metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Amino­carbon­yl)pyridinium di­aqua-bis­­(pyridine-2,6-di­carboxyl­ato)bis­­muthate(III) monohydrate

aSchool of Chemistry, College of Science, University of Tehran, Tehran, Iran
*Correspondence e-mail: janet_soleimannejad@khayam.ut.ac.ir, janet_soleimannejad@yahoo.com

(Received 29 March 2012; accepted 10 June 2012; online 20 June 2012)

The asymmetric unit of the ionic title compound, (C6H7N2O)[Bi(C7H3NO4)2(H2O)2]·H2O or (acpyH)[Bi(pydc)2(H2O)2]·H2O, contains an [Bi(pydc)2(H2O)2] anion (where pydcH2 is pyridine-2,6-dicarb­oxy­lic acid), a protonated 3-(amino­carbon­yl)pyridine as counter-ion, (acpyH)+, and one uncoordinated water mol­ecule. The anion is an eight-coordinate complex with a square-anti­prismatic geometry around the BiIII atom. In the crystal, extensive O—H⋯O and N—H⋯O hydrogen bonds, as well as ion pairing, C=O⋯π inter­actions [O⋯centroid distance = 3.583 (5) Å], ππ stacking [centroid–centroid distance = 3.864 (3) Å], and C—H⋯π and C—H⋯O inter­actions, play an important role in the formation and stabilization of the three-dimensional supra­molecular structure.

Related literature

For related structures, see: Aghabozorg, Ramezanipour et al. (2008[Aghabozorg, H., Ramezanipour, F., Soleimannejad, J., Sharif, M. A., Shokrollahi, A., Shamsipur, M., Moghimi, A., Gharamaleki, J. A., Lippolis, V. & Blake, A. J. (2008). Pol. J. Chem. 82, 487-507.]); Aghabozorg, Nemati et al. (2008[Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2008). Acta Cryst. E64, m374.]); Ranjbar et al. (2003[Ranjbar, M., Aghabozorg, H. & Moghimi, A. (2003). Z. Kristallogr. 218, 432-434.]); Sharif et al. (2007[Sharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599-m1601.]); Sheshmani et al. (2005[Sheshmani, S., Kheirollahi, P. D., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Shamsipur, M., Ramezanipour, F. & Moghimi, A. (2005). Z. Anorg. Allg. Chem. 631, 3058-3065.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H7N2O)[Bi(C7H3NO4)2(H2O)2]·H2O

  • Mr = 716.37

  • Triclinic, [P \overline 1]

  • a = 8.7702 (6) Å

  • b = 10.7954 (7) Å

  • c = 11.9203 (8) Å

  • α = 80.409 (3)°

  • β = 80.952 (3)°

  • γ = 81.730 (3)°

  • V = 1090.92 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.16 mm−1

  • T = 296 K

  • 0.32 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.180, Tmax = 0.292

  • 8311 measured reflections

  • 4994 independent reflections

  • 4689 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.05

  • 4994 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 3.29 e Å−3

  • Δρmin = −4.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2/C9–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1A⋯O11i 0.85 2.14 2.961 (7) 164
O1S—H1B⋯O8ii 0.85 2.13 2.979 (7) 173
N3—H3C⋯O3 0.86 1.91 2.766 (7) 173
N4—H4A⋯O5i 0.86 2.29 3.035 (6) 144
N4—H4B⋯O1iii 0.86 2.05 2.874 (6) 160
O9—H9A⋯O4iv 0.85 1.99 2.760 (5) 151
O9—H9B⋯O11iv 0.85 1.96 2.811 (6) 177
O10—H10A⋯O1S 0.85 2.05 2.782 (7) 144
O10—H10B⋯O8v 0.85 2.02 2.860 (6) 172
C5—H5⋯O7vi 0.93 2.57 3.170 (7) 122
C11—H11⋯O2vii 0.93 2.49 3.159 (7) 129
C35—H35⋯O4 0.93 2.27 3.004 (8) 136
C39—H39⋯O1iii 0.93 2.57 3.456 (7) 160
C38—H38⋯Cg1viii 0.93 2.70 3.549 (7) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) -x, -y+1, -z+1; (v) -x, -y+1, -z; (vi) x, y, z+1; (vii) -x, -y, -z; (viii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There are a few reports on the coordination of pyridine-2,6-dicarboxylic acid (H2pydc), to a BiIII atom, for example (Ranjbar et al., 2003; Sheshmani et al., 2005; Sharif et al., 2007; Aghabozorg, Ramezanipour et al., 2008; Aghabozorg, Nemati et al., 2008; including 2,6-diaminopyridine; 1,10-phenanthroline; 2,4,6-triamino-1,3,5-triazine; 1-methyl-4-oxo-2-imidazolidinimine and piperazine counter ions, respectively). Herein we report on the crystal structure of a similar compound that this time includes a different counter ion, namely 3-(aminocarbonyl)pyridinium.

In the title compound, illustrated in Fig. 1, the asymmetric unit contains a [Bi(pydc)2(H2O)2]- anion, 3-(aminocarbonyl)pyridinium as the counter-ion (acpyH)+, and one uncoordinated water molecule. The coordination environment of the BiIII atom may be described as a square antiprism, being composed of two almost parallel planes; atoms O3, O9, O8 and O10 define one plane [mean deviation of 0.257 (4) Å], while atoms N1, O2, N2 and O5 define the other plane [mean deviation of 0.227 (4) Å]. The angle between these two mean planes is 2.07 (18)°, with the Bismuth ion located 1.0102 (2) Å from the first plane and 1.3863 (2) Å from the second. This shows that the BiIII atom is located near the centre of the square antiprism. The twist angle between the two mean planes [O3/Bi1/O8 and N1/Bi1/N2] is 47.36 (1)°, approaching the value of 45° for an ideal square antiprism (Fig. 2).

In the crystal, there are a wide range of non-covalent interactions leading to the formation of a three-dimensional supramolecular structure (Table 1 and Fig. 3). They consist of O—H···O and N—H···O hydrogen bonds and C-H···O and C-H···π interactions (Table 1). There are also C1O1···π interactions involving the pyridine ring (N1,C2-C6) [distance O1···π being 3.583 (5) Å] and ππ stacking interactions involving inversion related pyridinium rings [N2/C9-C13] with a centroid-centroid distance of 3.864 (3) Å, an interplanar separation of 3.379 (2) Å, and a slippage of 1.875 Å.

In the crystal, the centrosymmetric hydrogen-bonded rings formed by adjacent anions can be described by the basic R22(8) graph-set motif (Fig. 4; Bernstein et al., 1995). The carboxylate O atom participates in hydrogen bonding with a neighbouring anion through an O—H···O hydrogen bond. This interaction also links anions into another centrosymmetric hydrogen-bonded ring which can be described by a complex graph-set motif R22(12) - see Fig 4. The centrosymmetric hydrogen-bonded rings formed by two adjacent anions and two adjacent cations, including both O—H···O and N—H···O hydrogen bonds, can be described by R44(20) ring motifs - see Fig. 5. The aggregation of these ring motifs results in an overall three-dimensional hydrogen-bonded supramolecular structure.

Related literature top

For related structures, see: Aghabozorg, Ramezanipour et al. (2008); Aghabozorg, Nemati et al. (2008); Ranjbar et al. (2003); Sharif et al. (2007); Sheshmani et al. (2005). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

A solution of nicotinamide (70 mg, 0.573 mmol) and pyridine-2,6-dicarboxylic acid (95 mg, 0.573 mmol) in water (6 ml) was heated at 323 K for 1h. BiCl3 (180.69 mg, 0.573 mmol) was dissolved in DMSO/water (ratio 1:10, 5 ml) and added to the above solution. The resulting mixture was heated for a further 2 h. It was then filtered off and the filtrate kept at room temperature. Colourless crystals, suitable for X-ray analysis, were obtained after 5 days.

Refinement top

The water and NH H-atoms were located in a difference Fourier map and were refined as riding atoms with distance restrains: O—H = 0.85 (2) Å and N—H = 0.86 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å, with Uiso(H) = 1.2 Ueq(C).

Structure description top

There are a few reports on the coordination of pyridine-2,6-dicarboxylic acid (H2pydc), to a BiIII atom, for example (Ranjbar et al., 2003; Sheshmani et al., 2005; Sharif et al., 2007; Aghabozorg, Ramezanipour et al., 2008; Aghabozorg, Nemati et al., 2008; including 2,6-diaminopyridine; 1,10-phenanthroline; 2,4,6-triamino-1,3,5-triazine; 1-methyl-4-oxo-2-imidazolidinimine and piperazine counter ions, respectively). Herein we report on the crystal structure of a similar compound that this time includes a different counter ion, namely 3-(aminocarbonyl)pyridinium.

In the title compound, illustrated in Fig. 1, the asymmetric unit contains a [Bi(pydc)2(H2O)2]- anion, 3-(aminocarbonyl)pyridinium as the counter-ion (acpyH)+, and one uncoordinated water molecule. The coordination environment of the BiIII atom may be described as a square antiprism, being composed of two almost parallel planes; atoms O3, O9, O8 and O10 define one plane [mean deviation of 0.257 (4) Å], while atoms N1, O2, N2 and O5 define the other plane [mean deviation of 0.227 (4) Å]. The angle between these two mean planes is 2.07 (18)°, with the Bismuth ion located 1.0102 (2) Å from the first plane and 1.3863 (2) Å from the second. This shows that the BiIII atom is located near the centre of the square antiprism. The twist angle between the two mean planes [O3/Bi1/O8 and N1/Bi1/N2] is 47.36 (1)°, approaching the value of 45° for an ideal square antiprism (Fig. 2).

In the crystal, there are a wide range of non-covalent interactions leading to the formation of a three-dimensional supramolecular structure (Table 1 and Fig. 3). They consist of O—H···O and N—H···O hydrogen bonds and C-H···O and C-H···π interactions (Table 1). There are also C1O1···π interactions involving the pyridine ring (N1,C2-C6) [distance O1···π being 3.583 (5) Å] and ππ stacking interactions involving inversion related pyridinium rings [N2/C9-C13] with a centroid-centroid distance of 3.864 (3) Å, an interplanar separation of 3.379 (2) Å, and a slippage of 1.875 Å.

In the crystal, the centrosymmetric hydrogen-bonded rings formed by adjacent anions can be described by the basic R22(8) graph-set motif (Fig. 4; Bernstein et al., 1995). The carboxylate O atom participates in hydrogen bonding with a neighbouring anion through an O—H···O hydrogen bond. This interaction also links anions into another centrosymmetric hydrogen-bonded ring which can be described by a complex graph-set motif R22(12) - see Fig 4. The centrosymmetric hydrogen-bonded rings formed by two adjacent anions and two adjacent cations, including both O—H···O and N—H···O hydrogen bonds, can be described by R44(20) ring motifs - see Fig. 5. The aggregation of these ring motifs results in an overall three-dimensional hydrogen-bonded supramolecular structure.

For related structures, see: Aghabozorg, Ramezanipour et al. (2008); Aghabozorg, Nemati et al. (2008); Ranjbar et al. (2003); Sharif et al. (2007); Sheshmani et al. (2005). For graph-set motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Coordination polyhedron around the bismouth(III) atom, Bi1, illustrating the square antiprism.
[Figure 3] Fig. 3. A view along the c axis of the crystal packing of the title complex. Dashed lines indicate O-H···O and N-H···O hydrogen bonds [H atoms not involved in these interactions have been omitted for clarity].
[Figure 4] Fig. 4. The graph sets motifs formed by intermolecular O—H···O hydrogen bonds involving inversion related anions.
[Figure 5] Fig. 5. The graph sets motifs formed by intermolecular O—H···O and N—H···O hydrogen bonds involving neighbouring anions and cations.
3-(Aminocarbonyl)pyridinium diaquabis(pyridine-2,6-dicarboxylato)bismuthate(III) monohydrate top
Crystal data top
(C6H7N2O)[Bi(C7H3NO4)2(H2O)2]·H2OZ = 2
Mr = 716.37F(000) = 692
Triclinic, P1Dx = 2.181 Mg m3
a = 8.7702 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7954 (7) ÅCell parameters from 5622 reflections
c = 11.9203 (8) Åθ = 2.4–27.6°
α = 80.409 (3)°µ = 8.16 mm1
β = 80.952 (3)°T = 296 K
γ = 81.730 (3)°Plate, colourless
V = 1090.92 (13) Å30.32 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4994 independent reflections
Radiation source: fine-focus sealed tube4689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
phi and ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.180, Tmax = 0.292k = 138
8311 measured reflectionsl = 1512
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4994 reflectionsΔρmax = 3.29 e Å3
335 parametersΔρmin = 4.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (6)
Crystal data top
(C6H7N2O)[Bi(C7H3NO4)2(H2O)2]·H2Oγ = 81.730 (3)°
Mr = 716.37V = 1090.92 (13) Å3
Triclinic, P1Z = 2
a = 8.7702 (6) ÅMo Kα radiation
b = 10.7954 (7) ŵ = 8.16 mm1
c = 11.9203 (8) ÅT = 296 K
α = 80.409 (3)°0.32 × 0.20 × 0.20 mm
β = 80.952 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4994 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4689 reflections with I > 2σ(I)
Tmin = 0.180, Tmax = 0.292Rint = 0.046
8311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 3.29 e Å3
4994 reflectionsΔρmin = 4.30 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.03927 (2)0.317631 (15)0.205035 (14)0.00719 (10)
O10.2391 (5)0.0131 (4)0.3621 (3)0.0160 (9)
O20.1181 (5)0.1617 (4)0.2430 (3)0.0133 (8)
O30.1632 (5)0.4275 (4)0.3440 (3)0.0113 (8)
O40.1835 (5)0.4423 (4)0.5264 (3)0.0131 (8)
O50.2417 (5)0.1750 (4)0.2585 (3)0.0111 (8)
O60.4205 (5)0.0122 (4)0.2244 (4)0.0176 (9)
O70.1387 (6)0.2967 (4)0.1314 (4)0.0222 (10)
O80.1157 (5)0.3531 (4)0.0370 (3)0.0119 (8)
O90.2156 (5)0.4615 (4)0.2792 (3)0.0138 (8)
H9B0.28930.41990.31310.017*
H9A0.22060.51480.32510.017*
O100.2651 (5)0.4062 (4)0.0543 (4)0.0186 (9)
H10A0.35570.41880.06310.022*
H10B0.22140.47490.02090.022*
O110.4567 (5)0.6816 (4)0.6148 (4)0.0148 (9)
N10.0245 (5)0.2448 (4)0.4131 (4)0.0075 (9)
N20.1249 (6)0.1743 (4)0.0663 (4)0.0097 (9)
N30.3864 (6)0.5920 (5)0.3084 (4)0.0142 (10)
H3C0.31170.54610.31750.017*
N40.5959 (6)0.8405 (5)0.5319 (4)0.0158 (10)
H4A0.60500.86010.59740.019*
H4B0.63710.88270.46970.019*
C10.1618 (6)0.1040 (5)0.3427 (4)0.0089 (10)
C20.1153 (7)0.1532 (5)0.4435 (5)0.0098 (10)
C30.1650 (7)0.1078 (5)0.5570 (4)0.0114 (11)
H30.22750.04270.57630.014*
C40.1177 (7)0.1637 (5)0.6417 (5)0.0109 (11)
H40.15190.13810.71890.013*
C50.0206 (7)0.2567 (5)0.6103 (4)0.0104 (10)
H50.01360.29300.66590.013*
C60.0257 (6)0.2955 (5)0.4942 (4)0.0079 (10)
C70.1335 (7)0.3969 (5)0.4522 (5)0.0094 (10)
C80.0775 (7)0.2855 (5)0.0444 (5)0.0133 (11)
C90.0580 (7)0.1811 (5)0.0284 (5)0.0098 (11)
C100.1121 (7)0.0952 (5)0.1054 (4)0.0108 (11)
H100.06670.10110.17190.013*
C110.2330 (7)0.0013 (5)0.0831 (5)0.0135 (12)
H110.26930.05630.13400.016*
C120.3002 (7)0.0059 (5)0.0177 (5)0.0115 (11)
H120.37960.06930.03650.014*
C130.2436 (6)0.0850 (5)0.0879 (4)0.0094 (10)
C140.3107 (7)0.0891 (5)0.1975 (5)0.0109 (11)
C320.5185 (7)0.7455 (5)0.5271 (5)0.0125 (11)
C340.5059 (7)0.7129 (5)0.4113 (5)0.0107 (11)
C350.4079 (8)0.6240 (6)0.4082 (5)0.0147 (12)
H350.35610.58590.47660.018*
C370.4620 (7)0.6414 (5)0.2073 (5)0.0136 (11)
H370.44580.61700.13930.016*
C380.5641 (7)0.7287 (6)0.2051 (5)0.0150 (12)
H380.61850.76180.13580.018*
C390.5849 (7)0.7670 (5)0.3073 (5)0.0129 (11)
H390.65050.82770.30640.016*
O1S0.5518 (6)0.3379 (5)0.1336 (4)0.0270 (11)
H1B0.64810.33560.10810.032*
H1A0.53740.32080.20640.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.00731 (14)0.00714 (14)0.00735 (13)0.00166 (8)0.00141 (8)0.00063 (8)
O10.019 (2)0.018 (2)0.0128 (19)0.0104 (18)0.0017 (16)0.0039 (16)
O20.018 (2)0.014 (2)0.0088 (18)0.0081 (16)0.0014 (15)0.0026 (15)
O30.012 (2)0.0117 (18)0.0110 (18)0.0058 (15)0.0016 (15)0.0009 (14)
O40.015 (2)0.014 (2)0.0138 (19)0.0046 (16)0.0030 (16)0.0070 (15)
O50.011 (2)0.0128 (19)0.0105 (18)0.0005 (15)0.0028 (15)0.0027 (14)
O60.016 (2)0.019 (2)0.017 (2)0.0010 (18)0.0045 (17)0.0019 (17)
O70.022 (3)0.028 (2)0.017 (2)0.0076 (19)0.0132 (18)0.0071 (18)
O80.012 (2)0.0135 (19)0.0103 (18)0.0005 (16)0.0034 (15)0.0024 (14)
O90.013 (2)0.014 (2)0.0145 (19)0.0026 (16)0.0004 (16)0.0021 (15)
O100.013 (2)0.018 (2)0.022 (2)0.0065 (17)0.0003 (17)0.0063 (16)
O110.013 (2)0.015 (2)0.016 (2)0.0055 (17)0.0007 (16)0.0013 (16)
N10.008 (2)0.007 (2)0.008 (2)0.0020 (17)0.0009 (17)0.0017 (16)
N20.012 (2)0.009 (2)0.009 (2)0.0036 (18)0.0046 (18)0.0014 (16)
N30.015 (3)0.010 (2)0.017 (2)0.0013 (19)0.003 (2)0.0020 (18)
N40.020 (3)0.017 (2)0.012 (2)0.009 (2)0.0027 (19)0.0001 (18)
C10.007 (3)0.008 (2)0.011 (2)0.0050 (19)0.0028 (19)0.0028 (19)
C20.010 (3)0.005 (2)0.014 (3)0.002 (2)0.003 (2)0.0034 (19)
C30.014 (3)0.012 (3)0.009 (2)0.005 (2)0.002 (2)0.0010 (19)
C40.012 (3)0.011 (3)0.008 (2)0.000 (2)0.000 (2)0.001 (2)
C50.011 (3)0.010 (2)0.010 (2)0.001 (2)0.003 (2)0.0004 (19)
C60.005 (2)0.007 (2)0.010 (2)0.0031 (19)0.0012 (19)0.0011 (18)
C70.008 (3)0.008 (2)0.013 (3)0.001 (2)0.003 (2)0.002 (2)
C80.009 (3)0.016 (3)0.015 (3)0.002 (2)0.004 (2)0.001 (2)
C90.011 (3)0.009 (3)0.009 (2)0.002 (2)0.000 (2)0.0022 (19)
C100.012 (3)0.013 (3)0.009 (2)0.003 (2)0.001 (2)0.0032 (19)
C110.011 (3)0.014 (3)0.017 (3)0.005 (2)0.003 (2)0.008 (2)
C120.008 (3)0.011 (3)0.016 (3)0.003 (2)0.001 (2)0.001 (2)
C130.008 (3)0.011 (2)0.008 (2)0.005 (2)0.0013 (19)0.0006 (19)
C140.013 (3)0.009 (3)0.011 (2)0.003 (2)0.003 (2)0.0007 (19)
C320.009 (3)0.012 (3)0.015 (3)0.001 (2)0.001 (2)0.001 (2)
C340.008 (3)0.008 (2)0.015 (3)0.003 (2)0.001 (2)0.000 (2)
C350.016 (3)0.013 (3)0.014 (3)0.001 (2)0.002 (2)0.002 (2)
C370.016 (3)0.011 (3)0.016 (3)0.001 (2)0.008 (2)0.003 (2)
C380.013 (3)0.013 (3)0.017 (3)0.004 (2)0.002 (2)0.001 (2)
C390.010 (3)0.010 (3)0.018 (3)0.002 (2)0.003 (2)0.001 (2)
O1S0.016 (2)0.044 (3)0.019 (2)0.009 (2)0.0021 (18)0.006 (2)
Geometric parameters (Å, º) top
Bi1—O22.271 (4)N4—H4B0.8600
Bi1—O52.274 (4)C1—C21.524 (7)
Bi1—N22.412 (4)C2—C31.384 (7)
Bi1—N12.475 (4)C3—C41.400 (7)
Bi1—O82.541 (4)C3—H30.9300
Bi1—O102.630 (4)C4—C51.376 (7)
Bi1—O32.631 (4)C4—H40.9300
Bi1—O92.651 (4)C5—C61.391 (7)
O1—C11.241 (6)C5—H50.9300
O2—C11.276 (6)C6—C71.520 (7)
O3—C71.272 (7)C8—C91.528 (8)
O4—C71.242 (6)C9—C101.396 (7)
O5—C141.297 (7)C10—C111.383 (8)
O6—C141.223 (7)C10—H100.9300
O7—C81.221 (7)C11—C121.406 (8)
O8—C81.284 (7)C11—H110.9300
O9—H9B0.8500C12—C131.383 (7)
O9—H9A0.8499C12—H120.9300
O10—H10A0.8500C13—C141.524 (7)
O10—H10B0.8498C32—C341.504 (8)
O11—C321.245 (7)C34—C351.385 (8)
N1—C21.327 (6)C34—C391.401 (8)
N1—C61.344 (6)C35—H350.9300
N2—C131.339 (7)C37—C381.385 (8)
N2—C91.339 (7)C37—H370.9300
N3—C351.340 (8)C38—C391.395 (8)
N3—C371.346 (8)C38—H380.9300
N3—H3C0.8600C39—H390.9300
N4—C321.322 (7)O1S—H1B0.8500
N4—H4A0.8600O1S—H1A0.8500
O2—Bi1—O590.01 (15)C2—C3—C4117.5 (5)
O2—Bi1—N271.89 (14)C2—C3—H3121.3
O5—Bi1—N268.92 (14)C4—C3—H3121.3
O2—Bi1—N167.23 (13)C5—C4—C3119.8 (5)
O5—Bi1—N173.07 (14)C5—C4—H4120.1
N2—Bi1—N1122.99 (14)C3—C4—H4120.1
O2—Bi1—O874.88 (13)C4—C5—C6119.0 (5)
O5—Bi1—O8134.11 (12)C4—C5—H5120.5
N2—Bi1—O865.21 (14)C6—C5—H5120.5
N1—Bi1—O8133.40 (13)N1—C6—C5121.0 (5)
O2—Bi1—O10142.16 (13)N1—C6—C7116.6 (4)
O5—Bi1—O1080.74 (14)C5—C6—C7122.3 (5)
N2—Bi1—O1070.54 (14)O4—C7—O3126.2 (5)
N1—Bi1—O10140.96 (14)O4—C7—C6117.2 (5)
O8—Bi1—O1085.52 (13)O3—C7—C6116.6 (5)
O2—Bi1—O3130.76 (12)O7—C8—O8126.5 (6)
O5—Bi1—O375.54 (13)O7—C8—C9118.0 (5)
N2—Bi1—O3137.93 (14)O8—C8—C9115.5 (5)
N1—Bi1—O363.53 (12)N2—C9—C10120.1 (5)
O8—Bi1—O3145.34 (12)N2—C9—C8116.2 (5)
O10—Bi1—O382.39 (12)C10—C9—C8123.7 (5)
O2—Bi1—O984.07 (14)C11—C10—C9120.1 (5)
O5—Bi1—O9145.08 (13)C11—C10—H10119.9
N2—Bi1—O9139.30 (14)C9—C10—H10119.9
N1—Bi1—O972.92 (14)C10—C11—C12119.0 (5)
O8—Bi1—O977.23 (12)C10—C11—H11120.5
O10—Bi1—O9123.14 (13)C12—C11—H11120.5
O3—Bi1—O982.50 (12)C13—C12—C11117.5 (6)
C1—O2—Bi1125.2 (3)C13—C12—H12121.3
C7—O3—Bi1120.2 (3)C11—C12—H12121.3
C14—O5—Bi1123.2 (3)N2—C13—C12122.9 (5)
C8—O8—Bi1120.5 (4)N2—C13—C14115.0 (5)
Bi1—O9—H9B113.8C12—C13—C14122.1 (5)
Bi1—O9—H9A125.5O6—C14—O5124.2 (5)
H9B—O9—H9A99.6O6—C14—C13120.1 (5)
Bi1—O10—H10A130.4O5—C14—C13115.8 (5)
Bi1—O10—H10B103.5O11—C32—N4122.4 (5)
H10A—O10—H10B107.7O11—C32—C34118.9 (5)
C2—N1—C6119.9 (4)N4—C32—C34118.7 (5)
C2—N1—Bi1117.0 (3)C35—C34—C39118.3 (5)
C6—N1—Bi1123.1 (3)C35—C34—C32117.2 (5)
C13—N2—C9120.3 (5)C39—C34—C32124.5 (5)
C13—N2—Bi1117.1 (3)N3—C35—C34121.1 (5)
C9—N2—Bi1122.6 (4)N3—C35—H35119.4
C35—N3—C37121.8 (5)C34—C35—H35119.4
C35—N3—H3C111.5N3—C37—C38119.7 (5)
C37—N3—H3C126.1N3—C37—H37120.2
C32—N4—H4A120.0C38—C37—H37120.2
C32—N4—H4B120.0C37—C38—C39119.8 (5)
H4A—N4—H4B120.0C37—C38—H38120.1
O1—C1—O2124.8 (5)C39—C38—H38120.1
O1—C1—C2119.0 (5)C38—C39—C34119.2 (5)
O2—C1—C2116.2 (4)C38—C39—H39120.4
N1—C2—C3122.7 (5)C34—C39—H39120.4
N1—C2—C1114.2 (4)H1B—O1S—H1A111.1
C3—C2—C1123.1 (5)
O5—Bi1—O2—C168.1 (4)C6—N1—C2—C1179.4 (5)
N2—Bi1—O2—C1135.9 (5)Bi1—N1—C2—C12.0 (6)
N1—Bi1—O2—C13.5 (4)O1—C1—C2—N1175.8 (5)
O8—Bi1—O2—C1155.8 (5)O2—C1—C2—N14.8 (7)
O10—Bi1—O2—C1142.9 (4)O1—C1—C2—C35.1 (8)
O3—Bi1—O2—C12.7 (5)O2—C1—C2—C3174.3 (5)
O9—Bi1—O2—C177.4 (4)N1—C2—C3—C40.9 (9)
O2—Bi1—O3—C72.2 (5)C1—C2—C3—C4178.1 (5)
O5—Bi1—O3—C779.4 (4)C2—C3—C4—C52.4 (9)
N2—Bi1—O3—C7112.2 (4)C3—C4—C5—C61.6 (9)
N1—Bi1—O3—C71.4 (4)C2—N1—C6—C52.4 (8)
O8—Bi1—O3—C7127.6 (4)Bi1—N1—C6—C5176.1 (4)
O10—Bi1—O3—C7161.7 (4)C2—N1—C6—C7178.1 (5)
O9—Bi1—O3—C773.3 (4)Bi1—N1—C6—C73.4 (6)
O2—Bi1—O5—C1471.8 (4)C4—C5—C6—N10.9 (8)
N2—Bi1—O5—C141.3 (4)C4—C5—C6—C7179.6 (5)
N1—Bi1—O5—C14137.9 (4)Bi1—O3—C7—O4179.4 (5)
O8—Bi1—O5—C143.1 (5)Bi1—O3—C7—C60.3 (6)
O10—Bi1—O5—C1471.3 (4)N1—C6—C7—O4178.4 (5)
O3—Bi1—O5—C14155.8 (4)C5—C6—C7—O42.1 (8)
O9—Bi1—O5—C14151.4 (4)N1—C6—C7—O31.9 (7)
O2—Bi1—O8—C879.2 (4)C5—C6—C7—O3177.6 (5)
O5—Bi1—O8—C84.3 (5)Bi1—O8—C8—O7176.9 (5)
N2—Bi1—O8—C82.5 (4)Bi1—O8—C8—C93.2 (6)
N1—Bi1—O8—C8115.3 (4)C13—N2—C9—C100.2 (8)
O10—Bi1—O8—C868.2 (4)Bi1—N2—C9—C10179.7 (4)
O3—Bi1—O8—C8137.9 (4)C13—N2—C9—C8179.4 (5)
O9—Bi1—O8—C8166.4 (4)Bi1—N2—C9—C80.1 (6)
O2—Bi1—N1—C20.4 (4)O7—C8—C9—N2178.1 (5)
O5—Bi1—N1—C297.0 (4)O8—C8—C9—N22.1 (7)
N2—Bi1—N1—C247.2 (4)O7—C8—C9—C102.4 (8)
O8—Bi1—N1—C238.5 (5)O8—C8—C9—C10177.5 (5)
O10—Bi1—N1—C2147.0 (4)N2—C9—C10—C111.2 (8)
O3—Bi1—N1—C2178.9 (4)C8—C9—C10—C11178.3 (5)
O9—Bi1—N1—C291.0 (4)C9—C10—C11—C120.1 (8)
O2—Bi1—N1—C6178.2 (5)C10—C11—C12—C131.9 (8)
O5—Bi1—N1—C684.5 (4)C9—N2—C13—C122.0 (8)
N2—Bi1—N1—C6134.2 (4)Bi1—N2—C13—C12177.5 (4)
O8—Bi1—N1—C6140.0 (4)C9—N2—C13—C14179.1 (4)
O10—Bi1—N1—C634.4 (5)Bi1—N2—C13—C141.3 (6)
O3—Bi1—N1—C62.5 (4)C11—C12—C13—N23.1 (8)
O9—Bi1—N1—C687.5 (4)C11—C12—C13—C14178.2 (5)
O2—Bi1—N2—C1397.1 (4)Bi1—O5—C14—O6179.4 (4)
O5—Bi1—N2—C130.2 (3)Bi1—O5—C14—C132.4 (6)
N1—Bi1—N2—C1351.3 (4)N2—C13—C14—O6179.3 (5)
O8—Bi1—N2—C13178.4 (4)C12—C13—C14—O61.8 (8)
O10—Bi1—N2—C1387.5 (4)N2—C13—C14—O52.4 (7)
O3—Bi1—N2—C1334.5 (5)C12—C13—C14—O5176.5 (5)
O9—Bi1—N2—C13153.9 (3)O11—C32—C34—C358.6 (8)
O2—Bi1—N2—C982.5 (4)N4—C32—C34—C35172.0 (6)
O5—Bi1—N2—C9179.7 (4)O11—C32—C34—C39172.1 (6)
N1—Bi1—N2—C9128.2 (4)N4—C32—C34—C397.3 (9)
O8—Bi1—N2—C91.2 (4)C37—N3—C35—C342.0 (9)
O10—Bi1—N2—C992.9 (4)C39—C34—C35—N31.3 (9)
O3—Bi1—N2—C9146.0 (4)C32—C34—C35—N3178.1 (5)
O9—Bi1—N2—C925.7 (5)C35—N3—C37—C380.6 (9)
Bi1—O2—C1—O1174.8 (4)N3—C37—C38—C391.5 (9)
Bi1—O2—C1—C25.8 (7)C37—C38—C39—C342.2 (9)
C6—N1—C2—C31.5 (8)C35—C34—C39—C380.8 (9)
Bi1—N1—C2—C3177.1 (4)C32—C34—C39—C38179.9 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/C9–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1S—H1A···O11i0.852.142.961 (7)164
O1S—H1B···O8ii0.852.132.979 (7)173
N3—H3C···O30.861.912.766 (7)173
N4—H4A···O5i0.862.293.035 (6)144
N4—H4B···O1iii0.862.052.874 (6)160
O9—H9A···O4iv0.851.992.760 (5)151
O9—H9B···O11iv0.851.962.811 (6)177
O10—H10A···O1S0.852.052.782 (7)144
O10—H10B···O8v0.852.022.860 (6)172
C5—H5···O7vi0.932.573.170 (7)122
C11—H11···O2vii0.932.493.159 (7)129
C35—H35···O40.932.273.004 (8)136
C39—H39···O1iii0.932.573.456 (7)160
C38—H38···Cg1viii0.932.703.549 (7)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y, z+1; (vii) x, y, z; (viii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H7N2O)[Bi(C7H3NO4)2(H2O)2]·H2O
Mr716.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.7702 (6), 10.7954 (7), 11.9203 (8)
α, β, γ (°)80.409 (3), 80.952 (3), 81.730 (3)
V3)1090.92 (13)
Z2
Radiation typeMo Kα
µ (mm1)8.16
Crystal size (mm)0.32 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.180, 0.292
No. of measured, independent and
observed [I > 2σ(I)] reflections
8311, 4994, 4689
Rint0.046
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.05
No. of reflections4994
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.29, 4.30

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/C9–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1S—H1A···O11i0.852.142.961 (7)164
O1S—H1B···O8ii0.852.132.979 (7)173
N3—H3C···O30.861.912.766 (7)173
N4—H4A···O5i0.862.293.035 (6)144
N4—H4B···O1iii0.862.052.874 (6)160
O9—H9A···O4iv0.851.992.760 (5)151
O9—H9B···O11iv0.851.962.811 (6)177
O10—H10A···O1S0.852.052.782 (7)144
O10—H10B···O8v0.852.022.860 (6)172
C5—H5···O7vi0.932.573.170 (7)122
C11—H11···O2vii0.932.493.159 (7)129
C35—H35···O40.932.273.004 (8)136
C39—H39···O1iii0.932.573.456 (7)160
C38—H38···Cg1viii0.932.703.549 (7)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y, z+1; (vii) x, y, z; (viii) x+1, y+1, z.
 

References

First citationAghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2008). Acta Cryst. E64, m374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ramezanipour, F., Soleimannejad, J., Sharif, M. A., Shokrollahi, A., Shamsipur, M., Moghimi, A., Gharamaleki, J. A., Lippolis, V. & Blake, A. J. (2008). Pol. J. Chem. 82, 487–507.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRanjbar, M., Aghabozorg, H. & Moghimi, A. (2003). Z. Kristallogr. 218, 432–434.  CAS Google Scholar
First citationSharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599–m1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheshmani, S., Kheirollahi, P. D., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Shamsipur, M., Ramezanipour, F. & Moghimi, A. (2005). Z. Anorg. Allg. Chem. 631, 3058–3065.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds