organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl-3H-2,3-benzodiazepin-4(5H)-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bLaboratoire d'Innovation Thérapeutique UMR CNRS/UdS 7200, Faculté de Pharmacie de Strasbourg, 74 route du Rhin, BP 24 67401 ILLKIRCH Cedex, France, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 July 2012; accepted 10 July 2012; online 14 July 2012)

The seven-membered ring in the title compound, C15H12N2O, adopts a boat-shaped conformation (with the methyl­ene C atom as the prow and the double-bond C=N pair of atoms as the stern). In the crystal, adjacent mol­ecules are linked by an N—H⋯O hydrogen bond to generate helical chains running along the a axis of the ortho­rhom­bic unit cell.

Related literature

For the synthesis and pharmacological properties of the title compound, see: Flammang & Wermuth (1976[Flammang, M. & Wermuth, C. G. (1976). Eur. J. Med. Chem. 11, 83-87.]); Wermuth & Flammang (1971[Wermuth, C. G. & Flammang, M. (1971). Tetrahedron Lett. pp. 4293-4296.]). For related structures, see: Bruno et al. (2001[Bruno, G., Nicoló, F., Rotondo, A., Gitto, R. & Zappalá, M. (2001). Acta Cryst. C57, 1225-1227.], 2003[Bruno, G., Nicoló, F., Gitto, R., Micale, N. & Rosace, G. (2003). Acta Cryst. C59, o117-o119.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O

  • Mr = 236.27

  • Orthorhombic, P 21 21 21

  • a = 5.4718 (1) Å

  • b = 8.4020 (1) Å

  • c = 26.3250 (5) Å

  • V = 1210.27 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.17 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • 9472 measured reflections

  • 2063 independent reflections

  • 1899 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.04

  • 2063 reflections

  • 211 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.90 (3) 1.92 (3) 2.812 (2) 176 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The benzodiazepinone homolog, C15H12N2O (Scheme I), is a pharmacological compound exhibiting tranquilizer activity; its crystal structure has not previously been reported. When the benzene ring that is fused with the seven-membered ring carries a dioxolo substituent, the compound exists as a centrosymmetric dimer that is held together by an N—H···N hydrogen bond [3.030 (3) Å] (Bruno et al., 2003). In contrast, with a pair of methoxy substituents, the compound is also a centrosymmetric dimer but the two halves are held together by an N—H···O hydrogen bond [2.876 (2) Å] (Bruno et al., 2001).

The seven-membered ring in C15H12N2O adopts a boat-shaped conformation (Fig. 1). Adjacent molecules are linked by an N—H···O hydrogen bond (Table 1) to generate one-dimensional helical chains running along the a-axis of the orthorhombic unit cell (Fig. 2).

Related literature top

For the synthesis and pharmacological properties, see: Flammang & Wermuth (1976); Wermuth & Flammang (1971). For related structures, see: Bruno et al. (2001, 2003).

Experimental top

Ethoxycarbonylmethyl-2-benzophenone (1.34 g, 5 mmol) was heated with hydrazine hydrate (0.50 g, 10 mmol) in ethanol (30 ml) for 3 hours with the progress of the reaction monitored by thin layer chromatography. The solvent was removed and the white powder was recrystallized from ethanol to affford colorless crystals. The procedure was that reported in the literature (Flammang & Wermuth, 1976; Wermuth & Flammang, 1971).

Refinement top

Hydrogen atoms were freely refined. The (0 0 2) reflection was omitted owing to bad disagreement. In the absence of heavy atoms, 1461 Friedel pairs were merged.

Structure description top

The benzodiazepinone homolog, C15H12N2O (Scheme I), is a pharmacological compound exhibiting tranquilizer activity; its crystal structure has not previously been reported. When the benzene ring that is fused with the seven-membered ring carries a dioxolo substituent, the compound exists as a centrosymmetric dimer that is held together by an N—H···N hydrogen bond [3.030 (3) Å] (Bruno et al., 2003). In contrast, with a pair of methoxy substituents, the compound is also a centrosymmetric dimer but the two halves are held together by an N—H···O hydrogen bond [2.876 (2) Å] (Bruno et al., 2001).

The seven-membered ring in C15H12N2O adopts a boat-shaped conformation (Fig. 1). Adjacent molecules are linked by an N—H···O hydrogen bond (Table 1) to generate one-dimensional helical chains running along the a-axis of the orthorhombic unit cell (Fig. 2).

For the synthesis and pharmacological properties, see: Flammang & Wermuth (1976); Wermuth & Flammang (1971). For related structures, see: Bruno et al. (2001, 2003).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C15H12N2O2 at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
1-Phenyl-3H-2,3-benzodiazepin-4(5H)-one top
Crystal data top
C15H12N2OF(000) = 496
Mr = 236.27Dx = 1.297 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4920 reflections
a = 5.4718 (1) Åθ = 2.9–32.7°
b = 8.4020 (1) ŵ = 0.08 mm1
c = 26.3250 (5) ÅT = 293 K
V = 1210.27 (4) Å3Prism, colorless
Z = 40.23 × 0.20 × 0.17 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
1899 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 30.0°, θmin = 2.9°
ω scansh = 77
9472 measured reflectionsk = 1011
2063 independent reflectionsl = 3735
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0814P)2 + 0.0803P]
where P = (Fo2 + 2Fc2)/3
2063 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H12N2OV = 1210.27 (4) Å3
Mr = 236.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4718 (1) ŵ = 0.08 mm1
b = 8.4020 (1) ÅT = 293 K
c = 26.3250 (5) Å0.23 × 0.20 × 0.17 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
1899 reflections with I > 2σ(I)
9472 measured reflectionsRint = 0.021
2063 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115All H-atom parameters refined
S = 1.04Δρmax = 0.27 e Å3
2063 reflectionsΔρmin = 0.17 e Å3
211 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1095 (3)0.36819 (18)0.01027 (5)0.0604 (4)
N10.1515 (3)0.37477 (15)0.11324 (4)0.0380 (3)
N20.1083 (3)0.36162 (16)0.06118 (5)0.0413 (3)
C10.0928 (3)0.40531 (19)0.03479 (6)0.0424 (3)
C20.2805 (3)0.5014 (2)0.06309 (7)0.0477 (4)
C30.1668 (3)0.6578 (2)0.07707 (5)0.0382 (3)
C40.0289 (3)0.65874 (16)0.11127 (5)0.0329 (3)
C50.1167 (3)0.51028 (16)0.13530 (5)0.0319 (3)
C60.2431 (4)0.8013 (3)0.05550 (7)0.0520 (4)
C70.1259 (5)0.9415 (2)0.06675 (7)0.0582 (5)
C80.0708 (5)0.9426 (2)0.09960 (7)0.0545 (5)
C90.1462 (4)0.80259 (19)0.12240 (6)0.0420 (4)
C100.1850 (3)0.51417 (17)0.19011 (5)0.0336 (3)
C110.3855 (3)0.4275 (2)0.20722 (6)0.0468 (4)
C120.4501 (4)0.4305 (3)0.25822 (7)0.0570 (5)
C130.3130 (4)0.5173 (3)0.29244 (6)0.0555 (5)
C140.1132 (4)0.6027 (2)0.27610 (6)0.0514 (4)
C150.0503 (3)0.6029 (2)0.22465 (6)0.0419 (3)
H20.201 (5)0.287 (3)0.0465 (9)0.057 (6)*
H210.325 (5)0.439 (3)0.0955 (8)0.052 (6)*
H220.422 (6)0.513 (3)0.0425 (10)0.074 (8)*
H60.385 (5)0.794 (3)0.0333 (10)0.072 (8)*
H70.183 (6)1.042 (4)0.0503 (10)0.082 (9)*
H80.146 (5)1.046 (3)0.1093 (9)0.063 (7)*
H90.288 (4)0.803 (3)0.1463 (8)0.051 (5)*
H110.486 (6)0.358 (3)0.1827 (9)0.067 (7)*
H120.595 (5)0.365 (3)0.2686 (9)0.057 (6)*
H130.349 (6)0.514 (4)0.3290 (10)0.087 (9)*
H140.015 (6)0.672 (3)0.2998 (9)0.065 (7)*
H150.088 (5)0.666 (3)0.2125 (8)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0822 (9)0.0608 (8)0.0383 (6)0.0207 (8)0.0137 (6)0.0071 (5)
N10.0475 (7)0.0350 (6)0.0315 (5)0.0012 (6)0.0012 (5)0.0018 (4)
N20.0526 (8)0.0387 (6)0.0328 (6)0.0001 (6)0.0006 (5)0.0077 (5)
C10.0505 (8)0.0393 (7)0.0374 (7)0.0179 (7)0.0053 (6)0.0008 (5)
C20.0350 (7)0.0592 (10)0.0490 (8)0.0102 (7)0.0059 (6)0.0025 (8)
C30.0339 (7)0.0451 (7)0.0358 (6)0.0030 (6)0.0004 (5)0.0026 (5)
C40.0374 (6)0.0324 (6)0.0289 (5)0.0017 (6)0.0023 (5)0.0007 (5)
C50.0341 (6)0.0320 (6)0.0296 (5)0.0008 (5)0.0007 (5)0.0005 (5)
C60.0492 (10)0.0595 (10)0.0474 (8)0.0156 (9)0.0022 (8)0.0102 (8)
C70.0819 (14)0.0437 (9)0.0490 (9)0.0177 (10)0.0068 (10)0.0132 (7)
C80.0848 (14)0.0341 (7)0.0446 (8)0.0021 (9)0.0065 (9)0.0037 (6)
C90.0577 (10)0.0346 (6)0.0339 (6)0.0051 (7)0.0014 (7)0.0005 (5)
C100.0381 (7)0.0336 (6)0.0292 (5)0.0008 (6)0.0012 (5)0.0015 (5)
C110.0477 (9)0.0566 (9)0.0362 (7)0.0121 (8)0.0011 (6)0.0046 (6)
C120.0551 (10)0.0753 (13)0.0408 (8)0.0099 (11)0.0076 (7)0.0116 (8)
C130.0683 (12)0.0683 (11)0.0300 (6)0.0056 (11)0.0064 (7)0.0053 (7)
C140.0671 (11)0.0554 (9)0.0318 (7)0.0003 (9)0.0054 (7)0.0036 (7)
C150.0489 (8)0.0424 (8)0.0345 (6)0.0050 (7)0.0021 (6)0.0002 (6)
Geometric parameters (Å, º) top
O1—C11.2301 (19)C7—C81.380 (3)
N1—C51.2922 (18)C7—H71.00 (3)
N1—N21.3951 (16)C8—C91.383 (2)
N2—C11.352 (2)C8—H81.00 (3)
N2—H20.90 (3)C9—H91.00 (2)
C1—C21.504 (3)C10—C151.388 (2)
C2—C31.500 (3)C10—C111.392 (2)
C2—H211.03 (2)C11—C121.389 (2)
C2—H220.95 (3)C11—H111.03 (3)
C3—C61.397 (2)C12—C131.381 (3)
C3—C41.399 (2)C12—H121.00 (3)
C4—C91.400 (2)C13—C141.377 (3)
C4—C51.4790 (19)C13—H130.98 (3)
C5—C101.4907 (17)C14—C151.398 (2)
C6—C71.374 (3)C14—H141.01 (3)
C6—H60.97 (3)C15—H150.98 (3)
C5—N1—N2119.10 (12)C6—C7—H7119.1 (18)
C1—N2—N1128.39 (15)C8—C7—H7120.6 (18)
C1—N2—H2115.5 (15)C7—C8—C9119.94 (18)
N1—N2—H2112.5 (15)C7—C8—H8119.2 (16)
O1—C1—N2119.15 (18)C9—C8—H8120.6 (16)
O1—C1—C2124.27 (17)C8—C9—C4120.42 (16)
N2—C1—C2116.56 (14)C8—C9—H9120.3 (14)
C3—C2—C1107.98 (13)C4—C9—H9119.3 (14)
C3—C2—H21109.8 (13)C15—C10—C11119.20 (14)
C1—C2—H21107.4 (13)C15—C10—C5120.85 (13)
C3—C2—H22112.8 (17)C11—C10—C5119.95 (13)
C1—C2—H22109.2 (17)C12—C11—C10120.27 (16)
H21—C2—H22109 (2)C12—C11—H11118.7 (15)
C6—C3—C4119.03 (16)C10—C11—H11121.0 (15)
C6—C3—C2122.19 (15)C13—C12—C11120.13 (18)
C4—C3—C2118.73 (14)C13—C12—H12122.8 (13)
C3—C4—C9119.40 (14)C11—C12—H12117.0 (14)
C3—C4—C5121.27 (13)C14—C13—C12120.21 (15)
C9—C4—C5119.32 (13)C14—C13—H13118.6 (19)
N1—C5—C4126.78 (12)C12—C13—H13121.1 (19)
N1—C5—C10114.67 (12)C13—C14—C15119.92 (17)
C4—C5—C10118.49 (12)C13—C14—H14122.0 (15)
C7—C6—C3120.88 (17)C15—C14—H14117.9 (15)
C7—C6—H6123.6 (17)C10—C15—C14120.24 (16)
C3—C6—H6115.5 (17)C10—C15—H15119.1 (13)
C6—C7—C8120.30 (16)C14—C15—H15120.6 (13)
C5—N1—N2—C151.1 (2)C2—C3—C6—C7176.05 (19)
N1—N2—C1—O1171.86 (15)C3—C6—C7—C80.2 (3)
N1—N2—C1—C29.7 (2)C6—C7—C8—C91.7 (3)
O1—C1—C2—C3113.71 (17)C7—C8—C9—C41.8 (3)
N2—C1—C2—C364.68 (19)C3—C4—C9—C80.4 (2)
C1—C2—C3—C6112.02 (18)C5—C4—C9—C8178.66 (15)
C1—C2—C3—C465.26 (18)N1—C5—C10—C15144.11 (15)
C6—C3—C4—C91.1 (2)C4—C5—C10—C1538.6 (2)
C2—C3—C4—C9176.25 (15)N1—C5—C10—C1135.6 (2)
C6—C3—C4—C5179.85 (15)C4—C5—C10—C11141.71 (16)
C2—C3—C4—C52.8 (2)C15—C10—C11—C120.2 (3)
N2—N1—C5—C41.2 (2)C5—C10—C11—C12179.95 (18)
N2—N1—C5—C10175.89 (13)C10—C11—C12—C131.1 (3)
C3—C4—C5—N144.0 (2)C11—C12—C13—C140.7 (3)
C9—C4—C5—N1135.03 (17)C12—C13—C14—C150.6 (3)
C3—C4—C5—C10139.02 (14)C11—C10—C15—C141.1 (3)
C9—C4—C5—C1041.9 (2)C5—C10—C15—C14178.62 (16)
C4—C3—C6—C71.2 (3)C13—C14—C15—C101.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (3)1.92 (3)2.812 (2)176 (2)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H12N2O
Mr236.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.4718 (1), 8.4020 (1), 26.3250 (5)
V3)1210.27 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.20 × 0.17
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9472, 2063, 1899
Rint0.021
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.04
No. of reflections2063
No. of parameters211
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.17

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (3)1.92 (3)2.812 (2)176 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

We thank Université Mohammed V-Agdal and the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, G., Nicoló, F., Gitto, R., Micale, N. & Rosace, G. (2003). Acta Cryst. C59, o117–o119.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruno, G., Nicoló, F., Rotondo, A., Gitto, R. & Zappalá, M. (2001). Acta Cryst. C57, 1225–1227.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlammang, M. & Wermuth, C. G. (1976). Eur. J. Med. Chem. 11, 83–87.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWermuth, C. G. & Flammang, M. (1971). Tetrahedron Lett. pp. 4293–4296.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds