metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[hexa-μ-aqua-di­aqua­bis­­(μ4-di­hydrogen benzene-1,2,4,5-tetra­carboxyl­ato)magnesiumdisodium] dihydrate]

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd1996@163.com

(Received 20 April 2012; accepted 30 May 2012; online 13 June 2012)

The asymmetric unit of the title compound, {[MgNa2(C10H4O8)2(H2O)8]·2H2O}n, contains one octa­hedrally coordin­ated MgII atom (site symmetry 2/m), one octahedrally coordinated NaI atom (site symmetry 2) and one half of the dihydrogen benzene-1,2,4,5-tetra­carboxyl­ate (btec) ligand, the second half of the ligand being generated by a twofold rotation axis. The basic framework of the title compound features infinite (–Na–Na–Mg–)n chains along [10-1] with the metal cations bridged by the coordinating water molecules. The chains are isolated from each other by μ4-bridging btec ligands, which form inter­molecular O—H⋯O hydrogen bonds to uncoordinated water mol­ecules and the coordinated water mol­ecules of a neighbouring chain. In each btec ligand, there are also intramolecular O—H⋯O hydrogen bonds.

Related literature

For structures based on the H4btec ligand, see: Gong & Zhang (2011[Gong, X. Y. & Zhang, L. (2011). Acta Cryst. E67, m736.]); Liu et al. (2009[Liu, H. K., Tsao, T. H., Zhang, Y. T. & Lin, C. H. (2009). CrystEngComm, 11, 1462-1468.], 2010[Liu, H. K., Tsao, T. H., Lin, C. H. & Zima, V. (2010). CrystEngComm, 12, 1044-1047.]); Zhang et al. (2007[Zhang, D. J., Song, T. Y., Zhang, P., Shi, J., Wang, Y., Wang, L., Ma, K. R., Yin, W. R., Zhao, J., Fan, Y. & Xu, J. N. (2007). Inorg. Chem. Commun. 10, 876-879.]).

[Scheme 1]

Experimental

Crystal data
  • [MgNa2(C10H4O8)2(H2O)8]·2H2O

  • Mr = 754.71

  • Monoclinic, C 2/m

  • a = 7.3335 (13) Å

  • b = 20.155 (4) Å

  • c = 10.4450 (18) Å

  • β = 103.325 (3)°

  • V = 1502.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.990

  • 4088 measured reflections

  • 1440 independent reflections

  • 1272 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.089

  • S = 1.08

  • 1440 reflections

  • 122 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 1.06 1.35 2.3827 (17) 163
O5—H5⋯O7 0.90 1.83 2.7313 (14) 173
O6—H6⋯O4i 0.90 1.97 2.8519 (15) 167
O7—H7⋯O2ii 0.86 1.91 2.7699 (14) 173
O8—H8⋯O3iii 0.85 1.94 2.7779 (14) 172
O9—H9⋯O4ii 0.85 1.91 2.7559 (14) 171
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) -x, y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, much attention has been paid to coordination polymer materials based on covalent interactions or supramolecular contacts, and huge numbers of novel compounds with interesting structures and topologies have been reported. As part of this research benzene-1,2,4,5-tetracarboxylate (btec) can be used as a ligand to form various supramolecular architectures with its four rigid carboxyl groups (Gong et al., 2011; Liu et al., 2009; Liu et al., 2010; Zhang et al., 2007). In order to enrich this family of compounds, we used the hydrothermal method to synthesise the title compound, a new sodium(I)-magnesium(II) complex, that is, Na2Mg(btec)2(H2O)8.2(H2O), where btec = benzene-1,2,4,5-tetracarboxylate, and we determined its structure by single-crystal X-ray diffraction.

As shown in Fig. 1, the asymmetric unit of the title compound contains one octahedrally coordinated magnesium atom, one octahedrally coordinated sodium atom and half a benzene-1,2,4,5-tetracarboxylate (btec) ligand. Each btec ligands contains two intramolecular O–H···O hydrogen bonds, with the H atoms bonded to atoms O3 and O2, and connects two Na atoms in a µ2– manner. Each Na atom is coordinated by two cis carboxylate oxygen atoms from two btec ligands and by four water molecules, while each Mg is coordinated by six water molecules. The Na–O bond distances range from 2.2669 (12) to 2.6146 (18) Å, while the Mg–O bond lengths are slightly longer ranging from 2.0301 (14) to 2.1008 (14) Å. Furthermore, NaO6 octahedra and MgO6 octahedra are connected via coordinated water molecules to form a one-dimensional infinite (–Na–Na–Mg–)n chain, as shown in Fig. 2. O—H···O hydrogen bonds link the coordinated and uncoordinated water molecules to neighbouring btec ligands (Table 1).

Related literature top

For structures based on the H4btec ligand, see: Gong & Zhang (2011); Liu et al. (2009, 2010); Zhang et al. (2007).

Experimental top

A mixture of 1,2,4,5-benzene-tetracarboxylic (0.2 g), Na2CO3 (0.1 g), MgO(0.05 g) and H2O (15 ml) was heated at 448 K for 7 d in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After cooling to room temperature at a rate of 5 C h-1, colourless prismatic crystals were obtained in low yield.

Refinement top

The H atoms of C atoms were positioned geometrically and refined with a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in difference Fourier maps, and then refined with a riding model, with Uiso(H) = 1.5Ueq(O).

Structure description top

In recent years, much attention has been paid to coordination polymer materials based on covalent interactions or supramolecular contacts, and huge numbers of novel compounds with interesting structures and topologies have been reported. As part of this research benzene-1,2,4,5-tetracarboxylate (btec) can be used as a ligand to form various supramolecular architectures with its four rigid carboxyl groups (Gong et al., 2011; Liu et al., 2009; Liu et al., 2010; Zhang et al., 2007). In order to enrich this family of compounds, we used the hydrothermal method to synthesise the title compound, a new sodium(I)-magnesium(II) complex, that is, Na2Mg(btec)2(H2O)8.2(H2O), where btec = benzene-1,2,4,5-tetracarboxylate, and we determined its structure by single-crystal X-ray diffraction.

As shown in Fig. 1, the asymmetric unit of the title compound contains one octahedrally coordinated magnesium atom, one octahedrally coordinated sodium atom and half a benzene-1,2,4,5-tetracarboxylate (btec) ligand. Each btec ligands contains two intramolecular O–H···O hydrogen bonds, with the H atoms bonded to atoms O3 and O2, and connects two Na atoms in a µ2– manner. Each Na atom is coordinated by two cis carboxylate oxygen atoms from two btec ligands and by four water molecules, while each Mg is coordinated by six water molecules. The Na–O bond distances range from 2.2669 (12) to 2.6146 (18) Å, while the Mg–O bond lengths are slightly longer ranging from 2.0301 (14) to 2.1008 (14) Å. Furthermore, NaO6 octahedra and MgO6 octahedra are connected via coordinated water molecules to form a one-dimensional infinite (–Na–Na–Mg–)n chain, as shown in Fig. 2. O—H···O hydrogen bonds link the coordinated and uncoordinated water molecules to neighbouring btec ligands (Table 1).

For structures based on the H4btec ligand, see: Gong & Zhang (2011); Liu et al. (2009, 2010); Zhang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity, except for intramolecular hydrogen bonding H atoms in the btec ligands (indicated as pea green lines). [Symmetry codes: (i) -x, -y, -z; (ii) x, -y, z; (iii) x - 1, y, z - 1; (iv) -x + 1, y, -z + 1; (v) x - 1, y, z; (vi) -x, y, -z].
[Figure 2] Fig. 2. View of the crystal structure of the title compound along the a-axis.
Poly[[hexa-µ-aqua-diaquabis(µ4-dihydrogen benzene-1,2,4,5-tetracarboxylato)magnesium(II)disodium] dihydrate] top
Crystal data top
[MgNa2(C10H4O8)2(H2O)8]·2H2OF(000) = 780
Mr = 754.71Dx = 1.668 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 2031 reflections
a = 7.3335 (13) Åθ = 2.9–27.8°
b = 20.155 (4) ŵ = 0.20 mm1
c = 10.4450 (18) ÅT = 296 K
β = 103.325 (3)°Prism, colourless
V = 1502.3 (5) Å30.20 × 0.05 × 0.05 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1440 independent reflections
Radiation source: fine-focus sealed tube1272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 83.33 pixels mm-1θmax = 25.5°, θmin = 2.0°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2422
Tmin = 0.961, Tmax = 0.990l = 1112
4088 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.7471P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1440 reflectionsΔρmax = 0.23 e Å3
122 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (7)
Crystal data top
[MgNa2(C10H4O8)2(H2O)8]·2H2OV = 1502.3 (5) Å3
Mr = 754.71Z = 2
Monoclinic, C2/mMo Kα radiation
a = 7.3335 (13) ŵ = 0.20 mm1
b = 20.155 (4) ÅT = 296 K
c = 10.4450 (18) Å0.20 × 0.05 × 0.05 mm
β = 103.325 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1440 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1272 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.990Rint = 0.022
4088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
1440 reflectionsΔρmin = 0.21 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00000.00000.00000.0220 (2)
Na10.31699 (13)0.00000.32732 (8)0.0356 (3)
O10.30603 (18)0.11183 (5)0.30357 (11)0.0464 (3)
C10.50000.18685 (9)0.50000.0233 (4)
H10.50000.14070.50000.028*
O20.20225 (19)0.31210 (6)0.17351 (10)0.0487 (4)
C20.50000.32051 (9)0.50000.0221 (4)
H20.50000.36670.50000.027*
O30.20002 (18)0.19389 (6)0.17286 (10)0.0481 (4)
H30.21320.24560.16070.072*
C30.39709 (18)0.28869 (6)0.38857 (12)0.0211 (3)
O40.31030 (15)0.39579 (5)0.30165 (10)0.0339 (3)
C40.39692 (18)0.21864 (6)0.38884 (12)0.0214 (3)
O50.28991 (19)0.00000.08188 (14)0.0288 (3)
H50.35300.03400.05640.043*
C50.2960 (2)0.17086 (7)0.28270 (14)0.0283 (3)
O60.3317 (3)0.00000.56419 (17)0.0483 (5)
H60.28840.03680.59630.073*
C60.29702 (19)0.33570 (7)0.28103 (13)0.0258 (3)
O70.50000.09605 (7)0.00000.0311 (3)
H70.43670.12230.05900.047*
O80.00000.10073 (7)0.00000.0322 (4)
H80.06810.12620.05600.048*
O90.0320 (2)0.00000.19461 (14)0.0314 (4)
H90.08970.03250.21910.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0265 (5)0.0161 (4)0.0222 (5)0.0000.0032 (4)0.000
Na10.0521 (6)0.0188 (4)0.0328 (5)0.0000.0034 (4)0.000
O10.0678 (8)0.0176 (6)0.0428 (7)0.0038 (5)0.0098 (6)0.0044 (5)
C10.0259 (10)0.0152 (9)0.0275 (10)0.0000.0037 (8)0.000
O20.0697 (8)0.0256 (6)0.0343 (6)0.0023 (5)0.0222 (6)0.0038 (5)
C20.0262 (9)0.0136 (9)0.0258 (10)0.0000.0046 (8)0.000
O30.0683 (8)0.0244 (6)0.0350 (6)0.0028 (5)0.0224 (6)0.0032 (5)
C30.0216 (7)0.0186 (7)0.0225 (7)0.0007 (5)0.0038 (5)0.0014 (5)
O40.0478 (7)0.0177 (5)0.0335 (6)0.0032 (4)0.0040 (5)0.0050 (4)
C40.0215 (6)0.0185 (7)0.0231 (7)0.0010 (5)0.0031 (5)0.0012 (5)
O50.0280 (7)0.0221 (7)0.0363 (8)0.0000.0070 (6)0.000
C50.0318 (8)0.0214 (7)0.0282 (7)0.0012 (6)0.0000 (6)0.0036 (6)
O60.0713 (12)0.0291 (8)0.0533 (11)0.0000.0321 (9)0.000
C60.0282 (7)0.0211 (7)0.0263 (7)0.0011 (5)0.0028 (6)0.0028 (6)
O70.0357 (8)0.0214 (7)0.0304 (8)0.0000.0046 (6)0.000
O80.0419 (9)0.0162 (7)0.0299 (8)0.0000.0094 (6)0.000
O90.0469 (9)0.0185 (7)0.0324 (8)0.0000.0166 (7)0.000
Geometric parameters (Å, º) top
Mg1—O82.0301 (14)O2—C61.2691 (17)
Mg1—O8i2.0302 (14)O2—H31.3505
Mg1—O92.0992 (14)C2—C31.3895 (15)
Mg1—O9i2.0992 (14)C2—C3iv1.3895 (15)
Mg1—O5i2.1008 (14)C2—H20.9300
Mg1—O52.1008 (14)O3—C51.2865 (17)
Mg1—Na1i3.6645 (10)O3—H31.0579
Mg1—Na13.6646 (10)C3—C41.4119 (18)
Na1—O12.2669 (12)C3—C61.5225 (18)
Na1—O1ii2.2669 (12)O4—C61.2301 (17)
Na1—O62.4515 (19)C4—C51.5250 (18)
Na1—O52.5252 (16)O5—H50.9007
Na1—O6iii2.564 (2)O6—Na1iii2.564 (2)
Na1—O9i2.6146 (18)O6—H60.9011
Na1—Na1iii3.9692 (17)O7—H70.8628
O1—C51.2088 (18)O8—H80.8481
C1—C41.3876 (15)O9—Na1i2.6146 (17)
C1—C4iv1.3876 (15)O9—H90.8510
C1—H10.9300
O8—Mg1—O8i180.0O1ii—Na1—Mg184.21 (4)
O8—Mg1—O990.0O6—Na1—Mg1144.34 (6)
O8i—Mg1—O990.0O5—Na1—Mg133.73 (3)
O8—Mg1—O9i90.0O6iii—Na1—Mg1140.26 (5)
O8i—Mg1—O9i90.0O9i—Na1—Mg134.15 (3)
O9—Mg1—O9i180.00 (8)O1—Na1—Na1iii95.68 (4)
O8—Mg1—O5i90.0O1ii—Na1—Na1iii95.68 (4)
O8i—Mg1—O5i90.0O6—Na1—Na1iii38.69 (5)
O9—Mg1—O5i86.23 (6)O5—Na1—Na1iii143.24 (5)
O9i—Mg1—O5i93.77 (6)O6iii—Na1—Na1iii36.70 (4)
O8—Mg1—O590.0O9i—Na1—Na1iii148.88 (5)
O8i—Mg1—O590.0Mg1—Na1—Na1iii176.97 (4)
O9—Mg1—O593.77 (6)C5—O1—Na1175.97 (11)
O9i—Mg1—O586.23 (6)C4—C1—C4iv125.01 (18)
O5i—Mg1—O5180.0C4—C1—H1117.5
O8—Mg1—Na1i90.0C4iv—C1—H1117.5
O8i—Mg1—Na1i90.0C6—O2—H3115.2
O9—Mg1—Na1i44.36 (4)C3—C2—C3iv125.01 (17)
O9i—Mg1—Na1i135.64 (4)C3—C2—H2117.5
O5i—Mg1—Na1i41.87 (4)C3iv—C2—H2117.5
O5—Mg1—Na1i138.13 (4)C5—O3—H3114.6
O8—Mg1—Na190.0C2—C3—C4117.42 (12)
O8i—Mg1—Na190.0C2—C3—C6114.02 (12)
O9—Mg1—Na1135.64 (4)C4—C3—C6128.56 (11)
O9i—Mg1—Na144.36 (4)C1—C4—C3117.57 (12)
O5i—Mg1—Na1138.13 (4)C1—C4—C5113.34 (13)
O5—Mg1—Na141.87 (4)C3—C4—C5129.09 (11)
Na1i—Mg1—Na1180.0Mg1—O5—Na1104.40 (6)
O1—Na1—O1ii167.72 (7)Mg1—O5—H5114.8
O1—Na1—O695.89 (4)Na1—O5—H5112.0
O1ii—Na1—O695.89 (4)O1—C5—O3120.93 (13)
O1—Na1—O584.05 (4)O1—C5—C4119.43 (13)
O1ii—Na1—O584.05 (4)O3—C5—C4119.64 (12)
O6—Na1—O5178.07 (7)Na1—O6—Na1iii104.61 (6)
O1—Na1—O6iii93.16 (4)Na1—O6—H6116.0
O1ii—Na1—O6iii93.16 (4)Na1iii—O6—H6103.9
O6—Na1—O6iii75.39 (6)O4—C6—O2121.94 (13)
O5—Na1—O6iii106.54 (6)O4—C6—C3118.58 (12)
O1—Na1—O9i86.35 (4)O2—C6—C3119.48 (12)
O1ii—Na1—O9i86.35 (4)Mg1—O8—H8127.2
O6—Na1—O9i110.19 (6)Mg1—O9—Na1i101.49 (6)
O5—Na1—O9i67.88 (5)Mg1—O9—H9117.8
O6iii—Na1—O9i174.41 (6)Na1i—O9—H9109.5
O1—Na1—Mg184.21 (4)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O21.061.352.3827 (17)163
O5—H5···O70.901.832.7313 (14)173
O6—H6···O4v0.901.972.8519 (15)167
O7—H7···O2vi0.861.912.7699 (14)173
O8—H8···O3vii0.851.942.7779 (14)172
O9—H9···O4vi0.851.912.7559 (14)171
Symmetry codes: (v) x+1/2, y1/2, z+1; (vi) x+1/2, y+1/2, z; (vii) x, y, z.

Experimental details

Crystal data
Chemical formula[MgNa2(C10H4O8)2(H2O)8]·2H2O
Mr754.71
Crystal system, space groupMonoclinic, C2/m
Temperature (K)296
a, b, c (Å)7.3335 (13), 20.155 (4), 10.4450 (18)
β (°) 103.325 (3)
V3)1502.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4088, 1440, 1272
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.089, 1.08
No. of reflections1440
No. of parameters122
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O21.061.352.3827 (17)163.1
O5—H5···O70.901.832.7313 (14)173.4
O6—H6···O4i0.901.972.8519 (15)167.4
O7—H7···O2ii0.861.912.7699 (14)173.3
O8—H8···O3iii0.851.942.7779 (14)172.1
O9—H9···O4ii0.851.912.7559 (14)170.5
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x, y, z.
 

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGong, X. Y. & Zhang, L. (2011). Acta Cryst. E67, m736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, H. K., Tsao, T. H., Lin, C. H. & Zima, V. (2010). CrystEngComm, 12, 1044–1047.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, H. K., Tsao, T. H., Zhang, Y. T. & Lin, C. H. (2009). CrystEngComm, 11, 1462–1468.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D. J., Song, T. Y., Zhang, P., Shi, J., Wang, Y., Wang, L., Ma, K. R., Yin, W. R., Zhao, J., Fan, Y. & Xu, J. N. (2007). Inorg. Chem. Commun. 10, 876–879.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds