)
C160.060 (4)0.051 (3)0.075 (3)0.001 (3)0.015 (3)0.012 (3)
C15'0.086 (6)0.048 (4)0.115 (6)0.025 (4)0.027 (5)0.001 (4)
C16'0.074 (5)0.076 (4)0.079 (4)0.019 (4)0.017 (3)0.018 (3)
C170.0579 (13)0.0619 (13)0.0546 (12)0.0157 (11)0.0029 (10)0.0105 (10)
C180.0665 (15)0.0839 (17)0.0724 (15)0.0090 (13)0.0204 (12)0.0140 (13)
C190.112 (2)0.0615 (15)0.0759 (16)0.0227 (15)0.0086 (15)0.0128 (12)
C200.0743 (16)0.0969 (18)0.0482 (12)0.0140 (14)0.0103 (11)0.0054 (12)
Geometric parameters (Å, º) top
N1—O21.213 (2)C14—C15'1.539 (10)
N1—O31.214 (2)C14—H14A0.9700
N1—C51.465 (2)C14—H14B0.9700
O1—C11.220 (2)C14—H14C0.9600
C1—C101.464 (3)C14—H14D0.9600
C1—C21.483 (3)C15—C161.519 (8)
C2—C31.314 (3)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.472 (3)C16—C171.569 (6)
C3—H30.9300C16—H16A0.9700
C4—C51.392 (2)C16—H16B0.9700
C4—C91.395 (2)C15'—C16'1.490 (11)
C5—C61.378 (2)C15'—H15C0.9700
C6—C71.370 (3)C15'—H15D0.9700
C6—H60.9300C16'—C171.582 (6)
C7—C81.376 (3)C16'—H16C0.9700
C7—H70.9300C16'—H16D0.9700
C8—C91.372 (3)C17—C201.522 (3)
C8—H80.9300C17—C191.536 (3)
C9—H90.9300C18—H18A0.9600
C10—C111.325 (3)C18—H18B0.9600
C10—H100.9300C18—H18C0.9600
C11—C121.455 (3)C19—H19A0.9600
C11—H110.9300C19—H19B0.9600
C12—C131.355 (3)C19—H19C0.9600
C12—C171.534 (3)C20—H20A0.9600
C13—C141.498 (3)C20—H20B0.9600
C13—C181.510 (3)C20—H20C0.9600
C14—C151.527 (7)
O2—N1—O3123.32 (17)C15'—C14—H14D106.7
O2—N1—C5118.91 (16)H14C—C14—H14D109.1
O3—N1—C5117.74 (17)C16—C15—C14107.6 (4)
O1—C1—C10123.06 (17)C16—C15—H15A110.2
O1—C1—C2120.66 (17)C14—C15—H15A110.2
C10—C1—C2116.28 (15)C16—C15—H15B110.2
C3—C2—C1122.75 (17)C14—C15—H15B110.2
C3—C2—H2118.6H15A—C15—H15B108.5
C1—C2—H2118.6C15—C16—C17108.3 (4)
C2—C3—C4124.85 (17)C15—C16—H16A110.0
C2—C3—H3117.6C17—C16—H16A110.0
C4—C3—H3117.6C15—C16—H16B110.0
C5—C4—C9115.53 (16)C17—C16—H16B110.0
C5—C4—C3123.75 (15)H16A—C16—H16B108.4
C9—C4—C3120.67 (16)C16'—C15'—C14105.1 (6)
C6—C5—C4123.06 (16)C16'—C15'—H15C110.7
C6—C5—N1116.09 (16)C14—C15'—H15C110.7
C4—C5—N1120.80 (15)C16'—C15'—H15D110.7
C7—C6—C5119.28 (18)C14—C15'—H15D110.7
C7—C6—H6120.4H15C—C15'—H15D108.8
C5—C6—H6120.4C15'—C16'—C17109.7 (6)
C6—C7—C8119.66 (18)C15'—C16'—H16C109.7
C6—C7—H7120.2C17—C16'—H16C109.7
C8—C7—H7120.2C15'—C16'—H16D109.7
C9—C8—C7120.33 (17)C17—C16'—H16D109.7
C9—C8—H8119.8H16C—C16'—H16D108.2
C7—C8—H8119.8C20—C17—C12111.00 (18)
C8—C9—C4122.04 (18)C20—C17—C19109.12 (19)
C8—C9—H9119.0C12—C17—C19111.07 (19)
C4—C9—H9119.0C20—C17—C16120.6 (3)
C11—C10—C1121.74 (17)C12—C17—C16109.9 (3)
C11—C10—H10119.1C19—C17—C1693.9 (3)
C1—C10—H10119.1C20—C17—C16'94.4 (3)
C10—C11—C12131.64 (18)C12—C17—C16'108.7 (3)
C10—C11—H11114.2C19—C17—C16'121.3 (3)
C12—C11—H11114.2C13—C18—H18A109.5
C13—C12—C11118.18 (18)C13—C18—H18B109.5
C13—C12—C17121.84 (18)H18A—C18—H18B109.5
C11—C12—C17119.97 (16)C13—C18—H18C109.5
C12—C13—C14123.1 (2)H18A—C18—H18C109.5
C12—C13—C18124.52 (19)H18B—C18—H18C109.5
C14—C13—C18112.42 (18)C17—C19—H19A109.5
C13—C14—C15112.8 (3)C17—C19—H19B109.5
C13—C14—C15'112.0 (4)H19A—C19—H19B109.5
C13—C14—H14A109.0C17—C19—H19C109.5
C15—C14—H14A109.0H19A—C19—H19C109.5
C13—C14—H14B109.0H19B—C19—H19C109.5
C15—C14—H14B109.0C17—C20—H20A109.5
C15'—C14—H14B133.1C17—C20—H20B109.5
H14A—C14—H14B107.8H20A—C20—H20B109.5
C13—C14—H14C108.9C17—C20—H20C109.5
C15'—C14—H14C110.9H20A—C20—H20C109.5
C13—C14—H14D109.2H20B—C20—H20C109.5
O1—C1—C2—C32.7 (3)C17—C12—C13—C18179.4 (2)
C10—C1—C2—C3177.46 (19)C12—C13—C14—C1515.3 (4)
C1—C2—C3—C4179.70 (17)C18—C13—C14—C15164.4 (3)
C2—C3—C4—C5156.1 (2)C12—C13—C14—C15'20.1 (5)
C2—C3—C4—C926.6 (3)C18—C13—C14—C15'160.1 (4)
C9—C4—C5—C60.9 (3)C13—C14—C15—C1649.6 (6)
C3—C4—C5—C6178.25 (18)C15'—C14—C15—C1646.0 (7)
C9—C4—C5—N1178.32 (17)C14—C15—C16—C1768.9 (7)
C3—C4—C5—N14.3 (3)C13—C14—C15'—C16'54.0 (8)
O2—N1—C5—C6140.47 (19)C15—C14—C15'—C16'44.3 (6)
O3—N1—C5—C637.9 (3)C14—C15'—C16'—C1771.5 (9)
O2—N1—C5—C437.1 (3)C13—C12—C17—C20118.2 (2)
O3—N1—C5—C4144.5 (2)C11—C12—C17—C2062.8 (2)
C4—C5—C6—C72.0 (3)C13—C12—C17—C19120.2 (2)
N1—C5—C6—C7175.55 (18)C11—C12—C17—C1958.8 (3)
C5—C6—C7—C82.8 (3)C13—C12—C17—C1617.7 (4)
C6—C7—C8—C90.8 (3)C11—C12—C17—C16161.3 (3)
C7—C8—C9—C42.2 (3)C13—C12—C17—C16'15.7 (4)
C5—C4—C9—C83.0 (3)C11—C12—C17—C16'165.3 (3)
C3—C4—C9—C8179.57 (19)C15—C16—C17—C2078.9 (5)
O1—C1—C10—C113.4 (3)C15—C16—C17—C1252.1 (6)
C2—C1—C10—C11176.50 (18)C15—C16—C17—C19166.1 (5)
C1—C10—C11—C12178.81 (19)C15—C16—C17—C16'41.5 (6)
C10—C11—C12—C13177.1 (2)C15'—C16'—C17—C20165.9 (7)
C10—C11—C12—C171.9 (3)C15'—C16'—C17—C1252.0 (7)
C11—C12—C13—C14179.8 (2)C15'—C16'—C17—C1978.5 (7)
C17—C12—C13—C140.8 (3)C15'—C16'—C17—C1645.7 (7)
C11—C12—C13—C180.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.503.182 (2)131
C9—H9···O1i0.932.763.318 (2)119
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H23NO3
Mr325.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.2941 (6), 19.2984 (15), 12.7491 (10)
β (°) 92.892 (2)
V3)1792.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.25 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.533, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10762, 3512, 2629
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.144, 1.06
No. of reflections3512
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.14

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.503.182 (2)131
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful for the Program Foundation of the Ministry of Education of China (grant No. 20093219110013) and the Nanjing University of Science and Technology Training Grant (S-LY and Y-JJ). The use of the X-ray crystallo­graphic service at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and the valuable assistance of the staff there is gratefully acknowledged.

References

First citationAsokkumar, S., Naveenkumar, C., Raghunandhakumar, S., Kamaraj, S., Anandakumar, P., Jagan, S. & Devaki, T. (2012). Mol. Cell. Biochem. 363, 335–345.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHsu, C. H. & Cheng, A. L. (2007). Adv. Exp. Med. Biol. 595, 471–480.  CrossRef PubMed Google Scholar
First citationKuttan, R., Sudheeran, P. C. & Josph, C. D. (1985). Cancer Lett. 29, 197–202.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007). Acta Cryst. E63, o4118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-L., Xiang, L.-F., Zou, P., Jin, Y.-J. & Yang, S.-L. (2012). Acta Cryst. E68, o1859.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, C. G., Cai, Y. P., He, X. Z., Li, J. L., Zhang, L., Wu, J. Z., Zhao, Y. J., Yang, S. L., Li, X. K., Li, W. L. & Liang, G. (2010). Eur. J. Med. Chem. 45, 5773–5780.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, C. G., Yang, J., Wang, Y., Liang, D. L., Yang, X. Y., Wu, J. Z., Wu, X. P., Yang, S. L., Li, X. K. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388–2393.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds