organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydrazinyl­quinoline

aFaculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Negara Brunei Darussalam, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 June 2012; accepted 14 June 2012; online 20 June 2012)

In the title compound, C9H9N3, the 12 non-H atoms are essentially planar (r.m.s. deviation = 0.068 Å). The maximum deviation from planarity is reflected in the torsion angle between the β-N atom of the hydrazinyl residue and the quinolinyl N atom [N—N—C—N = −12.7 (3)°]; these atoms are syn. In the crystal, supra­molecular layers in the bc plane are formed via N—H⋯N hydrogen bonds.

Related literature

For applications of coordination complexes of hydrazones as organic light emitting diodes and supra­molecular magnetic clusters, see: Zhang et al. (2011[Zhang, W. H., Hu, J. J., Chi, Y., Young, D. J. & Hor, T. S. A. (2011). Organometallics, 30, 2137-2143.]); Petukhov et al. (2009[Petukhov, K., Alam, M. S., Rupp, H., Strömsdörfer, S., Müller, P., Scheurer, A., Saalfrank, R. W., Kortus, J., Postnikov, A., Ruben, M., Thompson, L. K. & Lehn, J.-M. (2009). Coord. Chem. Rev. 253, 2387-2398.]). For background to the synthesis of hydrazones, see: Gupta et al. (2007[Gupta, L. K., Bansal, U. & Chandra, S. (2007). Spectrochim. Acta Part A, 66, 972-975.]); Anwar et al. (2011[Anwar, M. U., Elliott, A. S., Thompson, L. K. & Dawe, L. N. (2011). Dalton Trans. 40, 4623-4635.]). For a related structure, see: Najib et al. (2012[Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m571-m572.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3

  • Mr = 159.19

  • Monoclinic, P 21 /c

  • a = 13.7966 (9) Å

  • b = 3.9648 (3) Å

  • c = 14.0700 (8) Å

  • β = 97.039 (5)°

  • V = 763.84 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.30 × 0.08 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.476, Tmax = 1.000

  • 2474 measured reflections

  • 1542 independent reflections

  • 1169 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.158

  • S = 1.10

  • 1542 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1n⋯N3i 0.93 (3) 2.18 (3) 3.077 (2) 164 (2)
N3—H2n⋯N1ii 0.89 (2) 2.31 (2) 3.200 (2) 175.1 (19)
N3—H3n⋯N2iii 0.90 (2) 2.58 (2) 3.295 (2) 136.4 (16)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazones are versatile nitrogen donor ligands which have been used extensively for making coordination complexes for a variety of applications from organic light emitting diode (OLED) materials (Zhang et al., 2011) to supramolecular magnetic clusters (Petukhov et al., 2009). These ligands are made by condensation of a carbonyl compound with an organic hydrazine or hydrazide (Anwar et al., 2011). We have previously reported the solid-state structure of the zinc(II) complex of 3,5-dimethyl-1- (2'-quinolyl)pyrazole (Najib et al., 2012). The ligand in that complex was made by the condensation of acetylacetone with the title compound (Gupta et al., 2007). Herein, the crystal and molecular structure of the title compound is described.

In the title compound, Fig. 1, the 12 non-hydrogen atoms are planar with a r.m.s. deviation = 0.068 Å and maximum deviations of 0.068 (2) and -0.152 (2) Å for the N1 and N3 atoms, respectively. The amine-N3 group is syn with the quinolinyl-N1 atom with the N3—N2—C1—N1 torsion angle being -12.7 (3)°.

In the crystal, molecules assemble into supramolecular layers in the bc plane via N—H···N hydrogen bonds, Fig. 2 and Table 1. The secondary amine-H hydrogen bonds to the primary amine-N2 atom. One of the primary amine-H atoms forms a hydrogen bond with the quinolinyl-N atom and the other forms a weak interaction with the secondary amine-N2 atom. The layers stack along the a axis with no specific interactions between them, Fig. 3.

Related literature top

For applications of coordination complexes of hydrazones as organic light emitting diodes and supramolecular magnetic clusters, see: Zhang et al. (2011); Petukhov et al. (2009). For background to the synthesis of hydrazones, see: Gupta et al. (2007); Anwar et al. (2011). For a related structure, see: Najib et al. (2012).

Experimental top

The title compound was prepared by modification of a literature procedure (Gupta et al., 2007). 2-Chloroquinoline (10.06 g) and hydrazine monohydrate (64–65% N2H4) in water (10 ml) were refluxed for 2 h. The water was removed using a rotary evaporator to provide a scarlet residue which was triturated with water and filtered. This scarlet solid was recrystallized from CH2Cl2 and hexane to provide 6.48 g (66.6%) of the title compound [M.p. = 417 K]. Spectroscopic data for the title compound are given in the archived CIF.

Refinement top

C-bound H-atoms were placed in calculated positions [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atoms were located in a difference Fourier map and refined freely.

Structure description top

Hydrazones are versatile nitrogen donor ligands which have been used extensively for making coordination complexes for a variety of applications from organic light emitting diode (OLED) materials (Zhang et al., 2011) to supramolecular magnetic clusters (Petukhov et al., 2009). These ligands are made by condensation of a carbonyl compound with an organic hydrazine or hydrazide (Anwar et al., 2011). We have previously reported the solid-state structure of the zinc(II) complex of 3,5-dimethyl-1- (2'-quinolyl)pyrazole (Najib et al., 2012). The ligand in that complex was made by the condensation of acetylacetone with the title compound (Gupta et al., 2007). Herein, the crystal and molecular structure of the title compound is described.

In the title compound, Fig. 1, the 12 non-hydrogen atoms are planar with a r.m.s. deviation = 0.068 Å and maximum deviations of 0.068 (2) and -0.152 (2) Å for the N1 and N3 atoms, respectively. The amine-N3 group is syn with the quinolinyl-N1 atom with the N3—N2—C1—N1 torsion angle being -12.7 (3)°.

In the crystal, molecules assemble into supramolecular layers in the bc plane via N—H···N hydrogen bonds, Fig. 2 and Table 1. The secondary amine-H hydrogen bonds to the primary amine-N2 atom. One of the primary amine-H atoms forms a hydrogen bond with the quinolinyl-N atom and the other forms a weak interaction with the secondary amine-N2 atom. The layers stack along the a axis with no specific interactions between them, Fig. 3.

For applications of coordination complexes of hydrazones as organic light emitting diodes and supramolecular magnetic clusters, see: Zhang et al. (2011); Petukhov et al. (2009). For background to the synthesis of hydrazones, see: Gupta et al. (2007); Anwar et al. (2011). For a related structure, see: Najib et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the bc plane in the crystal of the title compound. The N—H···N hydrogen bonds are shown as blue dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. A view of the unit-cell contents of the title compound in projection down the b axis. The N—H···N hydrogen bonds are shown as blue dashed lines (see Table 1 for details).
2-Hydrazinylquinoline top
Crystal data top
C9H9N3F(000) = 336
Mr = 159.19Dx = 1.384 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 799 reflections
a = 13.7966 (9) Åθ = 3.2–75.8°
b = 3.9648 (3) ŵ = 0.70 mm1
c = 14.0700 (8) ÅT = 100 K
β = 97.039 (5)°Plate, red
V = 763.84 (9) Å30.30 × 0.08 × 0.03 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1542 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1169 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.4041 pixels mm-1θmax = 76.0°, θmin = 3.2°
ω scanh = 1617
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 34
Tmin = 0.476, Tmax = 1.000l = 1717
2474 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1542 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H9N3V = 763.84 (9) Å3
Mr = 159.19Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.7966 (9) ŵ = 0.70 mm1
b = 3.9648 (3) ÅT = 100 K
c = 14.0700 (8) Å0.30 × 0.08 × 0.03 mm
β = 97.039 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1542 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1169 reflections with I > 2σ(I)
Tmin = 0.476, Tmax = 1.000Rint = 0.018
2474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.32 e Å3
1542 reflectionsΔρmin = 0.23 e Å3
121 parameters
Special details top

Experimental. Spectroscopic data for the title compound: IR \v/cm-1: 3282, 3188, 3042, 2954, 2926, 2854, 1621, 1529, 1462, 1404, 1377, 1307, 1146, 1116, 955, 816, 746. 1H NMR 400MHz (CDCl3) δ: 7.82 (1H, d), 7.71 (1H, d), 7.60 (1H, d), 7.54 (1H, dd), 7.23 (1H, dd), 6.75 (1 H, d), 4.0 (3H, br s). 13C NMR 100MHz (CDCl3) δ: 158.8, 147.3, 137.4, 129.7, 127.5, 126.3, 124.2, 122.8, 110.6.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35068 (10)0.3907 (4)0.51371 (10)0.0241 (4)
N20.44545 (11)0.4959 (4)0.65825 (10)0.0315 (4)
N30.52127 (11)0.2769 (4)0.63649 (11)0.0305 (4)
C10.35855 (13)0.5229 (5)0.60074 (12)0.0261 (4)
C20.28104 (14)0.6982 (5)0.63892 (12)0.0285 (4)
H20.29070.79050.70170.034*
C30.19420 (13)0.7297 (4)0.58430 (13)0.0277 (4)
H30.14220.84650.60840.033*
C40.18015 (13)0.5882 (5)0.49047 (12)0.0250 (4)
C50.09162 (13)0.6087 (5)0.42974 (13)0.0281 (4)
H50.03750.72190.45100.034*
C60.08226 (13)0.4670 (5)0.33990 (13)0.0287 (4)
H60.02200.48080.29950.034*
C70.16246 (13)0.3017 (5)0.30833 (12)0.0271 (4)
H70.15580.20290.24640.033*
C80.25074 (13)0.2802 (4)0.36567 (12)0.0244 (4)
H80.30440.17000.34280.029*
C90.26140 (12)0.4220 (4)0.45841 (11)0.0225 (4)
H1n0.4430 (19)0.564 (7)0.721 (2)0.058 (7)*
H2n0.5538 (16)0.370 (6)0.5919 (16)0.038 (6)*
H3n0.4950 (14)0.090 (6)0.6069 (14)0.025 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0259 (7)0.0276 (8)0.0193 (7)0.0045 (6)0.0042 (5)0.0015 (5)
N20.0317 (8)0.0407 (10)0.0218 (7)0.0017 (7)0.0016 (6)0.0034 (7)
N30.0277 (8)0.0396 (10)0.0238 (8)0.0043 (7)0.0017 (6)0.0025 (6)
C10.0283 (8)0.0283 (10)0.0222 (8)0.0074 (7)0.0051 (6)0.0016 (6)
C20.0377 (10)0.0283 (9)0.0208 (8)0.0052 (8)0.0095 (7)0.0026 (7)
C30.0339 (9)0.0252 (9)0.0258 (9)0.0012 (7)0.0111 (7)0.0003 (7)
C40.0298 (9)0.0228 (9)0.0234 (8)0.0028 (7)0.0069 (6)0.0030 (6)
C50.0273 (9)0.0266 (10)0.0310 (9)0.0005 (7)0.0067 (7)0.0039 (7)
C60.0253 (8)0.0288 (10)0.0312 (9)0.0017 (7)0.0005 (6)0.0040 (7)
C70.0312 (9)0.0286 (10)0.0214 (8)0.0035 (7)0.0026 (7)0.0002 (6)
C80.0270 (8)0.0266 (9)0.0202 (8)0.0021 (7)0.0046 (6)0.0008 (6)
C90.0236 (8)0.0232 (9)0.0212 (8)0.0033 (7)0.0051 (6)0.0031 (6)
Geometric parameters (Å, º) top
N1—C11.324 (2)C3—H30.9500
N1—C91.380 (2)C4—C51.405 (2)
N2—C11.366 (2)C4—C91.421 (2)
N2—N31.421 (2)C5—C61.375 (3)
N2—H1n0.93 (3)C5—H50.9500
N3—H2n0.89 (2)C6—C71.404 (2)
N3—H3n0.90 (2)C6—H60.9500
C1—C21.434 (2)C7—C81.379 (2)
C2—C31.348 (3)C7—H70.9500
C2—H20.9500C8—C91.412 (2)
C3—C41.426 (2)C8—H80.9500
C1—N1—C9116.89 (15)C5—C4—C3123.37 (16)
C1—N2—N3122.42 (15)C9—C4—C3116.97 (16)
C1—N2—H1n114.1 (16)C6—C5—C4120.82 (16)
N3—N2—H1n119.8 (17)C6—C5—H5119.6
N2—N3—H2n110.1 (15)C4—C5—H5119.6
N2—N3—H3n109.6 (13)C5—C6—C7119.52 (16)
H2n—N3—H3n102.9 (19)C5—C6—H6120.2
N1—C1—N2118.89 (16)C7—C6—H6120.2
N1—C1—C2123.91 (16)C8—C7—C6121.16 (16)
N2—C1—C2117.19 (15)C8—C7—H7119.4
C3—C2—C1118.89 (15)C6—C7—H7119.4
C3—C2—H2120.6C7—C8—C9120.05 (16)
C1—C2—H2120.6C7—C8—H8120.0
C2—C3—C4120.13 (16)C9—C8—H8120.0
C2—C3—H3119.9N1—C9—C8118.03 (15)
C4—C3—H3119.9N1—C9—C4123.20 (15)
C5—C4—C9119.66 (15)C8—C9—C4118.77 (15)
C9—N1—C1—N2179.57 (15)C4—C5—C6—C70.4 (3)
C9—N1—C1—C21.1 (3)C5—C6—C7—C80.3 (3)
N3—N2—C1—N112.7 (3)C6—C7—C8—C90.8 (3)
N3—N2—C1—C2167.89 (16)C1—N1—C9—C8179.37 (16)
N1—C1—C2—C30.7 (3)C1—N1—C9—C40.4 (2)
N2—C1—C2—C3179.94 (16)C7—C8—C9—N1179.17 (16)
C1—C2—C3—C40.4 (3)C7—C8—C9—C40.6 (3)
C2—C3—C4—C5179.51 (18)C5—C4—C9—N1179.88 (16)
C2—C3—C4—C91.0 (2)C3—C4—C9—N10.6 (3)
C9—C4—C5—C60.6 (3)C5—C4—C9—C80.1 (3)
C3—C4—C5—C6179.92 (17)C3—C4—C9—C8179.61 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1n···N3i0.93 (3)2.18 (3)3.077 (2)164 (2)
N3—H2n···N1ii0.89 (2)2.31 (2)3.200 (2)175.1 (19)
N3—H3n···N2iii0.90 (2)2.58 (2)3.295 (2)136.4 (16)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC9H9N3
Mr159.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.7966 (9), 3.9648 (3), 14.0700 (8)
β (°) 97.039 (5)
V3)763.84 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.30 × 0.08 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.476, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2474, 1542, 1169
Rint0.018
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.158, 1.10
No. of reflections1542
No. of parameters121
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.23

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1n···N3i0.93 (3)2.18 (3)3.077 (2)164 (2)
N3—H2n···N1ii0.89 (2)2.31 (2)3.200 (2)175.1 (19)
N3—H3n···N2iii0.90 (2)2.58 (2)3.295 (2)136.4 (16)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: david.young@ubd.edu.bn.

Acknowledgements

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAnwar, M. U., Elliott, A. S., Thompson, L. K. & Dawe, L. N. (2011). Dalton Trans. 40, 4623–4635.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGupta, L. K., Bansal, U. & Chandra, S. (2007). Spectrochim. Acta Part A, 66, 972–975.  CrossRef Google Scholar
First citationNajib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m571–m572.  CSD CrossRef IUCr Journals Google Scholar
First citationPetukhov, K., Alam, M. S., Rupp, H., Strömsdörfer, S., Müller, P., Scheurer, A., Saalfrank, R. W., Kortus, J., Postnikov, A., Ruben, M., Thompson, L. K. & Lehn, J.-M. (2009). Coord. Chem. Rev. 253, 2387–2398.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W. H., Hu, J. J., Chi, Y., Young, D. J. & Hor, T. S. A. (2011). Organometallics, 30, 2137–2143.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds