organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(2-bromo­phen­yl)-7-tert-pentyl-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: parthisivam@yahoo.co.in

(Received 9 September 2012; accepted 13 September 2012; online 19 September 2012)

The title compound, C25H29Br2NO, is a tert-pentyl analog of 2,4-bis­(2-bromo­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one [Par­thiban et al. (2008[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008). Acta Cryst. E64, o2385.]). Acta Cryst. E64, o2385]. Similar to its analog, the title compound exists in a twin-chair conformation with an equatorial orientation of the 2-bromo­phenyl groups. The benzene rings are inclined to each other at a dihedral angle of 29.6 (3)°. The tert-pentyl group on the cyclo­hexa­none ring also adopts an exocyclic equatorial disposition.

Related literature

For the synthesis, stereochemistry and biological activity of 3-aza­bicyclo­[3.3.1]nonan-9-ones, see: Park et al. (2011[Park, D. H., Jeong, Y. T. & Parthiban, P. (2011). J. Mol. Struct. 1005, 31-44.], 2012a[Park, D. H., Venkatesan, J., Kim, S. K. & Parthiban, P. (2012a). Bioorg. Med. Chem. Lett. 22, 6004-6009.]). For the crystal structure of closely related compound, see: Parthiban et al. (2008[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008). Acta Cryst. E64, o2385.]). For examples of aza­bicycles with different conformations, see: Parthiban et al. (2010[Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2010). Acta Cryst. E66, o194-o195.]); Park et al. (2012b[Park, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o1481.]); Padegimas & Kovacic (1972[Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672-2676.]).

[Scheme 1]

Experimental

Crystal data
  • C25H29Br2NO

  • Mr = 519.31

  • Triclinic, [P \overline 1]

  • a = 7.7342 (7) Å

  • b = 10.6409 (10) Å

  • c = 15.0924 (12) Å

  • α = 105.856 (4)°

  • β = 101.242 (4)°

  • γ = 97.112 (4)°

  • V = 1151.08 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 298 K

  • 0.18 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.569, Tmax = 0.719

  • 16189 measured reflections

  • 6006 independent reflections

  • 3081 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.212

  • S = 1.02

  • 6006 reflections

  • 259 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −1.26 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The bycyclic compounds posses three major conformations, viz., chair-chair (Parthiban et al., 2010), chair-boat (Park et al., 2012b) and boat-boat (Padegimas & Kovacic, 1972), depending upon the nature and position of the substituents on the bicycle. The aim of the present study was to explore the stereochemistry as well as the impact of tert-pentyl on the twin-chair conformation of the 2,4-bis(2-bromophenyl)-3-azabicyclo[3.3.1]nonan-9-one (Parthiban et al., 2008).

Examination of the asymmery parameters and torsion angles of the title compound (Fig. 1) reveals that the values are very similar to those in its analog. In detail, the torsion angles of the title compound C2—C8—C6—C7, C1—C2—C8—C6, C5—C6—C8—C2 and C3—C2—C8—C6 are -61.2 (5), 61.9 (5), 63.4 (5) and -63.8 (5)°, respectively. These clearly assign slightly distorted chair conformation to both six-membered rings, and the cyclohexanone ring is compratively flattened. Furthermore, the orientation of the bromophenyl groups on both sides of the secondary amino group is identified by their torsion angles. The torsion angle of C9—C1—C2—C8 and C8—C6—C7—C15 are 178.0 (4) and -178.6 (4)°, respectively. This clearly conform their euatorial orientations, and it is similar to its non-tert-pentyl analog [C9—C1—C2—C8 and C8—C6—C7—C15 are 177.8 (4) and -179.4 (6)°, respectively]. Also the orientation of tert-pentyl group on the cyclohexanone ring is identified by its torsion angles [C21—C4—C5—C6 and C2—C3—C4—C21 are 171.4 (4) and -172.2 (4)°, respectively]. In addition to the above similarities, the title compound and its analog's benzene rings orientations are very similar. In titile compound, the benzene rings are inclined to echh other with an angle of 29.6 (3)°; it is 29.1° for its analog. Hence, the title compound, C25H29Br2NO, exists in a twin-chair conformation with an euatorial orientation of the ortho-bromophenyl groups as its non-tert-pentyl analog. The tert-pentyl group on the cyclohexnone also adopts an exocyclic equtorial disposition.

Related literature top

For the synthesis, stereochemistry and biological activity of 3-azabicyclo[3.3.1]nonan-9-ones, see: Park et al. (2011, 2012a). For the crystal structure of closely related compound, see: Parthiban et al. (2008). For examples of azabicycles with different conformations, see: Parthiban et al. (2010); Park et al. (2012b); Padegimas & Kovacic (1972).

Experimental top

The 2,4-bis(2-bromophenyl)-7-(tert-pentyl) -3-azabicyclo[3.3.1]nonan-9-one was synthesized by a modified and an optimized Mannich condensation in one-pot, using 2-bromobenzaldehyde (0.1 mol, 18.50 g/11.58 ml), 4-tert-pentylcyclohexanone (0.05 mol, 8.41 g/9.15 ml) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol (Park et al., 2011). The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å, methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C), methyl H atoms at Uiso(H) = 1.5Ueq(C) and the hydrogen atoms were fixed geometrically and allowed to ride on the parent nitrogen atom with N—H = 0.86 Å and the displacement parameter was set at Uiso(H)= 1.2Ueq(N).

Structure description top

The bycyclic compounds posses three major conformations, viz., chair-chair (Parthiban et al., 2010), chair-boat (Park et al., 2012b) and boat-boat (Padegimas & Kovacic, 1972), depending upon the nature and position of the substituents on the bicycle. The aim of the present study was to explore the stereochemistry as well as the impact of tert-pentyl on the twin-chair conformation of the 2,4-bis(2-bromophenyl)-3-azabicyclo[3.3.1]nonan-9-one (Parthiban et al., 2008).

Examination of the asymmery parameters and torsion angles of the title compound (Fig. 1) reveals that the values are very similar to those in its analog. In detail, the torsion angles of the title compound C2—C8—C6—C7, C1—C2—C8—C6, C5—C6—C8—C2 and C3—C2—C8—C6 are -61.2 (5), 61.9 (5), 63.4 (5) and -63.8 (5)°, respectively. These clearly assign slightly distorted chair conformation to both six-membered rings, and the cyclohexanone ring is compratively flattened. Furthermore, the orientation of the bromophenyl groups on both sides of the secondary amino group is identified by their torsion angles. The torsion angle of C9—C1—C2—C8 and C8—C6—C7—C15 are 178.0 (4) and -178.6 (4)°, respectively. This clearly conform their euatorial orientations, and it is similar to its non-tert-pentyl analog [C9—C1—C2—C8 and C8—C6—C7—C15 are 177.8 (4) and -179.4 (6)°, respectively]. Also the orientation of tert-pentyl group on the cyclohexanone ring is identified by its torsion angles [C21—C4—C5—C6 and C2—C3—C4—C21 are 171.4 (4) and -172.2 (4)°, respectively]. In addition to the above similarities, the title compound and its analog's benzene rings orientations are very similar. In titile compound, the benzene rings are inclined to echh other with an angle of 29.6 (3)°; it is 29.1° for its analog. Hence, the title compound, C25H29Br2NO, exists in a twin-chair conformation with an euatorial orientation of the ortho-bromophenyl groups as its non-tert-pentyl analog. The tert-pentyl group on the cyclohexnone also adopts an exocyclic equtorial disposition.

For the synthesis, stereochemistry and biological activity of 3-azabicyclo[3.3.1]nonan-9-ones, see: Park et al. (2011, 2012a). For the crystal structure of closely related compound, see: Parthiban et al. (2008). For examples of azabicycles with different conformations, see: Parthiban et al. (2010); Park et al. (2012b); Padegimas & Kovacic (1972).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level.
2,4-Bis(2-bromophenyl)-7-tert-pentyl-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C25H29Br2NOZ = 2
Mr = 519.31F(000) = 528
Triclinic, P1Dx = 1.498 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7342 (7) ÅCell parameters from 4160 reflections
b = 10.6409 (10) Åθ = 2.7–22.8°
c = 15.0924 (12) ŵ = 3.54 mm1
α = 105.856 (4)°T = 298 K
β = 101.242 (4)°Prism, colourless
γ = 97.112 (4)°0.18 × 0.15 × 0.10 mm
V = 1151.08 (18) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6006 independent reflections
Radiation source: fine-focus sealed tube3081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
phi and ω scansθmax = 29.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.569, Tmax = 0.719k = 1414
16189 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.117P)2]
where P = (Fo2 + 2Fc2)/3
6006 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 1.24 e Å3
1 restraintΔρmin = 1.26 e Å3
Crystal data top
C25H29Br2NOγ = 97.112 (4)°
Mr = 519.31V = 1151.08 (18) Å3
Triclinic, P1Z = 2
a = 7.7342 (7) ÅMo Kα radiation
b = 10.6409 (10) ŵ = 3.54 mm1
c = 15.0924 (12) ÅT = 298 K
α = 105.856 (4)°0.18 × 0.15 × 0.10 mm
β = 101.242 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6006 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3081 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.719Rint = 0.047
16189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.212H-atom parameters constrained
S = 1.02Δρmax = 1.24 e Å3
6006 reflectionsΔρmin = 1.26 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.86819 (8)0.90205 (5)0.32088 (5)0.0717 (3)
Br20.85323 (8)0.28410 (7)0.51276 (4)0.0732 (3)
C10.6565 (6)0.6164 (4)0.3068 (3)0.0411 (10)
H10.76140.66790.35730.049*
C20.7228 (6)0.5383 (4)0.2223 (3)0.0440 (11)
H20.80220.60100.20420.053*
C30.5766 (7)0.4547 (4)0.1333 (3)0.0486 (12)
H3A0.49900.51240.11430.058*
H3B0.63420.42190.08220.058*
C40.4601 (7)0.3360 (4)0.1455 (3)0.0456 (11)
H40.38200.37300.18570.055*
C50.5749 (7)0.2611 (4)0.1995 (3)0.0474 (12)
H5A0.63210.20590.15580.057*
H5B0.49590.20210.21950.057*
C60.7214 (6)0.3469 (4)0.2870 (3)0.0441 (11)
H60.79770.28940.30930.053*
C70.6514 (6)0.4244 (4)0.3698 (3)0.0408 (10)
H70.75520.47160.42230.049*
C80.8320 (7)0.4438 (4)0.2566 (3)0.0462 (11)
C90.5400 (6)0.7115 (4)0.2822 (3)0.0405 (10)
C100.6147 (7)0.8408 (4)0.2862 (3)0.0461 (11)
C110.5088 (10)0.9304 (5)0.2667 (4)0.0670 (16)
H110.56181.01580.27080.080*
C120.3248 (9)0.8927 (6)0.2414 (5)0.0755 (18)
H120.25270.95300.22980.091*
C130.2472 (8)0.7627 (6)0.2332 (4)0.0676 (16)
H130.12350.73410.21300.081*
C140.3574 (7)0.6776 (5)0.2555 (4)0.0531 (13)
H140.30420.59250.25210.064*
C150.5335 (6)0.3345 (4)0.4043 (3)0.0384 (10)
C160.3459 (6)0.3148 (5)0.3759 (3)0.0483 (11)
H160.29410.36280.33820.058*
C170.2358 (8)0.2263 (6)0.4020 (4)0.0596 (14)
H170.11190.21400.38090.072*
C180.3103 (8)0.1554 (5)0.4598 (4)0.0586 (14)
H180.23640.09540.47730.070*
C190.4926 (8)0.1744 (4)0.4908 (3)0.0509 (12)
H190.54310.12760.52980.061*
C200.6015 (6)0.2631 (4)0.4641 (3)0.0415 (10)
N10.5541 (5)0.5240 (3)0.3436 (3)0.0413 (9)
H1A0.44630.52820.34930.050*
O10.9910 (5)0.4487 (4)0.2582 (3)0.0695 (10)
C210.3326 (9)0.2448 (5)0.0486 (4)0.0732 (18)
C240.2293 (15)0.1222 (10)0.0634 (7)0.155 (4)
H24A0.31310.07840.09500.186*
H24B0.16560.05980.00230.186*
C220.1993 (13)0.3238 (9)0.0052 (6)0.151 (5)
H22A0.13800.27180.05850.226*
H22B0.26490.40620.00460.226*
H22C0.11330.34170.04290.226*
C250.0936 (15)0.1639 (10)0.1242 (7)0.155 (4)
H25A0.14700.24590.17360.232*
H25B0.06240.09590.15210.232*
H25C0.01260.17580.08470.232*
C230.4459 (12)0.1841 (8)0.0222 (5)0.113 (3)
H23A0.52720.13720.00650.169*
H23B0.51300.25420.03730.169*
H23C0.36710.12370.07920.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0725 (4)0.0449 (3)0.0923 (5)0.0143 (3)0.0195 (3)0.0238 (3)
Br20.0604 (4)0.0956 (5)0.0726 (5)0.0205 (3)0.0054 (3)0.0452 (4)
C10.045 (3)0.026 (2)0.051 (3)0.0006 (18)0.012 (2)0.0140 (18)
C20.047 (3)0.035 (2)0.056 (3)0.0005 (19)0.024 (2)0.021 (2)
C30.067 (3)0.035 (2)0.049 (3)0.005 (2)0.021 (2)0.019 (2)
C40.060 (3)0.034 (2)0.045 (3)0.002 (2)0.015 (2)0.018 (2)
C50.070 (3)0.028 (2)0.050 (3)0.007 (2)0.021 (2)0.0159 (19)
C60.049 (3)0.039 (2)0.054 (3)0.013 (2)0.017 (2)0.023 (2)
C70.050 (3)0.034 (2)0.040 (3)0.0032 (19)0.011 (2)0.0167 (19)
C80.047 (3)0.041 (3)0.053 (3)0.009 (2)0.020 (2)0.014 (2)
C90.054 (3)0.028 (2)0.044 (3)0.0075 (19)0.020 (2)0.0130 (18)
C100.068 (3)0.031 (2)0.045 (3)0.008 (2)0.024 (2)0.0141 (19)
C110.111 (5)0.039 (3)0.066 (4)0.019 (3)0.037 (3)0.027 (3)
C120.080 (4)0.077 (4)0.103 (5)0.043 (4)0.042 (4)0.055 (4)
C130.061 (4)0.079 (4)0.080 (4)0.027 (3)0.028 (3)0.040 (3)
C140.053 (3)0.041 (3)0.072 (4)0.007 (2)0.021 (3)0.025 (2)
C150.045 (3)0.031 (2)0.040 (3)0.0051 (18)0.013 (2)0.0095 (18)
C160.043 (3)0.044 (3)0.063 (3)0.007 (2)0.015 (2)0.024 (2)
C170.050 (3)0.064 (3)0.064 (3)0.003 (3)0.014 (3)0.025 (3)
C180.075 (4)0.046 (3)0.055 (3)0.007 (3)0.025 (3)0.018 (2)
C190.076 (4)0.039 (3)0.043 (3)0.008 (2)0.018 (2)0.019 (2)
C200.053 (3)0.036 (2)0.041 (3)0.014 (2)0.016 (2)0.0135 (19)
N10.046 (2)0.0310 (18)0.057 (2)0.0084 (16)0.0239 (18)0.0205 (17)
O10.050 (2)0.078 (3)0.096 (3)0.019 (2)0.033 (2)0.039 (2)
C210.095 (5)0.049 (3)0.062 (4)0.017 (3)0.001 (3)0.021 (3)
C240.197 (9)0.131 (6)0.100 (5)0.054 (6)0.005 (4)0.034 (5)
C220.179 (9)0.106 (6)0.120 (7)0.064 (6)0.080 (6)0.078 (5)
C250.197 (9)0.131 (6)0.100 (5)0.054 (6)0.005 (4)0.034 (5)
C230.160 (8)0.107 (6)0.041 (4)0.016 (5)0.017 (4)0.004 (3)
Geometric parameters (Å, º) top
Br1—C101.908 (5)C12—H120.9300
Br2—C201.904 (5)C13—C141.380 (7)
C1—N11.476 (5)C13—H130.9300
C1—C91.507 (6)C14—H140.9300
C1—C21.537 (7)C15—C201.400 (6)
C1—H10.9800C15—C161.402 (6)
C2—C81.521 (6)C16—C171.379 (7)
C2—C31.542 (7)C16—H160.9300
C2—H20.9800C17—C181.390 (8)
C3—C41.534 (6)C17—H170.9300
C3—H3A0.9700C18—C191.367 (7)
C3—H3B0.9700C18—H180.9300
C4—C51.528 (6)C19—C201.381 (6)
C4—C211.574 (7)C19—H190.9300
C4—H40.9800N1—H1A0.8600
C5—C61.538 (6)C21—C241.537 (10)
C5—H5A0.9700C21—C221.565 (11)
C5—H5B0.9700C21—C231.567 (10)
C6—C81.483 (6)C24—C251.553 (12)
C6—C71.531 (6)C24—H24A0.9700
C6—H60.9800C24—H24B0.9700
C7—N11.468 (6)C22—H22A0.9600
C7—C151.503 (6)C22—H22B0.9600
C7—H70.9800C22—H22C0.9600
C8—O11.220 (6)C25—H25A0.9600
C9—C141.364 (7)C25—H25B0.9600
C9—C101.406 (6)C25—H25C0.9600
C10—C111.385 (7)C23—H23A0.9600
C11—C121.376 (8)C23—H23B0.9600
C11—H110.9300C23—H23C0.9600
C12—C131.401 (8)
N1—C1—C9108.6 (4)C14—C13—C12119.0 (6)
N1—C1—C2110.2 (3)C14—C13—H13120.5
C9—C1—C2113.0 (4)C12—C13—H13120.5
N1—C1—H1108.3C9—C14—C13123.5 (5)
C9—C1—H1108.3C9—C14—H14118.2
C2—C1—H1108.3C13—C14—H14118.2
C8—C2—C1107.1 (4)C20—C15—C16115.7 (4)
C8—C2—C3107.6 (4)C20—C15—C7123.0 (4)
C1—C2—C3116.3 (4)C16—C15—C7121.3 (4)
C8—C2—H2108.5C17—C16—C15122.0 (4)
C1—C2—H2108.5C17—C16—H16119.0
C3—C2—H2108.5C15—C16—H16119.0
C4—C3—C2115.2 (4)C16—C17—C18120.0 (5)
C4—C3—H3A108.5C16—C17—H17120.0
C2—C3—H3A108.5C18—C17—H17120.0
C4—C3—H3B108.5C19—C18—C17119.7 (5)
C2—C3—H3B108.5C19—C18—H18120.1
H3A—C3—H3B107.5C17—C18—H18120.1
C5—C4—C3111.0 (4)C18—C19—C20119.8 (5)
C5—C4—C21114.0 (4)C18—C19—H19120.1
C3—C4—C21112.0 (4)C20—C19—H19120.1
C5—C4—H4106.4C19—C20—C15122.7 (5)
C3—C4—H4106.4C19—C20—Br2116.5 (3)
C21—C4—H4106.4C15—C20—Br2120.8 (3)
C4—C5—C6116.3 (4)C7—N1—C1114.5 (4)
C4—C5—H5A108.2C7—N1—H1A122.7
C6—C5—H5A108.2C1—N1—H1A122.7
C4—C5—H5B108.2C24—C21—C22110.5 (7)
C6—C5—H5B108.2C24—C21—C23103.6 (6)
H5A—C5—H5B107.4C22—C21—C23111.4 (7)
C8—C6—C7108.2 (4)C24—C21—C4109.9 (5)
C8—C6—C5107.5 (4)C22—C21—C4110.9 (5)
C7—C6—C5114.9 (4)C23—C21—C4110.3 (5)
C8—C6—H6108.7C21—C24—C25110.3 (8)
C7—C6—H6108.7C21—C24—H24A109.6
C5—C6—H6108.7C25—C24—H24A109.6
N1—C7—C15109.9 (4)C21—C24—H24B109.6
N1—C7—C6111.0 (3)C25—C24—H24B109.6
C15—C7—C6112.2 (3)H24A—C24—H24B108.1
N1—C7—H7107.9C21—C22—H22A109.5
C15—C7—H7107.9C21—C22—H22B109.5
C6—C7—H7107.9H22A—C22—H22B109.5
O1—C8—C6125.0 (4)C21—C22—H22C109.5
O1—C8—C2123.3 (4)H22A—C22—H22C109.5
C6—C8—C2111.7 (4)H22B—C22—H22C109.5
C14—C9—C10116.3 (4)C24—C25—H25A109.5
C14—C9—C1122.2 (4)C24—C25—H25B109.5
C10—C9—C1121.5 (4)H25A—C25—H25B109.5
C11—C10—C9122.0 (5)C24—C25—H25C109.5
C11—C10—Br1116.8 (4)H25A—C25—H25C109.5
C9—C10—Br1121.2 (4)H25B—C25—H25C109.5
C12—C11—C10119.8 (5)C21—C23—H23A109.5
C12—C11—H11120.1C21—C23—H23B109.5
C10—C11—H11120.1H23A—C23—H23B109.5
C11—C12—C13119.4 (5)C21—C23—H23C109.5
C11—C12—H12120.3H23A—C23—H23C109.5
C13—C12—H12120.3H23B—C23—H23C109.5
N1—C1—C2—C856.2 (5)C10—C11—C12—C131.7 (9)
C9—C1—C2—C8178.0 (4)C11—C12—C13—C143.2 (9)
N1—C1—C2—C364.1 (5)C10—C9—C14—C130.1 (8)
C9—C1—C2—C357.7 (5)C1—C9—C14—C13179.5 (5)
C8—C2—C3—C452.9 (5)C12—C13—C14—C92.4 (9)
C1—C2—C3—C467.2 (5)N1—C7—C15—C20156.6 (4)
C2—C3—C4—C543.5 (5)C6—C7—C15—C2079.4 (5)
C2—C3—C4—C21172.2 (4)N1—C7—C15—C1625.0 (6)
C3—C4—C5—C643.8 (5)C6—C7—C15—C1699.0 (5)
C21—C4—C5—C6171.4 (4)C20—C15—C16—C172.7 (7)
C4—C5—C6—C853.5 (5)C7—C15—C16—C17175.8 (5)
C4—C5—C6—C767.0 (5)C15—C16—C17—C181.3 (8)
C8—C6—C7—N155.2 (5)C16—C17—C18—C190.3 (8)
C5—C6—C7—N164.8 (5)C17—C18—C19—C200.4 (8)
C8—C6—C7—C15178.6 (4)C18—C19—C20—C151.1 (7)
C5—C6—C7—C1558.6 (5)C18—C19—C20—Br2179.1 (4)
C7—C6—C8—O1118.8 (5)C16—C15—C20—C192.6 (6)
C5—C6—C8—O1116.6 (5)C7—C15—C20—C19175.9 (4)
C7—C6—C8—C261.2 (5)C16—C15—C20—Br2177.6 (3)
C5—C6—C8—C263.4 (5)C7—C15—C20—Br23.9 (6)
C1—C2—C8—O1118.1 (5)C15—C7—N1—C1178.9 (3)
C3—C2—C8—O1116.2 (5)C6—C7—N1—C154.2 (5)
C1—C2—C8—C661.9 (5)C9—C1—N1—C7179.5 (3)
C3—C2—C8—C663.8 (5)C2—C1—N1—C755.1 (5)
N1—C1—C9—C1428.3 (6)C5—C4—C21—C2448.8 (8)
C2—C1—C9—C1494.4 (5)C3—C4—C21—C24175.8 (6)
N1—C1—C9—C10151.3 (4)C5—C4—C21—C22171.4 (6)
C2—C1—C9—C1086.0 (5)C3—C4—C21—C2261.6 (7)
C14—C9—C10—C111.8 (7)C5—C4—C21—C2364.8 (6)
C1—C9—C10—C11177.9 (4)C3—C4—C21—C2362.3 (6)
C14—C9—C10—Br1179.2 (4)C22—C21—C24—C2554.6 (10)
C1—C9—C10—Br11.1 (6)C23—C21—C24—C25174.0 (8)
C9—C10—C11—C120.9 (8)C4—C21—C24—C2568.2 (10)
Br1—C10—C11—C12179.9 (5)

Experimental details

Crystal data
Chemical formulaC25H29Br2NO
Mr519.31
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.7342 (7), 10.6409 (10), 15.0924 (12)
α, β, γ (°)105.856 (4), 101.242 (4), 97.112 (4)
V3)1151.08 (18)
Z2
Radiation typeMo Kα
µ (mm1)3.54
Crystal size (mm)0.18 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.569, 0.719
No. of measured, independent and
observed [I > 2σ(I)] reflections
16189, 6006, 3081
Rint0.047
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.212, 1.02
No. of reflections6006
No. of parameters259
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 1.26

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This research was supported by the Brain Korea 21 (BK 21) Research Program (a human resource development program of the Korean government). The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPadegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.  CrossRef CAS Web of Science Google Scholar
First citationPark, D. H., Jeong, Y. T. & Parthiban, P. (2011). J. Mol. Struct. 1005, 31–44.  Web of Science CrossRef CAS Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o1481.  CSD CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Venkatesan, J., Kim, S. K. & Parthiban, P. (2012a). Bioorg. Med. Chem. Lett. 22, 6004–6009.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParthiban, P., Ramkumar, V. & Jeong, Y. T. (2010). Acta Cryst. E66, o194–o195.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008). Acta Cryst. E64, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds