organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Meth­­oxy­phen­yl)-1H-pyrrole-2,5-dione

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 13 June 2012; accepted 13 June 2012; online 30 June 2012)

In the title compound, C11H9NO3, the dihedral angle between the meth­oxy­benzene and 1H-pyrrole-2,5-dione rings is 75.60 (10)°. The C atom of the meth­oxy group is close to coplanar with its attached ring [deviation = 0.208 (2) Å]. In the crystal, weak aromatic ππ stacking [centroid–centroid separation = 3.8563 (13) Å] occurs between inversion-related pairs of benzene rings.

Related literature

For a related structure, see: Carroll et al., (2011[Carroll, W. R., Zhao, C., Smith, M. D., Pellechia, P. J. & Shimizu, K. D. (2011). Org. Lett. 13, 4320-4323.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NO3

  • Mr = 203.19

  • Monoclinic, P 21 /c

  • a = 12.7018 (15) Å

  • b = 10.2689 (12) Å

  • c = 7.4695 (8) Å

  • β = 101.067 (7)°

  • V = 956.16 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.23 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.977

  • 7388 measured reflections

  • 1887 independent reflections

  • 1267 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.01

  • 1887 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) is present as a fragment of the crystal structure of 4-(2-methoxyphenyl)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (Carroll et al., 2011).

In (I) the methoxybenzene A (C1—C7/O1) and 1H-pyrrole-2,5-dione B (C8—C11/N1/O2/O3) are close to planar with r.m.s. deviation of 0.0461 and 0.0201 Å, respectively. The dihedral angle between A/B is 78.22 (5)°.

Related literature top

For a related structure, see: Carroll et al., (2011).

Experimental top

Equimolar quantities of 2-methoxyaniline and furan-2,5-dione (maleic anhydride) were stirred in acetic acid for 2 h. The solution was kept at room temperature which afforded light yellow prisms after two days.

Refinement top

Twin was found in the data with twin matrix [1, 0, 0.653: 0, -1, 0: 0, 0, -1]. Using the standard techniques, the twin was removed with Basf = 0.07458.

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Structure description top

The title compound (I), (Fig. 1) is present as a fragment of the crystal structure of 4-(2-methoxyphenyl)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (Carroll et al., 2011).

In (I) the methoxybenzene A (C1—C7/O1) and 1H-pyrrole-2,5-dione B (C8—C11/N1/O2/O3) are close to planar with r.m.s. deviation of 0.0461 and 0.0201 Å, respectively. The dihedral angle between A/B is 78.22 (5)°.

For a related structure, see: Carroll et al., (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
1-(2-Methoxyphenyl)-1H-pyrrole-2,5-dione top
Crystal data top
C11H9NO3F(000) = 424
Mr = 203.19Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1267 reflections
a = 12.7018 (15) Åθ = 1.6–26.0°
b = 10.2689 (12) ŵ = 0.10 mm1
c = 7.4695 (8) ÅT = 296 K
β = 101.067 (7)°Prism, light yellow
V = 956.16 (19) Å30.30 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1887 independent reflections
Radiation source: fine-focus sealed tube1267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 1215
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 129
Tmin = 0.969, Tmax = 0.977l = 99
7388 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1053P]
where P = (Fo2 + 2Fc2)/3
1887 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H9NO3V = 956.16 (19) Å3
Mr = 203.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7018 (15) ŵ = 0.10 mm1
b = 10.2689 (12) ÅT = 296 K
c = 7.4695 (8) Å0.30 × 0.25 × 0.23 mm
β = 101.067 (7)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1887 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1267 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.977Rint = 0.030
7388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.01Δρmax = 0.11 e Å3
1887 reflectionsΔρmin = 0.19 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20496 (11)0.44118 (13)0.18267 (18)0.0604 (4)
O20.08846 (11)0.44793 (14)0.1941 (2)0.0692 (5)
O30.28200 (11)0.79126 (14)0.0549 (2)0.0724 (5)
N10.20700 (11)0.59539 (14)0.11254 (19)0.0438 (4)
C10.29485 (14)0.51130 (17)0.1042 (3)0.0447 (4)
C20.29351 (15)0.43286 (17)0.0476 (3)0.0476 (5)
C30.38002 (18)0.35292 (19)0.0525 (3)0.0619 (6)
H30.38000.29860.15220.074*
C40.46654 (18)0.3536 (2)0.0903 (4)0.0708 (7)
H40.52500.30010.08540.085*
C50.46810 (18)0.4312 (2)0.2383 (3)0.0698 (7)
H50.52710.43080.33380.084*
C60.38151 (16)0.5103 (2)0.2455 (3)0.0577 (5)
H60.38180.56330.34650.069*
C70.2079 (2)0.3746 (2)0.3493 (3)0.0789 (7)
H7A0.26840.40440.39780.118*
H7B0.14300.39200.43550.118*
H7C0.21420.28270.32670.118*
C80.11142 (15)0.55756 (19)0.1598 (2)0.0478 (5)
C90.04849 (15)0.6775 (2)0.1639 (3)0.0556 (5)
H90.02080.68160.18710.067*
C100.10532 (15)0.7772 (2)0.1297 (3)0.0560 (5)
H100.08400.86390.12800.067*
C110.20922 (15)0.72958 (18)0.0941 (2)0.0489 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0631 (9)0.0606 (9)0.0594 (9)0.0035 (7)0.0164 (7)0.0146 (7)
O20.0603 (9)0.0562 (9)0.0953 (12)0.0116 (7)0.0252 (8)0.0111 (8)
O30.0643 (9)0.0516 (9)0.1068 (12)0.0081 (8)0.0303 (9)0.0103 (8)
N10.0435 (8)0.0362 (8)0.0552 (9)0.0021 (7)0.0183 (7)0.0045 (7)
C10.0419 (10)0.0386 (10)0.0578 (12)0.0002 (8)0.0198 (9)0.0032 (8)
C20.0498 (11)0.0381 (10)0.0600 (12)0.0010 (9)0.0232 (10)0.0045 (8)
C30.0695 (14)0.0451 (12)0.0814 (15)0.0089 (11)0.0403 (13)0.0056 (10)
C40.0571 (14)0.0572 (15)0.107 (2)0.0192 (11)0.0393 (14)0.0293 (14)
C50.0532 (13)0.0739 (16)0.0824 (17)0.0082 (12)0.0137 (12)0.0250 (14)
C60.0539 (12)0.0576 (13)0.0621 (13)0.0011 (10)0.0125 (10)0.0076 (10)
C70.0974 (18)0.0750 (16)0.0687 (15)0.0085 (14)0.0271 (13)0.0231 (12)
C80.0437 (11)0.0507 (12)0.0504 (11)0.0071 (9)0.0129 (9)0.0012 (9)
C90.0436 (10)0.0657 (14)0.0598 (12)0.0055 (10)0.0155 (9)0.0050 (10)
C100.0547 (12)0.0471 (12)0.0665 (13)0.0090 (10)0.0123 (10)0.0067 (9)
C110.0497 (11)0.0431 (11)0.0546 (11)0.0018 (9)0.0121 (9)0.0012 (9)
Geometric parameters (Å, º) top
O1—C21.362 (2)C4—H40.9300
O1—C71.426 (2)C5—C61.377 (3)
O2—C81.203 (2)C5—H50.9300
O3—C111.202 (2)C6—H60.9300
N1—C81.383 (2)C7—H7A0.9600
N1—C111.386 (2)C7—H7B0.9600
N1—C11.422 (2)C7—H7C0.9600
C1—C61.371 (3)C8—C91.471 (3)
C1—C21.388 (3)C9—C101.307 (3)
C2—C31.378 (3)C9—H90.9300
C3—C41.377 (3)C10—C111.479 (3)
C3—H30.9300C10—H100.9300
C4—C51.360 (3)
C2—O1—C7117.40 (17)C1—C6—H6119.9
C8—N1—C11109.89 (15)C5—C6—H6119.9
C8—N1—C1125.12 (15)O1—C7—H7A109.5
C11—N1—C1124.64 (15)O1—C7—H7B109.5
C6—C1—C2120.45 (18)H7A—C7—H7B109.5
C6—C1—N1119.44 (17)O1—C7—H7C109.5
C2—C1—N1120.10 (17)H7A—C7—H7C109.5
O1—C2—C3124.53 (18)H7B—C7—H7C109.5
O1—C2—C1116.59 (16)O2—C8—N1125.28 (18)
C3—C2—C1118.9 (2)O2—C8—C9128.61 (18)
C4—C3—C2119.9 (2)N1—C8—C9106.09 (16)
C4—C3—H3120.1C10—C9—C8109.24 (17)
C2—C3—H3120.1C10—C9—H9125.4
C5—C4—C3121.2 (2)C8—C9—H9125.4
C5—C4—H4119.4C9—C10—C11108.73 (17)
C3—C4—H4119.4C9—C10—H10125.6
C4—C5—C6119.4 (2)C11—C10—H10125.6
C4—C5—H5120.3O3—C11—N1125.41 (17)
C6—C5—H5120.3O3—C11—C10128.60 (18)
C1—C6—C5120.3 (2)N1—C11—C10105.98 (16)
C8—N1—C1—C6100.8 (2)N1—C1—C6—C5178.87 (17)
C11—N1—C1—C671.7 (2)C4—C5—C6—C10.3 (3)
C8—N1—C1—C280.5 (2)C11—N1—C8—O2176.12 (18)
C11—N1—C1—C2107.0 (2)C1—N1—C8—O22.7 (3)
C7—O1—C2—C38.0 (3)C11—N1—C8—C92.25 (19)
C7—O1—C2—C1172.00 (17)C1—N1—C8—C9175.70 (16)
C6—C1—C2—O1179.12 (16)O2—C8—C9—C10175.7 (2)
N1—C1—C2—O10.4 (2)N1—C8—C9—C102.6 (2)
C6—C1—C2—C30.9 (3)C8—C9—C10—C111.9 (2)
N1—C1—C2—C3179.59 (15)C8—N1—C11—O3179.57 (19)
O1—C2—C3—C4178.86 (17)C1—N1—C11—O36.1 (3)
C1—C2—C3—C41.1 (3)C8—N1—C11—C101.15 (19)
C2—C3—C4—C50.7 (3)C1—N1—C11—C10174.64 (16)
C3—C4—C5—C60.1 (3)C9—C10—C11—O3178.7 (2)
C2—C1—C6—C50.1 (3)C9—C10—C11—N10.5 (2)

Experimental details

Crystal data
Chemical formulaC11H9NO3
Mr203.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.7018 (15), 10.2689 (12), 7.4695 (8)
β (°) 101.067 (7)
V3)956.16 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.23
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.969, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
7388, 1887, 1267
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.01
No. of reflections1887
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarroll, W. R., Zhao, C., Smith, M. D., Pellechia, P. J. & Shimizu, K. D. (2011). Org. Lett. 13, 4320–4323.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds