organic compounds
(R)-3,3-Diethyl-1-(2-hydroxy-1-phenylethyl)piperidin-2-one
aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Pue., Mexico, and bFacultad de Química, Universidad Nacional Autónoma de México, 04510, D.F., Mexico
*Correspondence e-mail: jorge.juarez@correo.buap.mx
In the title compound C17H25NO2, the piperidin-2-one ring adopts an with the C atom in the 5-position as the flap. The crystal packing is stabilized by intermolecular O—H⋯O hydrogen bonds, building a infinite chain along the b-axis direction. C—H⋯π interactions further stabilize the crystal packing.
Related literature
For background to the synthesis of piperidines, see: Angle & Breitenbucher (1995); Micouin et al. (1994); Deslongchamps et al. (1975). For ring conformation analysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812025433/bt5939sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812025433/bt5939Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812025433/bt5939Isup3.cml
The title compound, C17H25NO2, was obtained disolving (R)-(-)-1-(2'-hidroxy-1'-phenylethyl)piperidin-2-one (0.29 g, 1.32 mmol) in THF anhydrous and added 4.0 equiv. HMPA and 4.5 equiv. s-BuLi. The mixture was stirred for 1 h and 3 equiv. of Iodoethane was added at -78 °C, the mixture was stirred for 2.5 h. Finally, the mixture was treated with a satured solution of NH4Cl (4.0 ml), extracted with ethyl acetate (3x20 ml) and purified by flash α]D= -92 (c 1.5, CH2Cl2). IR (KBr) 1615 cm-1. p.f.=89–91 °C, 1H NMR (CDCl3) δ (p.p.m.), J(Hz): 0.88 (t, 3H, J= 7.5, 7.2 Hz), 0.96 (t, 3H, J=7.5, 7.2 Hz), 2.82 (m, 1H), 2.89 (m, 1H), 3.14 (m, 1H), 3.32 (br, 1H-OH), 4.02–4.20 (dd, 2H, J= 5.1, 11.1 Hz), 5.89 (dd 1H, J= 5.1 Hz), 7.32 (m, 5H). 13C NMR (CDCl3), 8.9, 8.9, 20.5, 28.4, 31.9, 32.2, 44.0, 46.2, 58.5, 61.8, 127.5–128.5, 137.1, 177.1.
(SiO2, AcOEt: Petroleum ether; 6:4). Yield 80%. White crystals. [All H atoms were found in a difference map. The H atom bonded to O2 was freely refined. H atoms bonded to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or Ueq(H) = 1.5 Ueq(C) for methyl groups. The
of the chiral centre could not be determined and was set according to the starting material.The development of new methods for the enantioselective synthesis of piperidine derivatives by introduction of substituents at carbon positions of the heterocycle constitutes an area of curret interest (Angle & Breitenbucher, 1995). In the context of the enantioselective synthesis of 3-substituted piperidines, the enolate alkylation of the amide carbonyl of α-alkylation, the double α-substitution in has been rarely studied (Micouin et al., 1994; Deslongchamps et al., 1975).
derived from phenylglycinol with alkyl halides takes place with high to ultimately give 3-alkylpiperidines in good yields. Although numerous methods have been developed for theIn the title compound C17H25NO2, the six membered ring N1/C1/C2/C3/C4/C5 shows an θ2 = 58.3 (3)°, φ2 = 240.7 (4)°, q2 = 0.422 (3) Å and q3 = 0.261 (3) Å. The N(1) atom in the piperidone moiety shows a planar conformation (r.m.s. deviation of N1, C1, C5 and C10 = 0.002Å). The quiral centre on C(10) shows an R with [α]D = -92. Crystal packing is stabilizad by hydrogen bond interactions [O(2)—H(1O)···O(1)], building a infinite chain along b direction and a intermolecular C(4)—H(4 A)···π interactions making a one-dimentional chain along a axis. Two intramolecular interactions, C8—(H8B)···O(1) and C(10)—H10···O(1) are too observated.
on C(4) with puckering parameters (Cremer & Pople, 1975) Q = 0.496 (3) Å,For background to the synthesis of piperidines, see: Angle & Breitenbucher (1995); Micouin et al. (1994); Deslongchamps et al. (1975). For ring conformation analysis, see: Cremer & Pople (1975).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).Fig. 1. The molecular structure of title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. |
C17H25NO2 | F(000) = 300 |
Mr = 275.38 | Dx = 1.209 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5380 (3) Å | Cell parameters from 3593 reflections |
b = 12.6705 (6) Å | θ = 3.7–26.0° |
c = 7.9255 (4) Å | µ = 0.08 mm−1 |
β = 91.776 (4)° | T = 130 K |
V = 756.61 (6) Å3 | Plate, colorless |
Z = 2 | 0.35 × 0.28 × 0.13 mm |
Oxford Diffraction Xcalibur Atlas Gemini diffractometer | 1552 independent reflections |
Graphite monochromator | 1381 reflections with I > 2σ(I) |
Detector resolution: 10.4685 pixels mm-1 | Rint = 0.039 |
ω scans | θmax = 26.1°, θmin = 3.7° |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | h = −9→9 |
Tmin = 0.978, Tmax = 0.99 | k = −14→15 |
5226 measured reflections | l = −7→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0844P)2] where P = (Fo2 + 2Fc2)/3 |
1552 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.37 e Å−3 |
1 restraint | Δρmin = −0.30 e Å−3 |
C17H25NO2 | V = 756.61 (6) Å3 |
Mr = 275.38 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.5380 (3) Å | µ = 0.08 mm−1 |
b = 12.6705 (6) Å | T = 130 K |
c = 7.9255 (4) Å | 0.35 × 0.28 × 0.13 mm |
β = 91.776 (4)° |
Oxford Diffraction Xcalibur Atlas Gemini diffractometer | 1552 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | 1381 reflections with I > 2σ(I) |
Tmin = 0.978, Tmax = 0.99 | Rint = 0.039 |
5226 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 1 restraint |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.37 e Å−3 |
1552 reflections | Δρmin = −0.30 e Å−3 |
185 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.8432 (2) | 0.61989 (14) | 0.4209 (2) | 0.0257 (4) | |
C10 | 0.9135 (3) | 0.4297 (2) | 0.2824 (3) | 0.0194 (5) | |
H10 | 0.9956 | 0.4778 | 0.3421 | 0.023* | |
O2 | 1.1120 (2) | 0.29608 (16) | 0.3809 (3) | 0.0308 (5) | |
C12 | 0.9617 (3) | 0.4306 (2) | 0.0986 (3) | 0.0209 (5) | |
C1 | 0.7126 (3) | 0.56610 (19) | 0.3767 (3) | 0.0201 (5) | |
N1 | 0.7335 (3) | 0.47186 (16) | 0.3024 (3) | 0.0193 (5) | |
C11 | 0.9290 (3) | 0.3223 (2) | 0.3708 (3) | 0.0231 (5) | |
H11A | 0.8814 | 0.3263 | 0.483 | 0.028* | |
H11B | 0.8632 | 0.2691 | 0.3068 | 0.028* | |
C13 | 0.9956 (4) | 0.3401 (2) | 0.0065 (4) | 0.0293 (6) | |
H13 | 0.9863 | 0.2743 | 0.0576 | 0.035* | |
C8 | 0.5095 (4) | 0.7194 (2) | 0.3363 (4) | 0.0325 (7) | |
H8A | 0.3996 | 0.7502 | 0.3735 | 0.039* | |
H8B | 0.606 | 0.7618 | 0.3835 | 0.039* | |
C14 | 1.0431 (4) | 0.3466 (3) | −0.1603 (3) | 0.0335 (7) | |
H14 | 1.0637 | 0.2852 | −0.2209 | 0.04* | |
C5 | 0.5857 (3) | 0.4055 (2) | 0.2393 (3) | 0.0264 (6) | |
H5A | 0.5552 | 0.355 | 0.3257 | 0.032* | |
H5B | 0.6227 | 0.3664 | 0.1413 | 0.032* | |
C2 | 0.5257 (3) | 0.6069 (2) | 0.4118 (3) | 0.0253 (6) | |
C15 | 1.0601 (4) | 0.4429 (3) | −0.2370 (3) | 0.0336 (7) | |
H15 | 1.0942 | 0.4472 | −0.3486 | 0.04* | |
C17 | 0.9776 (4) | 0.5275 (2) | 0.0182 (4) | 0.0305 (6) | |
H17 | 0.9552 | 0.5892 | 0.0774 | 0.037* | |
C3 | 0.3739 (3) | 0.5360 (3) | 0.3417 (4) | 0.0313 (6) | |
H3A | 0.3361 | 0.4894 | 0.4307 | 0.038* | |
H3B | 0.2736 | 0.5803 | 0.3088 | 0.038* | |
C6 | 0.5155 (4) | 0.6160 (2) | 0.6049 (3) | 0.0297 (6) | |
H6A | 0.5983 | 0.67 | 0.6438 | 0.036* | |
H6B | 0.3972 | 0.6394 | 0.632 | 0.036* | |
C4 | 0.4252 (3) | 0.4704 (3) | 0.1921 (4) | 0.0315 (6) | |
H4A | 0.3276 | 0.4244 | 0.1581 | 0.038* | |
H4B | 0.4511 | 0.5161 | 0.0979 | 0.038* | |
C16 | 1.0257 (4) | 0.5336 (3) | −0.1465 (4) | 0.0386 (7) | |
H16 | 1.0354 | 0.5992 | −0.198 | 0.046* | |
C9 | 0.5120 (5) | 0.7282 (3) | 0.1467 (4) | 0.0435 (8) | |
H9A | 0.5013 | 0.8009 | 0.1143 | 0.065* | |
H9B | 0.4147 | 0.6888 | 0.0975 | 0.065* | |
H9C | 0.6218 | 0.7003 | 0.1075 | 0.065* | |
C7 | 0.5558 (5) | 0.5153 (3) | 0.7018 (4) | 0.0397 (7) | |
H7A | 0.5463 | 0.5282 | 0.8205 | 0.06* | |
H7B | 0.6741 | 0.4923 | 0.6791 | 0.06* | |
H7C | 0.4726 | 0.4615 | 0.6671 | 0.06* | |
H1O | 1.120 (5) | 0.249 (3) | 0.448 (5) | 0.041 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0195 (9) | 0.0215 (9) | 0.0361 (9) | −0.0021 (8) | 0.0025 (7) | −0.0075 (8) |
C10 | 0.0156 (11) | 0.0178 (12) | 0.0249 (12) | −0.0015 (11) | 0.0012 (9) | −0.0026 (10) |
O2 | 0.0233 (10) | 0.0281 (11) | 0.0410 (11) | 0.0065 (8) | 0.0035 (8) | 0.0138 (9) |
C12 | 0.0132 (10) | 0.0231 (13) | 0.0264 (12) | 0.0017 (11) | −0.0011 (9) | −0.0001 (11) |
C1 | 0.0220 (12) | 0.0193 (12) | 0.0191 (10) | −0.0027 (11) | 0.0022 (9) | 0.0019 (10) |
N1 | 0.0150 (10) | 0.0189 (10) | 0.0241 (10) | −0.0002 (9) | 0.0010 (8) | −0.0023 (8) |
C11 | 0.0199 (12) | 0.0237 (13) | 0.0261 (12) | 0.0015 (11) | 0.0057 (9) | 0.0023 (10) |
C13 | 0.0348 (14) | 0.0236 (14) | 0.0296 (13) | 0.0064 (13) | 0.0032 (10) | 0.0003 (12) |
C8 | 0.0245 (14) | 0.0235 (14) | 0.0494 (18) | 0.0044 (12) | 0.0018 (12) | 0.0016 (13) |
C14 | 0.0383 (16) | 0.0343 (16) | 0.0280 (14) | 0.0090 (14) | 0.0039 (12) | −0.0061 (13) |
C5 | 0.0186 (12) | 0.0239 (13) | 0.0366 (14) | −0.0026 (11) | −0.0005 (10) | −0.0079 (11) |
C2 | 0.0196 (12) | 0.0232 (13) | 0.0334 (13) | 0.0009 (11) | 0.0061 (10) | −0.0010 (11) |
C15 | 0.0328 (14) | 0.0463 (18) | 0.0221 (12) | −0.0049 (14) | 0.0062 (10) | 0.0002 (12) |
C17 | 0.0358 (15) | 0.0225 (14) | 0.0335 (14) | −0.0033 (13) | 0.0060 (11) | 0.0001 (12) |
C3 | 0.0152 (11) | 0.0356 (16) | 0.0431 (15) | −0.0001 (12) | 0.0035 (10) | −0.0032 (13) |
C6 | 0.0262 (13) | 0.0282 (14) | 0.0353 (14) | −0.0004 (13) | 0.0106 (10) | −0.0054 (12) |
C4 | 0.0174 (12) | 0.0350 (15) | 0.0420 (15) | −0.0029 (12) | −0.0017 (11) | −0.0084 (13) |
C16 | 0.0516 (19) | 0.0298 (16) | 0.0347 (15) | −0.0089 (15) | 0.0054 (13) | 0.0070 (13) |
C9 | 0.0451 (19) | 0.0331 (17) | 0.0517 (19) | 0.0011 (15) | −0.0065 (14) | 0.0105 (14) |
C7 | 0.0446 (17) | 0.0420 (18) | 0.0330 (15) | 0.0031 (16) | 0.0104 (13) | 0.0049 (14) |
O1—C1 | 1.239 (3) | C5—H5A | 0.97 |
C10—N1 | 1.471 (3) | C5—H5B | 0.97 |
C10—C12 | 1.513 (3) | C2—C6 | 1.540 (3) |
C10—C11 | 1.534 (3) | C2—C3 | 1.544 (4) |
C10—H10 | 0.98 | C15—C16 | 1.384 (5) |
O2—C11 | 1.419 (3) | C15—H15 | 0.93 |
O2—H1O | 0.80 (4) | C17—C16 | 1.368 (4) |
C12—C13 | 1.387 (4) | C17—H17 | 0.93 |
C12—C17 | 1.390 (4) | C3—C4 | 1.508 (4) |
C1—N1 | 1.343 (3) | C3—H3A | 0.97 |
C1—C2 | 1.534 (3) | C3—H3B | 0.97 |
N1—C5 | 1.471 (3) | C6—C7 | 1.515 (4) |
C11—H11A | 0.97 | C6—H6A | 0.97 |
C11—H11B | 0.97 | C6—H6B | 0.97 |
C13—C14 | 1.383 (4) | C4—H4A | 0.97 |
C13—H13 | 0.93 | C4—H4B | 0.97 |
C8—C9 | 1.508 (5) | C16—H16 | 0.93 |
C8—C2 | 1.550 (4) | C9—H9A | 0.96 |
C8—H8A | 0.97 | C9—H9B | 0.96 |
C8—H8B | 0.97 | C9—H9C | 0.96 |
C14—C15 | 1.371 (5) | C7—H7A | 0.96 |
C14—H14 | 0.93 | C7—H7B | 0.96 |
C5—C4 | 1.500 (4) | C7—H7C | 0.96 |
N1—C10—C12 | 110.53 (18) | C1—C2—C8 | 107.6 (2) |
N1—C10—C11 | 109.28 (19) | C6—C2—C8 | 108.0 (2) |
C12—C10—C11 | 115.4 (2) | C3—C2—C8 | 110.3 (2) |
N1—C10—H10 | 107.1 | C14—C15—C16 | 119.2 (2) |
C12—C10—H10 | 107.1 | C14—C15—H15 | 120.4 |
C11—C10—H10 | 107.1 | C16—C15—H15 | 120.4 |
C11—O2—H1O | 105 (3) | C16—C17—C12 | 121.1 (3) |
C13—C12—C17 | 118.0 (2) | C16—C17—H17 | 119.4 |
C13—C12—C10 | 123.7 (2) | C12—C17—H17 | 119.4 |
C17—C12—C10 | 118.3 (2) | C4—C3—C2 | 113.4 (2) |
O1—C1—N1 | 120.7 (2) | C4—C3—H3A | 108.9 |
O1—C1—C2 | 119.3 (2) | C2—C3—H3A | 108.9 |
N1—C1—C2 | 120.0 (2) | C4—C3—H3B | 108.9 |
C1—N1—C10 | 119.4 (2) | C2—C3—H3B | 108.9 |
C1—N1—C5 | 124.0 (2) | H3A—C3—H3B | 107.7 |
C10—N1—C5 | 116.61 (19) | C7—C6—C2 | 115.2 (2) |
O2—C11—C10 | 107.05 (19) | C7—C6—H6A | 108.5 |
O2—C11—H11A | 110.3 | C2—C6—H6A | 108.5 |
C10—C11—H11A | 110.3 | C7—C6—H6B | 108.5 |
O2—C11—H11B | 110.3 | C2—C6—H6B | 108.5 |
C10—C11—H11B | 110.3 | H6A—C6—H6B | 107.5 |
H11A—C11—H11B | 108.6 | C5—C4—C3 | 109.3 (2) |
C14—C13—C12 | 120.7 (3) | C5—C4—H4A | 109.8 |
C14—C13—H13 | 119.6 | C3—C4—H4A | 109.8 |
C12—C13—H13 | 119.6 | C5—C4—H4B | 109.8 |
C9—C8—C2 | 116.7 (2) | C3—C4—H4B | 109.8 |
C9—C8—H8A | 108.1 | H4A—C4—H4B | 108.3 |
C2—C8—H8A | 108.1 | C17—C16—C15 | 120.4 (3) |
C9—C8—H8B | 108.1 | C17—C16—H16 | 119.8 |
C2—C8—H8B | 108.1 | C15—C16—H16 | 119.8 |
H8A—C8—H8B | 107.3 | C8—C9—H9A | 109.5 |
C15—C14—C13 | 120.5 (3) | C8—C9—H9B | 109.5 |
C15—C14—H14 | 119.7 | H9A—C9—H9B | 109.5 |
C13—C14—H14 | 119.7 | C8—C9—H9C | 109.5 |
N1—C5—C4 | 111.6 (2) | H9A—C9—H9C | 109.5 |
N1—C5—H5A | 109.3 | H9B—C9—H9C | 109.5 |
C4—C5—H5A | 109.3 | C6—C7—H7A | 109.5 |
N1—C5—H5B | 109.3 | C6—C7—H7B | 109.5 |
C4—C5—H5B | 109.3 | H7A—C7—H7B | 109.5 |
H5A—C5—H5B | 108 | C6—C7—H7C | 109.5 |
C1—C2—C6 | 106.26 (19) | H7A—C7—H7C | 109.5 |
C1—C2—C3 | 114.4 (2) | H7B—C7—H7C | 109.5 |
C6—C2—C3 | 110.0 (2) | ||
N1—C10—C12—C13 | −116.5 (3) | O1—C1—C2—C3 | 176.7 (2) |
C11—C10—C12—C13 | 8.1 (3) | N1—C1—C2—C3 | −4.9 (3) |
N1—C10—C12—C17 | 65.3 (3) | O1—C1—C2—C8 | 53.7 (3) |
C11—C10—C12—C17 | −170.1 (2) | N1—C1—C2—C8 | −127.9 (2) |
O1—C1—N1—C10 | 3.5 (3) | C9—C8—C2—C1 | 67.1 (3) |
C2—C1—N1—C10 | −174.9 (2) | C9—C8—C2—C6 | −178.6 (2) |
O1—C1—N1—C5 | −177.1 (2) | C9—C8—C2—C3 | −58.4 (3) |
C2—C1—N1—C5 | 4.5 (3) | C13—C14—C15—C16 | −1.3 (4) |
C12—C10—N1—C1 | −110.0 (2) | C13—C12—C17—C16 | −0.2 (4) |
C11—C10—N1—C1 | 121.9 (2) | C10—C12—C17—C16 | 178.2 (3) |
C12—C10—N1—C5 | 70.6 (3) | C1—C2—C3—C4 | −25.8 (4) |
C11—C10—N1—C5 | −57.5 (3) | C6—C2—C3—C4 | −145.3 (3) |
N1—C10—C11—O2 | −167.33 (19) | C8—C2—C3—C4 | 95.7 (3) |
C12—C10—C11—O2 | 67.4 (3) | C1—C2—C6—C7 | −56.3 (3) |
C17—C12—C13—C14 | −0.3 (4) | C3—C2—C6—C7 | 68.0 (3) |
C10—C12—C13—C14 | −178.5 (2) | C8—C2—C6—C7 | −171.5 (2) |
C12—C13—C14—C15 | 1.0 (5) | N1—C5—C4—C3 | −55.8 (3) |
C1—N1—C5—C4 | 26.7 (3) | C2—C3—C4—C5 | 55.9 (3) |
C10—N1—C5—C4 | −153.9 (2) | C12—C17—C16—C15 | −0.1 (5) |
O1—C1—C2—C6 | −61.8 (3) | C14—C15—C16—C17 | 0.8 (4) |
N1—C1—C2—C6 | 116.6 (2) | C1—C5—N1—C10 | 179.4 (3) |
Cg1 is the centroid of the C12–C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O···O1i | 0.80 (4) | 1.95 (4) | 2.745 (3) | 170 (4) |
C8—H8B···O1 | 0.97 | 2.55 | 2.874 (3) | 100 |
C10—H10···O1 | 0.98 | 2.23 | 2.707 (3) | 108 |
C4—H4A···Cg1ii | 0.96 | 2.96 | 3.723 (3) | 137 |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C17H25NO2 |
Mr | 275.38 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 130 |
a, b, c (Å) | 7.5380 (3), 12.6705 (6), 7.9255 (4) |
β (°) | 91.776 (4) |
V (Å3) | 756.61 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.35 × 0.28 × 0.13 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Atlas Gemini |
Absorption correction | Analytical (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.978, 0.99 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5226, 1552, 1381 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.114, 1.06 |
No. of reflections | 1552 |
No. of parameters | 185 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.30 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).
Cg1 is the centroid of the C12–C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O···O1i | 0.80 (4) | 1.95 (4) | 2.745 (3) | 170 (4) |
C4—H4A···Cg1ii | 0.96 | 2.96 | 3.723 (3) | 137 |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) x+1, y, z. |
Acknowledgements
This work was funded by projects VIEP-BUAP and CONACyT CB-2009–01/128747. JR and OR thank CONACyT for doctoral scholarships.
References
Angle, S. R. & Breitenbucher, J. G. (1995). In Studies in Natural Products Chemistry, Vol. 16, edited by Atta-ur Rahman, pp. 453–502. Amsterdam: Elsevier. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Deslongchamps, P., Cheriyan, O. U. & Patterson, D. R. (1975). Can. J. Chem. 53, 1682–1683. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Micouin, L., Varea, R., Riche, C., Chiaroni, A., Quirion, J. C. & Husson, H. P. (1994). Tetrahedron Lett. 35, 2529–2532. CSD CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The development of new methods for the enantioselective synthesis of piperidine derivatives by introduction of substituents at carbon positions of the heterocycle constitutes an area of curret interest (Angle & Breitenbucher, 1995). In the context of the enantioselective synthesis of 3-substituted piperidines, the enolate alkylation of the amide carbonyl of lactams derived from phenylglycinol with alkyl halides takes place with high diastereoselectivity to ultimately give enantiopure 3-alkylpiperidines in good yields. Although numerous methods have been developed for the α-alkylation, the double α-substitution in amides has been rarely studied (Micouin et al., 1994; Deslongchamps et al., 1975).
In the title compound C17H25NO2, the six membered ring N1/C1/C2/C3/C4/C5 shows an envelope conformation on C(4) with puckering parameters (Cremer & Pople, 1975) Q = 0.496 (3) Å, θ2 = 58.3 (3)°, φ2 = 240.7 (4)°, q2 = 0.422 (3) Å and q3 = 0.261 (3) Å. The N(1) atom in the piperidone moiety shows a planar conformation (r.m.s. deviation of N1, C1, C5 and C10 = 0.002Å). The quiral centre on C(10) shows an R absolute configuration with [α]D = -92. Crystal packing is stabilizad by hydrogen bond interactions [O(2)—H(1O)···O(1)], building a infinite chain along b direction and a intermolecular C(4)—H(4 A)···π interactions making a one-dimentional chain along a axis. Two intramolecular interactions, C8—(H8B)···O(1) and C(10)—H10···O(1) are too observated.