organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy-5-(hy­dr­oxy­meth­yl)quinolin-1-ium chloride

aLaboratoire de Physico-chimie des Matériaux Vitreux et Cristallisés, Equipe de Physico-chimie des Matériaux Inorganiques, Faculté des Sciences, Université Ibn Tofail, Kénitra, Morocco, bLaboratoire d'Agroressources et Génie des Procédés, Faculté des Sciences, Université Ibn Tofail Kénitra, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elhassan.arbib@yahoo.com

(Received 21 May 2012; accepted 27 May 2012; online 2 June 2012)

The title compound, C10H10NO2+·Cl, contains a quinoline ring system which is essentially planar, with the largest deviation from the mean plane being 0.017 (1) Å. In the crystal, the ion pairs and their inversion-symmetry-related partners are linked by N—H⋯Cl and O—H⋯Cl hydrogen bonds to form tetramers which are further connected through O—H⋯O hydrogen bonds, building infinite one-dimensional chains parallel to the [010] direction.

Related literature

For anti­oxidant properties, see: Kayyali et al. (1998[Kayyali, R., Pannala, A. S., Khodr, H. & Hider, R. C. (1998). Biochem. Pharmacol. 55 1327-1332.]). For the synthesis of some substituted 8-quinolinol derivatives, see: Mishra et al. (2004[Mishra, A., Nayak, P. K. & Periasamy, N. (2004). Tetrahedron Lett. 45, 6265-6268.]). For the application of the corresponding aluminium complexes, see: Tang et al. (1989[Tang, C. W., Vanslyke, S. A. & Chen, C. H. (1989). J. Appl. Phys. 65, 3610-3616.]); Chen & Shi (1998[Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161-174.]); Shougen et al. (2000[Shougen, Y., Yulin, H., Xiaohong, C., Xiaohui, Y., Yanbing, H. & Xurong, X. (2000). Synth. Met. 111-112, 109-112.]). For application as a promising display, see: Cao et al. (1996[Cao, Y., Parker, I. D., Yu, G., Zhang, C. & Heeger, A. J. (1996). Nature, 397, 414-417.]); Wu et al. (2003[Wu, Z., Yang, H., Duan, Y., Xie, W., Liu, S. & Zhao, Y. (2003). Semicond. Sci. Technol. 18, 49-52.]). For the synthesis, see: Zheng et al. (2005[Zheng, H., Weiner, L. M., Bar-Am, O., Epsztejn, S., Cabantchik, Z. I., Warshawsky, A., Youdim, M. B. H. & Fridkin, M. (2005). Bioorg. Med. Chem. 13, 773-783.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10NO2+·Cl

  • Mr = 211.64

  • Monoclinic, P 21 /c

  • a = 6.9081 (5) Å

  • b = 8.0577 (5) Å

  • c = 17.1890 (11) Å

  • β = 101.183 (3)°

  • V = 938.63 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.54 × 0.43 × 0.12 mm

Data collection
  • Bruker X8 APEX diffractometer

  • 22727 measured reflections

  • 4615 independent reflections

  • 3679 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.124

  • S = 1.07

  • 4615 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1 0.86 2.24 3.0261 (8) 152
O1—H1O⋯O2i 0.82 1.78 2.5841 (10) 166
O2—H2O⋯Cl1ii 0.82 2.21 3.0281 (8) 172
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

8-Quinolinol is a strong iron chelator with antioxidant property (Kayyali et al. 1998). 5-Chloromethyl-8-hydroxyquinoline hydrochloride (I) is used as an intermediate in the synthesis of 5-hydroxymethyl-8-quinolinol and some substituted 8-quinolinol derivatives (Mishra et al. (2004). The corresponding aluminium complexes has been used as an excellent Organic Light-Emitting Diodes (OLEDs) (Tang et al. (1989), Chen & Shi (1998), Shougen et al. (2000)) witch are currently under intensive investigation for application as a promising display technology due to their high luminous efficiency and capability of emitting full colour flat displays (Cao et al. (1996), Wu et al. (2003)). The present work describes the crystal structure of C10H10NO2.Cl (scheme 1) obtained from the X-ray diffraction data on single-crystal.

The 5-(hydroxymethyl)-8-quinolinol hydrochloride molecule structure is built up from two fused six-membered rings linked to CH2OH and to OH groups as shown in Fg.1. The fused-ring system is essentially planar, with the maximum deviation of 0.017 (1) Å from C7 atom. The dihedral angle between them does not exceed 1.15 (5)°. The hydroxide O2—H linked to –C10H2– form an angle of 56.68 (6) ° with the mean plane of the quinolin ring. In the crystal, each molecule and its symmetry through the inversion center are linked by N—H···Cl and O—H···Cl hydrogen bonds in the way to form dimers as shown in Fig.2. These dimers are further connected through O—H···O hydrogen bonds building infinite one-dimensional chains parallel to [0 1 0] direction (Table 1).

Related literature top

For antioxidant properties, see: Kayyali et al. (1998). For the synthesis of some substituted 8-quinolinol derivatives, see: Mishra et al. (2004). For the application of the corresponding aluminium complexes, see: Tang et al. (1989); Chen & Shi (1998); Shougen et al. (2000). For application as a promising display, see: Cao et al. (1996); Wu et al. (2003). For the synthesis, see: Zheng et al. (2005).

Experimental top

5-Chloromethyl-8-hydroxyquinoline hydrochloride (I) was synthesized according to the method described by Zheng et al. (2005). A mixture of 10.0 g (0.068 mol) of 8-hydroxyquinoline, 11 ml of concentrated hydrochloric acid, and 11 ml (0.397 mol) of 37% formaldehyde was treated with hydrogen chloride gas and stirred for 6 h. The solution was allowed to stand at room temperature for 2 h without stirring. The yellow solid obtained was collected on a filter, washed with acetone or alcohol, and dried under vacuum to give 5-chloromethyl-8-hydroxyquinoline hydrochloride (I) (13.0 g, 98%). The compound obtained was dissolved in distilled water in a box Petrys and let in air at room temperature. After 10 days, transparent single crystals as platelets were isolated. X-ray diffraction analysis shows that the obtained product is the 5-(hydroxymethyl)-8-quinolinol hydrochloride.

Refinement top

H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq (aromatic, methylene) and Uiso(H)= 1.5 Ueq (OH).

Structure description top

8-Quinolinol is a strong iron chelator with antioxidant property (Kayyali et al. 1998). 5-Chloromethyl-8-hydroxyquinoline hydrochloride (I) is used as an intermediate in the synthesis of 5-hydroxymethyl-8-quinolinol and some substituted 8-quinolinol derivatives (Mishra et al. (2004). The corresponding aluminium complexes has been used as an excellent Organic Light-Emitting Diodes (OLEDs) (Tang et al. (1989), Chen & Shi (1998), Shougen et al. (2000)) witch are currently under intensive investigation for application as a promising display technology due to their high luminous efficiency and capability of emitting full colour flat displays (Cao et al. (1996), Wu et al. (2003)). The present work describes the crystal structure of C10H10NO2.Cl (scheme 1) obtained from the X-ray diffraction data on single-crystal.

The 5-(hydroxymethyl)-8-quinolinol hydrochloride molecule structure is built up from two fused six-membered rings linked to CH2OH and to OH groups as shown in Fg.1. The fused-ring system is essentially planar, with the maximum deviation of 0.017 (1) Å from C7 atom. The dihedral angle between them does not exceed 1.15 (5)°. The hydroxide O2—H linked to –C10H2– form an angle of 56.68 (6) ° with the mean plane of the quinolin ring. In the crystal, each molecule and its symmetry through the inversion center are linked by N—H···Cl and O—H···Cl hydrogen bonds in the way to form dimers as shown in Fig.2. These dimers are further connected through O—H···O hydrogen bonds building infinite one-dimensional chains parallel to [0 1 0] direction (Table 1).

For antioxidant properties, see: Kayyali et al. (1998). For the synthesis of some substituted 8-quinolinol derivatives, see: Mishra et al. (2004). For the application of the corresponding aluminium complexes, see: Tang et al. (1989); Chen & Shi (1998); Shougen et al. (2000). For application as a promising display, see: Cao et al. (1996); Wu et al. (2003). For the synthesis, see: Zheng et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Molecule and its symmetry through the inversion center linked by hydrogen bonds and building dimers.
8-Hydroxy-5-(hydroxymethyl)quinolin-1-ium chloride top
Crystal data top
C10H10NO2+·ClF(000) = 440
Mr = 211.64Dx = 1.498 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p_2ybcCell parameters from 4615 reflections
a = 6.9081 (5) Åθ = 2.8–36.5°
b = 8.0577 (5) ŵ = 0.38 mm1
c = 17.1890 (11) ÅT = 296 K
β = 101.183 (3)°Needle, colourless
V = 938.63 (11) Å30.54 × 0.43 × 0.12 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
3679 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 36.5°, θmin = 2.8°
φ and ω scansh = 1111
22727 measured reflectionsk = 1213
4615 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.124H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.1142P]
where P = (Fo2 + 2Fc2)/3
4615 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H10NO2+·ClV = 938.63 (11) Å3
Mr = 211.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9081 (5) ŵ = 0.38 mm1
b = 8.0577 (5) ÅT = 296 K
c = 17.1890 (11) Å0.54 × 0.43 × 0.12 mm
β = 101.183 (3)°
Data collection top
Bruker X8 APEX
diffractometer
3679 reflections with I > 2σ(I)
22727 measured reflectionsRint = 0.024
4615 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 0.50 e Å3
4615 reflectionsΔρmin = 0.20 e Å3
127 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16928 (4)0.17354 (3)0.310398 (15)0.03843 (8)
O10.30276 (12)0.22164 (9)0.51946 (4)0.03652 (16)
H1O0.33420.15250.55470.055*
O20.44071 (12)0.98428 (9)0.61542 (5)0.03859 (17)
H2O0.55090.94550.63160.058*
N10.19725 (11)0.47152 (9)0.41916 (4)0.02749 (14)
H1N0.19960.36990.40410.033*
C10.14320 (16)0.58746 (13)0.36492 (5)0.03366 (18)
H10.10750.55780.31180.040*
C20.13937 (16)0.75383 (12)0.38682 (6)0.0362 (2)
H20.10260.83550.34860.043*
C30.19059 (14)0.79558 (11)0.46549 (6)0.03077 (17)
H30.18870.90640.48040.037*
C40.24629 (12)0.67260 (10)0.52439 (5)0.02444 (14)
C50.24952 (12)0.50630 (10)0.49814 (5)0.02361 (14)
C60.30430 (13)0.37354 (10)0.55186 (5)0.02688 (15)
C70.35081 (16)0.40924 (12)0.63135 (5)0.03253 (18)
H70.38460.32390.66790.039*
C80.34767 (16)0.57403 (12)0.65797 (5)0.03347 (18)
H80.38070.59480.71210.040*
C90.29775 (14)0.70577 (11)0.60713 (5)0.02761 (15)
C100.29652 (17)0.87978 (12)0.63908 (6)0.03501 (19)
H10A0.16690.92790.62090.042*
H10B0.32000.87530.69650.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.04035 (14)0.03721 (14)0.03423 (12)0.00236 (9)0.00147 (9)0.00972 (8)
O10.0523 (4)0.0204 (3)0.0344 (3)0.0019 (3)0.0024 (3)0.0011 (2)
O20.0372 (4)0.0224 (3)0.0521 (4)0.0014 (2)0.0014 (3)0.0061 (3)
N10.0306 (3)0.0242 (3)0.0260 (3)0.0013 (2)0.0016 (2)0.0007 (2)
C10.0395 (5)0.0317 (4)0.0265 (4)0.0006 (3)0.0018 (3)0.0027 (3)
C20.0431 (5)0.0286 (4)0.0326 (4)0.0007 (4)0.0034 (4)0.0066 (3)
C30.0334 (4)0.0218 (3)0.0342 (4)0.0001 (3)0.0006 (3)0.0035 (3)
C40.0243 (3)0.0209 (3)0.0274 (3)0.0018 (2)0.0033 (3)0.0011 (2)
C50.0242 (3)0.0209 (3)0.0251 (3)0.0015 (2)0.0034 (2)0.0013 (2)
C60.0304 (4)0.0207 (3)0.0289 (3)0.0018 (3)0.0043 (3)0.0028 (3)
C70.0432 (5)0.0253 (4)0.0277 (4)0.0024 (3)0.0037 (3)0.0053 (3)
C80.0450 (5)0.0295 (4)0.0254 (3)0.0046 (4)0.0057 (3)0.0009 (3)
C90.0317 (4)0.0232 (3)0.0280 (3)0.0040 (3)0.0060 (3)0.0014 (3)
C100.0425 (5)0.0263 (4)0.0369 (4)0.0026 (3)0.0094 (4)0.0061 (3)
Geometric parameters (Å, º) top
O1—C61.3439 (11)C3—H30.9300
O1—H1O0.8200C4—C51.4155 (11)
O2—C101.4225 (13)C4—C91.4229 (12)
O2—H2O0.8200C5—C61.4158 (11)
N1—C11.3215 (12)C6—C71.3721 (13)
N1—C51.3644 (11)C7—C81.4059 (14)
N1—H1N0.8600C7—H70.9300
C1—C21.3941 (14)C8—C91.3757 (13)
C1—H10.9300C8—H80.9300
C2—C31.3718 (14)C9—C101.5065 (12)
C2—H20.9300C10—H10A0.9700
C3—C41.4155 (12)C10—H10B0.9700
C6—O1—H1O109.5C4—C5—C6121.75 (7)
C10—O2—H2O109.5O1—C6—C7125.81 (8)
C1—N1—C5122.74 (8)O1—C6—C5115.99 (8)
C1—N1—H1N118.6C7—C6—C5118.19 (8)
C5—N1—H1N118.6C6—C7—C8120.44 (8)
N1—C1—C2120.45 (9)C6—C7—H7119.8
N1—C1—H1119.8C8—C7—H7119.8
C2—C1—H1119.8C9—C8—C7122.67 (8)
C3—C2—C1119.16 (8)C9—C8—H8118.7
C3—C2—H2120.4C7—C8—H8118.7
C1—C2—H2120.4C8—C9—C4118.25 (8)
C2—C3—C4121.05 (8)C8—C9—C10120.34 (8)
C2—C3—H3119.5C4—C9—C10121.41 (8)
C4—C3—H3119.5O2—C10—C9113.14 (8)
C3—C4—C5116.98 (8)O2—C10—H10A109.0
C3—C4—C9124.33 (8)C9—C10—H10A109.0
C5—C4—C9118.69 (7)O2—C10—H10B109.0
N1—C5—C4119.60 (7)C9—C10—H10B109.0
N1—C5—C6118.65 (7)H10A—C10—H10B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.862.243.0261 (8)152
O1—H1O···O2i0.821.782.5841 (10)166
O2—H2O···Cl1ii0.822.213.0281 (8)172
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H10NO2+·Cl
Mr211.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.9081 (5), 8.0577 (5), 17.1890 (11)
β (°) 101.183 (3)
V3)938.63 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.54 × 0.43 × 0.12
Data collection
DiffractometerBruker X8 APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22727, 4615, 3679
Rint0.024
(sin θ/λ)max1)0.838
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.124, 1.07
No. of reflections4615
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.862.243.0261 (8)152
O1—H1O···O2i0.821.782.5841 (10)166
O2—H2O···Cl1ii0.822.213.0281 (8)172
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, Y., Parker, I. D., Yu, G., Zhang, C. & Heeger, A. J. (1996). Nature, 397, 414–417.  Google Scholar
First citationChen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161–174.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKayyali, R., Pannala, A. S., Khodr, H. & Hider, R. C. (1998). Biochem. Pharmacol. 55 1327–1332.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMishra, A., Nayak, P. K. & Periasamy, N. (2004). Tetrahedron Lett. 45, 6265–6268.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShougen, Y., Yulin, H., Xiaohong, C., Xiaohui, Y., Yanbing, H. & Xurong, X. (2000). Synth. Met. 111–112, 109–112.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C. W., Vanslyke, S. A. & Chen, C. H. (1989). J. Appl. Phys. 65, 3610–3616.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Z., Yang, H., Duan, Y., Xie, W., Liu, S. & Zhao, Y. (2003). Semicond. Sci. Technol. 18, 49–52.  Web of Science CrossRef Google Scholar
First citationZheng, H., Weiner, L. M., Bar-Am, O., Epsztejn, S., Cabantchik, Z. I., Warshawsky, A., Youdim, M. B. H. & Fridkin, M. (2005). Bioorg. Med. Chem. 13, 773–783.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds